Streptomyces iakyrus TA 36 as First-Reported Source of Quinone Antibiotic γ–Rubromycin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological, Biochemical and Genetic Strain Characterisation
2.2. Evaluation of Antimicrobial Activity and Determination of Bioactive Compound
3. Material and Methods
3.1. Strain Identification and Characterisation
3.1.1. Sample Collection and Isolation of the TA 36 Strain
3.1.2. Morphological Characterisation
3.1.3. Physiological and Biochemical Tests
3.1.4. Genotypic Identification and Phylogenetic Analysis
3.1.5. MALDI–TOF MS Analysis of Strain TA 36
3.2. Extraction of Crude Extract and Antimicrobial Activity Screening
3.2.1. Bacterial and Fungal Test Organisms Used in the Study
3.2.2. Primary and Secondary Screening of Antimicrobial Activity
3.3. Fractionation of the TA 36 Crude Extract via HPLC and LC/MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schneider, Y.K. Bacterial Natural Product Drug Discovery for New Antibiotics: Strategies for Tackling the Problem of Antibiotic Resistance by Efficient Bioprospecting. Antibiotics 2021, 10, 842. [Google Scholar] [CrossRef] [PubMed]
- Aljeldah, M.M. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics 2022, 11, 1082. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, X.; Chen, G.; Du, J. Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers 2022, 14, 2928. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.H. Global Challenges in Breast Cancer Detection and Treatment. Breast 2022, 62, S3–S6. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.M.; Ming, L.C.; et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef]
- Rodrigues, R.; Duarte, D.; Vale, N. Drug Repurposing in Cancer Therapy: Influence of Patient’s Genetic Background in Breast Cancer Treatment. Int. J. Mol. Sci. 2022, 23, 4280. [Google Scholar] [CrossRef]
- Boumehira, A.Z.; Kirby, B.; Trindade, M.; Hacène, H.; Park, E.Y.; El Enshasy, H.A. Streptomyces sp. ADR1, Strain Producing β- and γ-Rubromycin Antibiotics, Isolated from Algerian Sahara Desert. Fermentation 2022, 8, 473. [Google Scholar] [CrossRef]
- Abdallaoui, M.S.; Kamal, N.; Guessous-Idrissi, N. Mycoses Nosocomiales Systémiques à Trichosporon Asahii: À Propos de Trois Cas Au CHU Ibn Rochd de Casablanca (Maroc). Rev. Francoph. Des Lab. 2009, 2009, 15–18. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, C.; Ju, X.; Xiong, Y.; Xing, K.; Qin, S. Community Composition and Metabolic Potential of Endophytic Actinobacteria from Coastal Salt Marsh Plants in Jiangsu, China. Front. Microbiol. 2019, 10, 1063. [Google Scholar] [CrossRef]
- Bush, K.; Macielag, M. New Approaches in the Treatment of Bacterial Infections. Curr. Opin. Chem. Biol. 2000, 4, 433–439. [Google Scholar] [CrossRef]
- Kumar, S.; Solanki, D.S.; Parihar, K.; Tak, A.; Gehlot, P.; Pathak, R.; Singh, S.K. Actinomycetes Isolates of Arid Zone of Indian Thar Desert and Efficacy of Their Bioactive Compounds against Human Pathogenic Bacteria. Biol. Futur. 2021, 72, 431–440. [Google Scholar] [CrossRef]
- Dimri, A.G.; Chauhan, A.; Aggarwal, M.L. Antibiotic Potential of Actinomycetes from Different Environments against Human Pathogens and Microorganisms of Industrial Importance: A Review. Sci. Arch. 2020, 1, 7–24. [Google Scholar] [CrossRef]
- Jamwal, V.L.; Gandhi, S.G. Endophytes as a Source of High-Value Phytochemicals: Present Scenario and Future Outlook. In Endophytes and Secondary Metabolites; Reference Series in Phytochemistry; Springer Nature: Cham, Switzerland, 2019; pp. 571–590. [Google Scholar]
- Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A Critical Review on Exploiting the Pharmaceutical Potential of Plant Endophytic Fungi. Biotechnol. Adv. 2020, 39, 107462. [Google Scholar] [CrossRef]
- Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; van Sinderen, D. Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum. Microbiol. Mol. Biol. Rev. 2007, 71, 495–548. [Google Scholar] [CrossRef] [Green Version]
- Ravikumar, S.; Inbaneson, S.J.; Uthiraselvan, M.; Priya, S.R. Diversity of Endophytic Actinomycetes from Karangkadu Mangrove Ecosystem and Its Antibacterial Potential against Bacterial Pathogens. J. Pharm. Res. 2011, 4, 294–296. [Google Scholar]
- Quinn, G.A.; Banat, A.M.; Abdelhameed, A.M.; Banat, I.M. Streptomyces from Traditional Medicine: Sources of New Innovations in Antibiotic Discovery. J. Med. Microbiol. 2020, 69, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Hamedi, J.; Mohammadipanah, F.; Ventosa, A. Systematic and Biotechnological Aspects of Halophilic and Halotolerant Actinomycetes. Extremophiles 2013, 17, 1–13. [Google Scholar] [CrossRef]
- Arul Jose, P.; Sivakala, K.K.; Jebakumar, S.R.D. Formulation and Statistical Optimization of Culture Medium for Improved Production of Antimicrobial Compound by Streptomyces sp. JAJ06. Int. J. Microbiol. 2013, 2013, 526260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Naggar, N.E.-A. Streptomyces-Based Cell Factories for Production of Biomolecules and Bioactive Metabolites. In Microbial Cell Factories Engineering for Production of Biomolecules; Elsevier: Amsterdam, The Netherlands, 2021; pp. 183–234. [Google Scholar]
- Yuan, M.; Yu, Y.; Li, H.-R.; Dong, N.; Zhang, X.-H. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean. Mar. Drugs 2014, 12, 1281–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voitsekhovskaia, I.; Paulus, C.; Dahlem, C.; Rebets, Y.; Nadmid, S.; Zapp, J.; Axenov-Gribanov, D.; Rückert, C.; Timofeyev, M.; Kalinowski, J.; et al. Baikalomycins A-C, New Aquayamycin-Type Angucyclines Isolated from Lake Baikal Derived Streptomyces sp. IB201691-2A. Microorganisms 2020, 8, 680. [Google Scholar] [CrossRef]
- Brasholz, M.; Sörgel, S.; Azap, C.; Reißig, H. Rubromycins: Structurally Intriguing, Biologically Valuable, Synthetically Challenging Antitumour Antibiotics. Eur. J. Org. Chem. 2007, 2007, 3801–3814. [Google Scholar] [CrossRef]
- Kamala, K.; Sivaperumal, P.; Kamath, S.M.; Thilagaraj, W.R.; Rajaram, R. Marine Actinobacteria as a Source for Emerging Biopharmaceuticals. In Encyclopedia of Marine Biotechnology; Wiley: Hoboken, NJ, USA, 2020; pp. 2095–2105. [Google Scholar]
- Ueno, T.; Takahashi, H.; Oda, M.; Mizunuma, M.; Yokoyama, A.; Goto, Y.; Mizushina, Y.; Sakaguchi, K.; Hayashi, H. Inhibition of Human Telomerase by Rubromycins: Implication of Spiroketal System of the Compounds as an Active Moiety. Biochemistry 2000, 39, 5995–6002. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, H.; Renneberg, K.-H. Rubromycin, Ein Rotes Antibiotikum Aus Actinomyceten. Naturwissenschaften 1953, 40, 59–60. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Q.; Yang, C.; Zhu, Y.; Zhang, L.; Wang, L.; Liu, Z.; Zhang, G.; Zhang, C. Assembly Line and Post-PKS Modifications in the Biosynthesis of Marine Polyketide Natural Products. In Comprehensive Natural Products III; Elsevier: Amsterdam, The Netherlands, 2020; pp. 139–197. [Google Scholar]
- Shirling, E.B.; Gottlieb, D. Methods for Characterization of Streptomyces Species. Int. J. Syst. Bacteriol. 1966, 16, 313–340. [Google Scholar] [CrossRef] [Green Version]
