Detection Method and Common Characteristics of Waste Solvent from Semiconductor Industry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Moisture Detection
2.1.1. Repetitive Experiment
2.1.2. Standard-Added Recovery Rate Experiment
2.2. Detection of Organic Matter Content
2.2.1. Detection of Main Organic Content in Waste Stripper and Thinner
2.2.2. Detection of Main Organic Content of Waste NMP Solvent
2.3. Detection of the Photoresist and Other Solids
2.4. Analysis of Waste Solvent Composition and Common Characteristics
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Experimental Device
3.3. Experimental Methods
3.3.1. Determination of Moisture Content
3.3.2. Determination of the Organic Matter Content
3.4. Determination of the Photoresist and Other Solids
3.4.1. Method Principle
3.4.2. Determination Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Lin, G.; Kong, L.; Liu, T.; Qiu, L.; Chen, X. An antagonistic training algorithm for TFT-LCD module mura defect detection. Signal Process. Image Commun. 2022, 107, 116791–116799. [Google Scholar] [CrossRef]
- Cheng, H.-H.; Pien, T.-T.; Lee, Y.-C.; Lu, I.C.; Whang, L.-M. Effects of copper on biological treatment of NMF- and MDG-containing wastewater from TFT-LCD industry. Chemosphere 2020, 258, 127125. [Google Scholar] [CrossRef] [PubMed]
- Chaniago, Y.D.; Minh, L.Q.; Khan, M.S.; Koo, K.-K.; Bahadori, A.; Lee, M. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry. Energy Convers. Manag. 2015, 102, 92–103. [Google Scholar] [CrossRef]
- Chaniago, Y.D.; Harvianto, G.R.; Bahadori, A.; Lee, M. Enhanced recovery of PGME and PGMEA from waste photoresistor thinners by heterogeneous azeotropic dividing-wall column. Process Saf. Environ. Prot. 2016, 103, 413–423. [Google Scholar] [CrossRef]
- Aboagye, E.A.; Chea, J.D.; Yenkie, K.M. Systems level roadmap for solvent recovery and reuse in industries. iScience 2021, 24, 103114. [Google Scholar] [CrossRef]
- Cseri, L.; Razali, M.; Pogany, P.; Szekely, G. Chapter 3.15—Organic Solvents in Sustainable Synthesis and Engineering. In Green Chemistry; Török, B., Dransfield, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 513–553. [Google Scholar]
- Chaniago, Y.D.; Lee, M. Distillation design and optimization of quaternary azeotropic mixtures for waste solvent recovery. J. Ind. Eng. Chem. 2018, 67, 255–265. [Google Scholar] [CrossRef]
- Chaniago, Y.D.; Khan, M.S.; Choi, B.; Lee, M. Energy Efficient Optimal Design of Waste Solvent Recovery Process in Semiconductor Industry Using Enhanced Vacuum Distillation. Energy Procedia 2014, 61, 1451–1454. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Naquash, A.; Lee, M.; Chaniago, Y.D.; Lim, H. Exploitation of distillation for energy-efficient and cost-effective environmentally benign process of waste solvents recovery from semiconductor industry. Sci. Total Environ. 2022, 841, 156743. [Google Scholar] [CrossRef]
- Cai, J.-B.; Luo, H.-T.; Zhao, C.-L. Rapid Analysis Method of Water in Cigarette Addictive by Karl Fischer Method. Asian J. Chem. Int. Q. Res. J. Chem. 2014, 26, 3119–3120. [Google Scholar] [CrossRef]
- Williams, D.B.G.; Michelle, L. Drying of organic solvents: Quantitative evaluation of the efficiency of several desiccants. J. Org. Chem. 2010, 75, 8351–8354. [Google Scholar] [CrossRef]
