Functional and Bioactive Properties of Wheat Protein Fractions: Impact of Digestive Enzymes on Antioxidant, α-Amylase, and Angiotensin-Converting Enzyme Inhibition Potential
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Characteristics of Wheat Flour Proteins and Protein Fractions
2.2. Amino Acid Profile of Wheat Flour Proteins and Protein Fractions
2.3. Functional Properties of Wheat Flour and Its Protein Fractions
2.4. Bioactive Properties of Wheat Flour and Its Protein Fractions as Modified by the Action of Trypsin and Chymotrypsin
2.5. Bioactive Properties of Wheat Flour and Its Protein Fractions as Modified by the Action of Pepsin
2.6. Comparison of the Bioactive Properties Fractions Resulting from Each Treatment
3. Materials and Methods
3.1. Plant Material and Chemicals
3.2. Fractionation of Wheat Flour Proteins
3.3. Protein Molecular Characterization with SDS-PAGE
3.4. Amino Acid Determination
3.5. Functional Properties of Wheat Flour Proteins and Protein Fractions
3.6. Enzymatic Hydrolysis of Wheat Flour Proteins and Protein Fractions by Digestive Proteases
3.7. Biological Properties of Hydrolyzed and Unhydrolyzed Wheat Flour Proteins and Protein Fractions
3.7.1. Total Antioxidant Compounds
3.7.2. Antioxidant Activity
3.7.3. ACE Inhibitory Activity
3.7.4. α-Amylase Inhibitory Activity
3.8. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global trends in wheat production, consumption and trade. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Luthria, D.L.; Lu, Y.; John, K.M. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties. J. Funct. Foods 2015, 18, 910–925. [Google Scholar] [CrossRef]
- de Sousa, T.; Ribeiro, M.; Sabenca, C.; Igrejas, G. The 10,000-year success story of wheat! Foods 2021, 10, 2124. [Google Scholar] [CrossRef]
- Goel, S.; Singh, M.; Grewal, S.; Razzaq, A.; Wani, S.H. Wheat proteins: A valuable resources to improve nutritional value of bread. Front. Sustain. Food Syst. 2021, 5, 2021. [Google Scholar] [CrossRef]
- Otles, S.; Nakilcioglu-Tas, E. Cereal-based functional foods. In Functional Foods; Chhikara, N., Panghal, A., Chaudhary, G., Eds.; Wiley: Hoboken, NJ, USA, 2022; Chapter 3. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Duan, Y. New perspective on natural plant protein-based nanocarriers for bioactive ingredients delivery. Foods 2022, 11, 1701. [Google Scholar] [CrossRef] [PubMed]
- Schalk, K.; Lexhaller, B.; Koehler, P.; Scherf, K.A. Isolation and characterization of gluten protein types from wheat, rye, barley and oats for use as reference materials. PLoS ONE 2017, 12, e0172819. [Google Scholar] [CrossRef] [Green Version]
- Wieser, H.; Koehler, P.; Scherf, K.A. Chemistry of wheat gluten proteins: Qualitative composition. Cereal Chem. 2023, 100, 23–35. [Google Scholar] [CrossRef]
- Shewry, P. What is gluten—Why is it special? Front. Nutr. 2019, 6, 101. [Google Scholar] [CrossRef]
- Zhao, P.; Hou, Y.C.; Wang, Z.; Liao, A.M.; Pan, L.; Zhang, J.; Dong, Y.Q.; Hu, Z.Y.; Huang, J.H.; Ou, X.Q. Effect of fermentation on structural properties and antioxidant activity of wheat gluten by Bacillus subtilis. Front. Nutr. 2023, 10, 1116982. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, H.; Wang, B.; Qu, W.; Wali, A.; Zhou, C. Relationships between the structure of wheat gluten and ACE inhibitory activity of hydrolysate: Stepwise multiple linear regression analysis. J. Sci. Food Agric. 2016, 96, 3313–3320. [Google Scholar] [CrossRef]
- Du, K.; Tian, S.; Chen, H.; Gao, S.; Dong, X.; Yan, F. Application of enzymes in the preparation of wheat germ polypeptides and their biological activities. Front. Nutr. 2022, 9, 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Cheng, W.I.; Li, X.; Wang, X.; Yang, F.W.; Xiao, J.S.; Li, Y.X.; Zhao, G.P. Extraction, bioactive function and application of wheat germ protein/peptides: A review. Curr. Rev. Food Sci. 2023, 6, 100512. [Google Scholar] [CrossRef]
- Vaher, M.; Matso, K.; Levendi, T.; Helma, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Proc. Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Memon, A.A.; Mahar, I.; Memon, R.; Soomro, S.; Harnly, J.; Memon, N.; Bhangar, M.I.; Luthria, D.L. Impact of flour particle size on nutrient and phenolic acid composition of commercial wheat varieties. J. Food Comp. Anal. 2020, 86, 103358. [Google Scholar] [CrossRef]
- Schefer, S.; Oest, M.; Rohn, S. Interactions between phenolic acids, proteins, and carbohydrates–Influence on dough and bread properties. Foods 2020, 10, 2798. [Google Scholar] [CrossRef]
- Lutz, M.; Fuentes, E.; Avila, F.; Alarcon, M.; Palomo, I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules 2019, 24, 366. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, S.; Romano, A. Inhibitory properties of phenolic compounds against enzymes linked with human diseases. In Phenolic Compounds; Soto-Hernandez, M., Palma-Tenango, M., del Rosario, M., Eds.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.B.; Shim, J.H.; El-Aty, A.M.A. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr. 2022, 8, 2022. [Google Scholar] [CrossRef] [PubMed]