- Suter, M.A. Isolierung Und Charakterisierung von Melanin–Negativen Mutanten Aus Streptomyces Glaucescens. Ph.D. Thesis, Eidgenossische Technische Hochschule, Zurich, Switzerland, 1978. [Google Scholar]
- Poosarla, A. Isolation of Potent Antibiotic Producing Actinomycetes from Marine Sediments of Andaman and Nicobar Marine Islands. J. Microbiol. Antimicrob. 2013, 5, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Kong, J.; Xiong, Y.; Yi, S.; Gan, T.; Huang, C.; Duan, Y.; Zhu, X. Genome Mining of Streptomyces sp. CB00271 as a Natural High-producer of Β-rubromycin and the Resulting Discovery of Β-rubromycin Acid. Biotechnol. Bioeng. 2021, 118, 2243–2254. [Google Scholar] [CrossRef]
- Mirani, A.G.; Shah, T.K.; Patravale, V.B. Marine Source-derived Anti-HIV Therapeutics. In Encyclopedia of Marine Biotechnology; Wiley: Hoboken, NJ, USA, 2020; pp. 2725–2753. [Google Scholar]
- Boumehira, A.Z.; Hacène, H.; El-Enshasy, H.A. Rubromycins: A Class of Telomerase Inhibitor Antibiotics Produced by Streptomyces spp. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 141–150. [Google Scholar]
- Wang, X.; Zhang, M.; Gao, J.; Pu, T.; Bilal, M.; Wang, Y.; Zhang, X. Antifungal Activity Screening of Soil Actinobacteria Isolated from Inner Mongolia, China. Biol. Control 2018, 127, 78–84. [Google Scholar] [CrossRef]
- Bull, A.T.; Goodfellow, M. Dark, Rare and Inspirational Microbial Matter in the Extremobiosphere: 16 000 m of Bioprospecting Campaigns. Microbiology 2019, 165, 1252–1264. [Google Scholar] [CrossRef] [Green Version]
- Jose, P.A.; Maharshi, A.; Jha, B. Actinobacteria in Natural Products Research: Progress and Prospects. Microbiol. Res. 2021, 246, 126708. [Google Scholar] [CrossRef]
- Rathwell, D.C.K.; Yang, S.-H.; Tsang, K.Y.; Brimble, M.A. An Efficient Formal Synthesis of the Human Telomerase Inhibitor (±)-γ-Rubromycin. Angew. Chem. Int. Ed. 2009, 48, 7996–8000. [Google Scholar] [CrossRef]
- Ikeda, H.; Ishikawa, J.; Hanamoto, A.; Shinose, M.; Kikuchi, H.; Shiba, T.; Sakaki, Y.; Hattori, M.; Ōmura, S. Complete Genome Sequence and Comparative Analysis of the Industrial Microorganism Streptomyces avermitilis. Nat. Biotechnol. 2003, 21, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, Y.; Ishikawa, J.; Hara, H.; Suzuki, H.; Ikenoya, M.; Ikeda, H.; Yamashita, A.; Hattori, M.; Horinouchi, S. Genome Sequence of the Streptomycin-Producing Microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 2008, 190, 4050–4060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, M.; Furihata, K.; Furihata, K.; Adachi, K.; Seto, H.; Otake, N. The Structure of a New Anthracycline, Cinerubin X Produced by a Blocked Mutant of Streptomyces violaceochromogenes. J. Antibiot. 1986, 39, 1178–1179. [Google Scholar] [CrossRef] [PubMed]
- Balachandar, R.; Karmegam, N.; Saravanan, M.; Subbaiya, R.; Gurumoorthy, P. Synthesis of Bioactive Compounds from Vermicast Isolated Actinomycetes Species and Its Antimicrobial Activity against Human Pathogenic Bacteria. Microb. Pathog. 2018, 121, 155–165. [Google Scholar] [CrossRef]
- Gacem, M.A.; Ould-El-Hadj-Khelil, A.; Boudjemaa, B.; Wink, J. Antimicrobial and Antioxidant Effects of a Forest Actinobacterium V002 as New Producer of Spectinabilin, Undecylprodigiosin and Metacycloprodigiosin. Curr. Microbiol. 2020, 77, 2575–2583. [Google Scholar] [CrossRef]
- Harunari, E.; Imada, C.; Igarashi, Y.; Fukuda, T.; Terahara, T.; Kobayashi, T. Hyaluromycin, a New Hyaluronidase Inhibitor of Polyketide Origin from Marine Streptomyces sp. Mar. Drugs 2014, 12, 491–507. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Elshahawi, S.I.; Ponomareva, L.V.; Ye, Q.; Liu, Y.; Copley, G.C.; Hower, J.C.; Hatcher, B.E.; Kharel, M.K.; Van Lanen, S.G.; et al. Structure Determination, Functional Characterization, and Biosynthetic Implications of Nybomycin Metabolites from a Mining Reclamation Site-Associated Streptomyces. J. Nat. Prod. 2019, 82, 3469–3476. [Google Scholar] [CrossRef]