- Caro, C.A.D.; Aichert, A.; Walter, C.M. Efficient, precise and fast water determination by the Karl Fischer titration. Food Control 2001, 12, 431–466. [Google Scholar] [CrossRef]
- Ulusoy, K.G.; Macit, E.; Seyrek, M.; Salman, N.; Turbe, T. A rapid method for simultaneously determining volatives (ethanol, methanol, ether, toluen, chloroform, isopropyl alcohol, acetone) content in blood samples by headspace gas chromatography. Toxicol. Lett. 2016, 259, S91. [Google Scholar] [CrossRef]
- Bhadra, S.; Bebarta, V.S.; Hendry-Hofer, T.B.; Lippner, D.S.; Winborn, J.N.; Rockwood, G.A.; Logue, B.A. Analysis of the Soil Fumigant, Dimethyl Disulfide, in Swine Blood by Dynamic Headspace Gas Chromatography–Mass Spectroscopy. J. Chromatogr. A 2021, 1638, 461856. [Google Scholar] [CrossRef]
- Tatebe, C.; Kawasaki, H.; Kubota, H.; Sato, K.; Kawamura, Y. Analysis of residual solvent in thickeners by headspace gas chromatography using a standard addition method. Jpn. J. Food Chem. 2017, 16, 78–83. [Google Scholar]
- Feng, Y.; Zhang, Z.; Feng, D.; Guo, D.; Ni, H.; Huang, K.; Liang, M.; Zhang, J. Optimization of Determination Method of Cooling Agents in Cigarette Tipping Paper by Gas Chromatography. LC GC N. Am. 2022, 40, 180–185. [Google Scholar]
- Santos, F.; Galceran, M. The application of gas chromatography to environmental analysis. TrAC Trends Anal. Chem. 2002, 21, 672–685. [Google Scholar] [CrossRef]
- Bhadra, S.; Zhang, Z.; Zhou, W.; Ochieng, F.; Rockwood, G.A.; Lippner, D.; Logue, B.A. Analysis of potential cyanide antidote, dimethyl trisulfide, in whole blood by dynamic headspace gas chromatography–mass spectroscopy. J. Chromatogr. A 2019, 1591, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.J.; Tu, W.C.; Levers, O.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef] [PubMed]
- Welton, T. Solvents and sustainable chemistry. Proc. Math. Phys. Eng. Sci. 2015, 471, 20150502. [Google Scholar] [CrossRef]
- Sava-Alkan, A.; Ulfaz-Emecen, P.Z. Solvent recovery from photolithography wastes using cellulose ultrafiltration membranes. J. Membr. Sci. 2022, 647, 120261–120265. [Google Scholar] [CrossRef]
- Isengard, H.D.; Schultheiss, D. Water determination in honey—Karl Fischer titration, an alternative to refractive index measurements? Food Chem. 2003, 82, 151–154. [Google Scholar] [CrossRef]
- Wagner, M. Determination of Water Content and Dynamic Vapor Sorption Using Gravimetric Methods, Karl Fischer Titration and Thermal Analysis. Am. Lab. 2016, 48, 16–19. [Google Scholar]
- Margolis, S.A.; Levenson, M. Certification by the Karl Fischer method of the water content in SRM 2890, Water Saturated 1-Octanol, and the analysis of associated interlaboratory bias in the measurement process. Fresenius J. Anal. Chem. 2000, 367, 1–7. [Google Scholar] [CrossRef]
- Sushmitha, K.S.M.L.; Ummiti, K.; Shanmukha, K.J.V. A rapid method for the determination of dehydrated alcohol (ethanol) content in clobetasol propionate foam by non-polar capillary gas chromatography. Res. J. Pharm. Technol. 2021, 14, 5919–5925. [Google Scholar] [CrossRef]
- Radchenko, O.B.; Radchenko, D.S.; Konovets, A.I. Water Determination in Aromatic Sulfonyl Chlorides Using the Karl Fischer Titration Method: Scope and Limitations. ChemistrySelect 2022, 7, e202102749. [Google Scholar] [CrossRef]
- Caro, C.; Aichert, A. Water Determination by Karl Fischer Titration. Metrohm Appl. Bull. 2017, 407, 1–4. [Google Scholar]
- Zhang, C.-Y.; Lin, N.-B.; Chai, X.-S.; Zhong, L.; Barnes, D.G. A rapid method for simultaneously determining ethanol and methanol content in wines by full evaporation headspace gas chromatography. Food Chem. 2015, 183, 169–172. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Riordan-Short, S.; Dang, T.; O’Brien, R.T.; Noestheden, M.J.A.O. Quantitation of Select Terpenes/Terpenoids and Nicotine Using Gas Chromatography–Mass Spectrometry with High-Temperature Headspace Sampling. ACS Omega 2020, 5, 5565–5573. [Google Scholar] [CrossRef]
- Ito, Y.; Ishizuki, K.; Sekiguchi, W.; Tada, A.; Akiyama, T.; Sato, K.; Yamazaki, T.; Akiyama, H. Analysis of Residual Solvents in Annatto Extracts Using a Static Headspace Gas Chromatography Method. Am. Anal. Chem. 2012, 3, 638–645. [Google Scholar] [CrossRef] [Green Version]
- Schutter, D.P.D.; Saison, D.; Delvaux, F.; Derdelinckx, G.; Rock, J.M.; Neven, H.; Delvaux, F.R. Optimisation of wort volatile analysis by headspace solid-phase microextraction in combination with gas chromatography and mass spectrometry. J. Chromatogr. A 2008, 1179, 75–80. [Google Scholar] [CrossRef]
- Chaniago, Y.D.; Kim, J.K.; Park, M.J.; Koo, K.K.; Lee, M. Design and modeling of optimal distillation sequence for recovery of valuable components from a waste photoresist stripper. J. Mater. Cycles Waste Manag. 2016, 18, 366–376. [Google Scholar] [CrossRef]
- Choi, S.H. Composition of Stripper for All TFT-LCD Process Photoresist. Korean Patent 100,950,779, 2 April 2010. [Google Scholar]
- Park, H.-S.; Kang, S.-C.; Cho, H.-J.; Park, A.-N. Stripper composition for photoresist. U.S. Patent 6,783,919, 31 August 2004. [Google Scholar]
- Park, C.M.; Hwang, Y.J.; Han, H.; Kwon, J.H.; Choi, K.B.; Ahn, H.K. Stripper composition for photoresist Comprising N-methylacetamide. Korean Patent 20,080,076,535, 20 August 2008. [Google Scholar]
- Liu, Z.C.; Jiang, Z.X.; Jin, K.X.; Li, B.G. Composition of pigment dispersion for color filter in TFT-LCD, preparation thereof and color filter including the same. Korean Patent 100,533,936, 6 December 2005. [Google Scholar]
- Yung-Bae, C.; Si-Myung, C.; Jae-Sung, R.; Jung-Sun, C. Chemical rinse composition. Worldwide Patent 03,042,762, 22 May 2003. [Google Scholar]
- Yang, F.Q.; Li, S.P.; Zhao, J.; Lao, S.C.; Wang, Y.T. Optimization of GC–MS conditions based on resolution and stability of analytes for simultaneous determination of nine sesquiterpenoids in three species of Curcuma rhizomes—ScienceDirect. J. Pharm. Biomed. Anal. 2007, 43, 73–82. [Google Scholar] [CrossRef]
- Kotambunan, E.; Tulung, M.; Kandowangko, D.; Mamahit, J.M.E. Industry Standard of Acetochlor Residue Detection in China —Gas Chromatography (GC) Conditions and Standard Chromatogram. Plant Dis. Pests 2010, 1, 63. [Google Scholar]