- Goldman, M.E.; Salituro, G.S.; Bowen, J.A.; Williamson, J.M. Inhibition of Human Immunodeficiency Virus–1 Reverse Transcriptase Activity by Rubromycins: Competitive Interaction at the Template. Mol. Pharmacol. 1990, 5, 20–25. [Google Scholar]
- Thirumurugan, D.; Vijayakumar, R. Characterization and Structure Elucidation of Antibacterial Compound of Streptomyces sp. ECR77 Isolated from East Coast of India. Curr. Microbiol. 2015, 70, 745–755. [Google Scholar] [CrossRef]
- Boukaew, S.; Prasertsan, P. Factors Affecting Antifungal Activity of Streptomyces philanthi RM-1-138 against Rhizoctonia solani. World J. Microbiol. Biotechnol. 2014, 30, 323–329. [Google Scholar] [CrossRef]
- Kilian, M. Rapid Identification of Actinomycetaceae and Related Bacteria. J. Clin. Microbiol. 1978, 8, 127–133. [Google Scholar] [CrossRef]
- Humble, M.W.; King, A.; Phillips, I. API ZYM: A Simple Rapid System for the Detection of Bacterial Enzymes. J. Clin. Pathol. 1977, 30, 275–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacFaddin, J.F. Biochemical Tests for the Identification of Medical Bacteria. In Biochemical Tests for the Identification of Medical Bacteria; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; p. 928. [Google Scholar]
- Charousová, I.; Javoreková, S.; Wink, J. Isolation and Characterization of Streptomyces rishiriensis (Vy31) with Antibiotic Activity against Various Pathogenic Microorganisms. J. Microbiol. Biotechnol. Food Sci. 2015, 04, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Charousová, I.; Medo, J.; Hleba, L.; Javoreková, S. Streptomyces globosus DK15 and Streptomyces ederensis ST13 as New Producers of Factumycin and Tetrangomycin Antibiotics. Braz. J. Microbiol. 2018, 49, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Delsuc, F.; Dufayard, J.-F.; Gascuel, O. Estimating Maximum Likelihood Phylogenies with PhyML. In Bioinformatics for DNA Sequence Analysis; Humana Press: Totowa, NJ, USA, 2009; pp. 113–137. [Google Scholar]
- Gascuel, O. BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 1997, 14, 685–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hleba, L.; Charousova, I.; Cisarova, M.; Kovacik, A.; Kormanec, J.; Medo, J.; Bozik, M.; Javorekova, S. Rapid Identification of Streptomyces Tetracycline Producers by MALDI-TOF Mass Spectrometry. J. Environ. Sci. Health Part A 2018, 53, 1083–1093. [Google Scholar] [CrossRef]
- Eccleston, G.; Brooks, P.; Kurtböke, D. The Occurrence of Bioactive Micromonosporae in Aquatic Habitats of the Sunshine Coast in Australia. Mar. Drugs 2008, 6, 243–261. [Google Scholar] [CrossRef] [Green Version]
- Charousová, I.; Medo, J.; Hleba, L.; Císarová, M.; Javoreková, S. Antimicrobial Activity of Actinomycetes and Characterization of Actinomycin-Producing Strain KRG-1 Isolated from Karoo, South Africa. Braz. J. Pharm. Sci. 2019, 55, e17249. [Google Scholar] [CrossRef]
Biochemical Test | TA 36 | |
---|---|---|
Api zym | Phosphatase alkaline | 5 |
Api zym | Esterase (C4) | 3 |
Api zym | Esterase lipase (C8) | 3 |
Api zym | Lipase (C14) | 1 |
Api zym | Leucin arylamides | 4 |
Api zym | Valine arylamides | 4 |
Api zym | Cystine arylamides | 1 |
Api zym | Trypsin | 2 |
Api zym | Chymotrypsin | 1 |
Api zym | Phosphatase acid | 5 |
Api zym | Naphthol-AS-BI-phosphohydrolase | 3 |
Api zym | Alpha galactosidase | 1 |
Api zym | Beta galactosidase | 5 |