- Bordajandi, L.; Dabrio, M.; Ulberth, F.; Emons, H. Optimisation of the GC-MS conditions for the determination of the 15 EU foodstuff priority polycyclic aromatic hydrocarbons. J. Sep. Sci. 2008, 31, 1769–1778. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, P.; Rosés, M.; Bosch, E. Polarity parameters of the Symmetry C18 and Chromolith Performance RP-18 monolithic chromatographic columns. J. Chromatogr. A 2006, 1107, 96–103. [Google Scholar] [CrossRef]
- Fishman, V.N.; Martin, G.D.; Lamparski, L.L. Comparison of a variety of gas chromatographic columns with different polarities for the separation of chlorinated dibenzo-p-dioxins and dibenzofurans by high-resolution mass spectrometry. J. Chromatogr. A 2007, 1139, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.C.; Normén, L. Capillary column gas–liquid chromatographic separation of Δ5-unsaturated and saturated phytosterols. Chromatogr. A 1998, 816, 177–184. [Google Scholar] [CrossRef]
- Southon, B.; Riley, G.; Matatiele, P.; Kgarebe, B. Simultaneous analysis of acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) in urine by headspace gas chromatography-flame ionisation detection (HS GC-FID). Results Chem. 2020, 2, 100084. [Google Scholar] [CrossRef]
- Buse, J.; Robinson, J.L.; Shyne, R.; Chi, Q.; Affleck, D.; Duce, D.; Seiden-Long, I. Rising above helium: A hydrogen carrier gas chromatography flame ionization detection (GC-FID) method for the simultaneous quantification of toxic alcohols and ethylene glycol in human plasma specimens. Clin. Biochem. 2019, 73, 98–104. [Google Scholar] [CrossRef]
- Hou, J.; Ma, Y.; Zhang, Z.; Yang, X.; Chai, C. The Relationship between Solid Content and Particle Size Ratio of Waterborne Polyurethan. Coatings 2019, 9, 401–409. [Google Scholar] [CrossRef] [Green Version]
Parallel Samples (n) | Waste Stripper Solvent Formula 1 (NMF + MDG) (%) | Waste Stripper Solvent Formula 2 (NMF + BDG) (%) | Waste Thinner Solvent Formula 1 (PGMEA) (%) | Waste Thinner Solvent Formula 2 (PGMEA + PGME) (%) | Waste NMP Solvent (%) |
---|---|---|---|---|---|
1 | 3.0187 | 2.9879 | 1.7212 | 1.8854 | 4.2278 |
2 | 2.9977 | 3.2312 | 1.8120 | 1.7845 | 4.3215 |
3 | 3.2123 | 3.1132 | 1.6950 | 1.8252 | 4.1259 |
4 | 3.1822 | 3.0182 | 1.7763 | 1.7545 | 4.4458 |
5 | 2.8990 | 2.8451 | 1.7223 | 1.7832 | 4.4812 |
6 | 3.1563 | 3.1211 | 1.8121 | 1.7702 | 4.3678 |
Standard deviation | 0.1241 | 0.1332 | 0.0505 | 0.0478 | 0.1341 |
Average value (%) | 3.0777 | 3.0528 | 1.7565 | 1.8005 | 4.3283 |
RSD (%) | 4.0329 | 4.3627 | 2.8762 | 2.6529 | 3.0972 |
Sample | Water Background Value (%) | Increase in the Amount of Standard Water Sample (%) | Measured Value (%) | Percent Recovery (%) |
---|---|---|---|---|
Waste stripper solvent formula 1 (NMF + MDG) | 3.0777 | 1.0000 | 4.0652 | 98.75 |
2.0000 | 5.1017 | 101.20 | ||
3.0000 | 6.0513 | 99.12 | ||
Waste stripper solvent formula 2 (NMF + BDG) | 3.0528 | 1.0000 | 4.0204 | 96.76 |
2.0000 | 4.9970 | 97.21 | ||
3.0000 | 5.9790 | 97.54 | ||
Waste thinner solvent formula 1 (PGMEA) | 1.7565 | 1.0000 | 2.7385 | 98.20 |
2.0000 | 3.6921 | 96.78 | ||
3.0000 | 4.6554 | 96.63 | ||
Waste thinner solvent formula 2 (PGMEA + PGME) | 1.8005 | 1.0000 | 2.7668 | 96.63 |
2.0000 | 3.7331 | 96.63 | ||
3.0000 | 4.6994 | 96.63 | ||
Waste NMP solvent | 4.3283 | 1.0000 | 5.3150 | 98.67 |
2.0000 | 6.3087 | 99.02 | ||
3.0000 | 7.2779 | 98.32 |
Parallel (n) | External Standard Method | Internal Standard Method | ||||||