Api zym | Beta glucuronidase | 1 |
Api zym | Alpha glucosidase | 1 |
Api zym | Beta glucosidase | 1 |
Api zym | N-acetyl-beta-glucoseamidase | 5 |
Api zym | Alpha mannosidase | 4 |
Api zym | Alpha fructosidase | 1 |
Api coryne | Nitrate reduction | + |
Api coryne | Pyrazinamide | − |
Api coryne | Pyrrolidinyl arylamides | − |
Api coryne | Alkaline phosphatase | + |
Api coryne | Beta glucuronidase | − |
Api coryne | Beta galactosidase | − |
Api coryne | Alpha glucosidase | + |
Api coryne | N-acetyl-beta glucoseamidase | + |
Api coryne | Esculin | + |
Api coryne | Urease | + |
Api coryne | Gelatine (hydrolysis) | + |
Api coryne | Glucose fermentation | + |
Api coryne | L-arabinose fermentation | + |
Api coryne | Xylose fermentation | − |
Api coryne | Mannitol fermentation | + |
Api coryne | Fructose fermentation | + |
Api coryne | Sucrose fermentation | + |
Api coryne | Raffinose fermentation | + |
Api coryne | I-inositol fermentation | + |
Api coryne | Rhamnose fermentation | + |
Characteristics | Isolates | ||
---|---|---|---|
Streptomyces TA 36 | Streptomyces iakyrus (NBRC 13401T) | Streptomyces violaceochromogenes (NBRC13100T) | |
Spore chain morphology | Rectus flexibilis | Rectus flexibilis | Retinaculum apertum |
Aerial mass colour (ISP2–ISP7) | ISP2-4 grey olive, ISP5-7 sparse | ISP2-olive green, ISP3-4 granite grey, ISP5-7 none | ISP2-white, ISP3-5,7 grey, ISP6 none |
Reverse mass colour (ISP2–ISP7) | ISP2-5-black olive, ISP6-7-black-sand yellow | ISP2-5-black olive, ISP6-7 beige | ISP2, 4, 7-brown, ISP3,5,6 yellow |
Pigments | ISP6-signal brown | ISP6 grey brown | ISP5 red, ISP7 brown |
Melanin | ISP6 | + | + |
Utilisation of carbon sources | |||
Glucose | + | + | + |
Arabinose | + | + | − |
Sucrose | (+) | + | − |
Xylose | − | − | − |
Inositol | + | + | − |
Mannose | + | + | − |
Fructose | (+) | + | − |
Rhamnose | (+) | + | − |
Optimal pH | 6–7 | 7 | 7 |
Optimal temperature (°C) | 28–30 | 28 | 28 |
NaCl tolerance (%) | 2.5 | 2.5 | 7.5 |
Indicator Test Microorganism | Primary Screening; Agar Plug Method (mm) a | Secondary Screening; Broth Microdilution Method: MIC5333 (μg/μL) |
---|---|---|
Bacillus subtilis (DSM10) | 35 | 0.0039 |
Chromobacterium violaceum (DSM30191) | 17 | 0.0625 |
Escherichia coli (DSM116) | 11 | 0.25 |
Escherichia coli (TolC) | 19 | 0.03125 |
Micrococcus luteus (DSM1790) | 24 | 0.00781 |
Pseudomonas aeruginosa (PA14) | 12 | - |
Mycobacterium smegmatis (ATC700084) | 22 | 0.03125 |
Staphylococcus aureus (Newman) | 42 | 0.00195 |
Mucor hiemalis (DSM2656) | 14 | 0.125 |
Pichia anomalia (DSM6766) | 14 | 0.125 |
Candida albicans (DSM1665) | 12 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charousová, I.; Hlebová, M.; Hleba, L.; Medo, J.; Wink, J. Streptomyces iakyrus TA 36 as First-Reported Source of Quinone Antibiotic γ–Rubromycin. Molecules 2023, 28, 5977. https://doi.org/10.3390/molecules28165977
Charousová I, Hlebová M, Hleba L, Medo J, Wink J. Streptomyces iakyrus TA 36 as First-Reported Source of Quinone Antibiotic γ–Rubromycin. Molecules. 2023; 28(16):5977. https://doi.org/10.3390/molecules28165977
Chicago/Turabian StyleCharousová, Ivana, Miroslava Hlebová, Lukas Hleba, Juraj Medo, and Joachim Wink. 2023. "Streptomyces iakyrus TA 36 as First-Reported Source of Quinone Antibiotic γ–Rubromycin" Molecules 28, no. 16: 5977. https://doi.org/10.3390/molecules28165977
APA StyleCharousová, I., Hlebová, M., Hleba, L., Medo, J., & Wink, J. (2023). Streptomyces iakyrus TA 36 as First-Reported Source of Quinone Antibiotic γ–Rubromycin. Molecules, 28(16), 5977. https://doi.org/10.3390/molecules28165977