---|---|---|---|---|---|---|---|---|
Formula 1 (NMF + MDG) | Formula 2 (NMF + BDG) | Formula 1 (NMF + MDG) | Formula 2 (NMF + BDG) | |||||
NMF (%) | MDG (%) | NMF (%) | BDG (%) | NMF (%) | MDG (%) | NMF (%) | BDG (%) | |
1 | 31.89 | 61.46 | 33.17 | 64.17 | 32.23 | 62.08 | 33.22 | 63.22 |
2 | 31.98 | 61.45 | 33.56 | 62.45 | 34.55 | 64.12 | 34.77 | 64.55 |
3 | 32.03 | 62.76 | 34.12 | 63.11 | 34.76 | 63.05 | 33.67 | 62.17 |
4 | 32.14 | 62.86 | 33.34 | 64.75 | 32.89 | 63.87 | 34.22 | 64.88 |
5 | 33.50 | 62.33 | 34.07 | 62.83 | 33.41 | 62.44 | 33.45 | 65.12 |
6 | 32.00 | 61.25 | 33.67 | 63.37 | 33.12 | 63.01 | 34.01 | 65.44 |
Standard deviation | 0.61 | 0.72 | 0.38 | 0.86 | 0.98 | 0.79 | 0.56 | 1.27 |
Average value (%) | 32.26 | 62.02 | 33.66 | 63.45 | 33.49 | 63.10 | 33.89 | 64.23 |
RSD (%) | 1.90 | 1.16 | 1.14 | 1.36 | 2.93 | 1.25 | 1.66 | 1.97 |
Parallel (n) | External Standard Method | Internal Standard Method | ||||
---|---|---|---|---|---|---|
Formula 1 (PGMEA) | Formula 2 (PGMEA + PGME) | Formula 1 (PGMEA) | Formula 2 (PGMEA + PGME) | |||
PGMEA (%) | PGMEA (%) | PGME (%) | PGMEA (%) | PGMEA (%) | PGME (%) | |
1 | 75.55 | 53.23 | 22.65 | 75.22 | 55.61 | 21.34 |
2 | 78.23 | 54.34 | 22.47 | 75.89 | 52.37 | 22.67 |
3 | 76.37 | 55.86 | 21.67 | 74.28 | 58.24 | 22.1 |
4 | 77.12 | 53.75 | 23.01 | 77.05 | 55.31 | 22.92 |
5 | 76.34 | 54.1 | 21.11 | 75.98 | 56.73 | 23.16 |
6 | 76.21 | 54.82 | 22.05 | 76.84 | 54.28 | 24.55 |
Standard deviation | 0.93 | 0.91 | 0.69 | 1.03 | 2.02 | 1.08 |
Average value (%) | 76.64 | 54.35 | 22.16 | 75.88 | 55.42 | 22.79 |
RSD (%) | 1.21 | 1.68 | 3.14 | 1.36 | 3.64 | 4.74 |
Sample | Background Values (%) | Amount Added (%) | Measured Value (%) | Percent Recovery (%) | |
---|---|---|---|---|---|
Waste stripper solvent formula 1 (NMG + MDG) | NMF mark | 32.26 | 1 | 34.00 | 102.31 |
2 | 33.97 | 99.12 | |||
3 | 37.12 | 105.79 | |||
MDG mark | 61.83 | 1 | 62.68 | 99.76 | |
2 | 66.82 | 104.83 | |||
3 | 68.55 | 106.01 | |||
Waste stripper solvent formula 2 (NMG + BDG) | NMF mark | 33.66 | 1 | 36.75 | 106.23 |
2 | 37.08 | 104.23 | |||
3 | 39.21 | 107.60 | |||
BDG mark | 63.45 | 1 | 65.23 | 101.23 | |
2 | 68.55 | 104.89 | |||
3 | 67.15 | 101.11 | |||
Waste thinner solvent formula 1 (PGMEA) | PGMEA mark | 75.88 | 2 | 75.40 | 96.74 |
5 | 80.21 | 99.12 | |||
10 | 82.74 | 95.86 | |||
Waste thinner solvent formula 2 (PGMEA + PGME) | PGMEA mark | 54.35 | 2 | 59.67 | 106.10 |
5 | 62.35 | 105.52 | |||
10 | 68.54 | 107.70 | |||
PGME mark | 22.16 | 2 | 25.78 | 107.30 | |
5 | 28.50 | 106.00 | |||
10 | 32.41 | 101.11 |
Parallel (n) | 1 | 2 | 3 | 4 | 5 | 6 | Standard Deviation | Average Value (%) | RSD (%) |
---|---|---|---|---|---|---|---|---|---|
NMP (%) | 94.21 | 95.13 | 93.79 | 94.58 | 95.02 | 95.25 | 0.58 | 94.66 | 0.61 |
Background Value (%) | Amount Added (%) | Measured Value (%) | Percent Recovery (%) |
---|---|---|---|
94.66 | 1 | 92.61388 | 96.78 |
2 | 92.14662 | 95.23 | |
3 | 94.70855 | 96.88 |
Parallel (n) | Waste Stripper Solvent Formula 1 (NMF + MDG) | Waste Stripper Solvent Formula 2 (NMF + BDG) | Waste Thinner Solvent Formula 1 (PGMEA) | Waste Thinner Solvent Formula 2 (PGMEA + PGME) | Waste NMP Solvent (%) |
---|---|---|---|---|---|
1 | 1.5400 | 1.8500 | 1.4100 | 3.4200 | 1.1100 |
2 | 1.4900 | 1.8100 | 1.4300 | 3.5200 | 1.0700 |
3 | 1.5800 | 1.7000 | 1.4500 | 3.5500 | 1.1400 |
4 | 1.5500 | 1.8800 | 1.3900 | 3.6100 | 1.0900 |
5 | 1.5000 | 1.7900 | 1.3200 | 3.4900 | 1.1700 |
6 | 1.4700 | 1.7400 | 1.4900 | 3.7300 | 1.1300 |
Standard deviation | 0.0417 | 0.0672 | 0.0579 | 0.1071 | 0.0360 |
Average value (%) | 1.5217 | 1.7950 | 1.4150 | 3.5533 | 1.1183 |
RSD (%) | 2.7387 | 3.7413 | 4.0904 | 3.0136 | 3.2199 |
Waste Solvent | Process Source | Composition of the Waste |
---|---|---|
Waste stripper | Array | NMF + MDG > 90%, water < 5%, the photoresist and other solids < 5% |
Array | NMF + BDG > 90%, water < 5%, the photoresist and other solids < 5% | |
Waste thinner | Array | PGMEA > 98%, water < 2%, the photoresist and other solids < 5% |
Array/CF | PGME + PGMEA > 98%, the photoresist and other solids < 5%, water < 2% (PGME:PGMEA3:7) | |
CF | (PGME + PGMEA + methyl 3-methoxypropionate + Acetic Acid 3-Methoxybutyl Ester + Cyclohexene et al.) > 98%(Of these, PGMEA > 75%), water < 2%, the photoresist and other solids < 5% | |
Waste NMP | Cell | NMP > 90%, water < 5%, the photoresist and other solids < 5% |
Waste Solvent | Composition | Commonness | Function Introduction |
---|---|---|---|
Waste stripper | NMF, MDG, BDG, the photoresist and other solids, water | Amines and ethers | Ethers make the photoresist foam expansion easy to peel off; amines infiltrate, peel, and dissolve the photoresist with the substrate, the effect of the amine-dissolved photoresist is mainly reflected in the product of the crosslinking reaction of the dissolved photoresist after exposure and promotes the occurrence of the dissolved crosslinking reaction. |
Waste thinner | PGMEA, PGME, the photoresist and other solids, water | PGMEA, PGME | PGMEA and PGME dissolve the photoresist more evenly on the glass substrate. The molecules of PGMEA have both ether bonds and groups, which form an ester structure and contain an alkyl group. In the same molecule, both the nonpolar part and the polar part have strong dissolution capacity. |
Waste NMP | NMP, the photoresist and other solids, water | Polar nonproton delivery solvent | NMP has a excellent dissolution ability, stable chemical performance, small toxicity, and strong biodegradation ability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, J.; Zhang, Q.; Zhang, X.; Sun, Z.; Bao, D. Detection Method and Common Characteristics of Waste Solvent from Semiconductor Industry. Molecules 2023, 28, 5992. https://doi.org/10.3390/molecules28165992
Ni J, Zhang Q, Zhang X, Sun Z, Bao D. Detection Method and Common Characteristics of Waste Solvent from Semiconductor Industry. Molecules. 2023; 28(16):5992. https://doi.org/10.3390/molecules28165992
Chicago/Turabian StyleNi, Jinjuan, Qing Zhang, Xianglin Zhang, Zhilong Sun, and Dali Bao. 2023. "Detection Method and Common Characteristics of Waste Solvent from Semiconductor Industry" Molecules 28, no. 16: 5992. https://doi.org/10.3390/molecules28165992
APA StyleNi, J., Zhang, Q., Zhang, X., Sun, Z., & Bao, D. (2023). Detection Method and Common Characteristics of Waste Solvent from Semiconductor Industry. Molecules, 28(16), 5992. https://doi.org/10.3390/molecules28165992