- Cavazos, A.; de Mejia, E. Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Compr. Rev. Food Sci. Food Saf. 2013, 12, 364–380. [Google Scholar] [CrossRef]
- Siddiqi, R.A.; Singh, T.P.; Rani, M.; Sogi, D.S. Electrophoretic characterization and proportion of different protein fractions in wheat cultivars of North-India. J. Agric. Food Res. 2021, 4, 100137. [Google Scholar] [CrossRef]
- Urade, R.; Sato, N.; Sugiyama, M. Gliadins from wheat grain: An overview, from primary structure to nanostructures of aggregates. Biophys. Rev. 2018, 10, 435–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadeem, M.; Anjum, F.M.; Khan, M.R.; Sajjad, M.; Hussain, S.; Arshad, M.S. Electrophoretic characteristics of gluten proteins as influenced by crop year and variety. Int. J. Food Prop. 2016, 19, 897–910. [Google Scholar] [CrossRef]
- Dupont, F.M.; Chan, R.; Lopez, R.; Vensel, W.H. Sequential extraction and quantitative recovery of gliadins, glutenins, and other proteins from small samples of wheat flour. J. Agric. Food Chem. 2005, 53, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Hailegiorgis, D.; Mekonnen, F.; Hailu, F.; Lee, C.A.; Yun, S.J. Composition and molecular weight distribution of albumin and globulin protein isolates from durum wheat genotypes. Am. J. Plant Sci. 2020, 11, 137–147. [Google Scholar] [CrossRef]
- Rodriguez-Restrepo, Y.A.; Ferreira-Santos, P.; Orrego, C.E.; Teixeira, J.A.; Rocha, C.M.R. Valorization of rice by-products: Protein-phenolic based fractions with bioactive potential. J. Cereal Sci. 2020, 95, 103039. [Google Scholar] [CrossRef]
- Shewry, P.R.; Lafiandra, D. Wheat glutenin polymers 1. Structure, assembly and properties. J. Cereal Sci. 2022, 106, 10386. [Google Scholar] [CrossRef]
- Patil, N.A.; Tailhades, J.; Hughes, R.A.; Separovic, F.; Wade, J.D.; Hossain, M.A. Cellular disulfide bond formation in bioactive peptides and proteins. Int. J. Mol. Sci. 2015, 16, 1791–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, B.R.; Mahalakshmi, R. Hydrophobic characteristic is energetically preferred for cysteine in a model membrane protein. Biophys. J. 2019, 117, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Neinast, M.; Murashige, D.; Arany, Z. Branched chain amino acids. Annu. Rev. Physiol. 2019, 81, 139–164. [Google Scholar] [CrossRef]
- Wickowska, B.; Socha, P.; Urminska, D.; Cieslik, E. The comparison of prolamins extracted from different varieties of wheat, barley, rye and triticale species: Amino acid composition, electrophoresis and immunodetection. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 742–752. [Google Scholar]
- Siddiqi, R.A.; Singh, T.P.; Rani, M.; Sogi, D.S.; Bhat, M.A. Diversity in grain, flour, amino acid composition, protein profiling, and proportion of total flour proteins of different wheat cultivars of North India. Front. Nutr. 2020, 7, 141. [Google Scholar] [CrossRef]
- Khan, M.S.; Ali, E.; Ali, S.; Khan, W.M.; Sajjad, M.A.; Hussain, F. Assessment of essential amino acids in wheat proteins: A case study. J. Biodivers. Environ. Sci. 2014, 4, 185–189. [Google Scholar]
- Ritota, M.; Manzi, P. Rapid determination of total tryptophan in yoghurt by ultra high performance liquid chromatography with fluorescence detection. Molecules 2020, 25, 5025. [Google Scholar] [CrossRef]
- Sudheesh, C.; Bhat, Z.R.; Aaliya, B.; Sunooj, K.V. Cereal proteins. In Nutraceuticals and Health Care; Kour, J., Nayik, G.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 29–60. [Google Scholar] [CrossRef]
- Mesias, M.; Morales, F.J. Effect of different flours on the formation of hydroxymethylfurfural, furfural, and dicarbonyl compounds in heated glucose/flour systems. Foods 2017, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.M.; Afify, A.S.; Basyiony, A.E.; Ahmed, G.T. Nutritional and functional properties of defatted wheat protein isolates. Aust. J. Basic Appl. Sci. 2010, 4, 348–358. [Google Scholar]
- Ahmedna, M.; Prinyawiwatkul, W.; Rao, R.M. Solubilized wheat protein isolate: Functional properties and potential food applications. J. Agric. Food Chem. 1999, 47, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kornet, R.; Diedericks, C.F.; Yang, Q.; Berton-Carani, C.C.; Nikiforidis, C.V.; Venema, P.; van der Linden, E.; Sagis, L.M. Rethinking plant protein extraction: Albumin—From side stream to an excellent foaming ingredient. Food Struct. 2022, 21, 100254. [Google Scholar] [CrossRef]
- Han, F.; Shen, Q.; Zheng, W.; Zuo, J.; Zhu, X.; Li, J.; Peng, C.; Li, B.; Chen, J. The conformational changes of bovine serum albumin at the air/water interface: HDX-MS and interfacial rheology analysis. Foods 2023, 12, 1601. [Google Scholar] [CrossRef] [PubMed]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [Green Version]
- Alu’datt, M.H.; Al-U’datt, D.G.; Tranchant, C.C.; Alhamad, M.; Rababah, T.; Gammoh, S.; Almajwal, A.; Alli, I. Phenolic and protein contents of differently prepared protein co-precipitates from flaxseed and soybean and antioxidant activity and angiotensin inhibitory activity of their phenolic fractions. NFS J. 2020, 21, 65–72. [Google Scholar] [CrossRef]
- Lee, J.E.; Bae, I.Y.; Lee, H.G.; Yang, C.B. Tyr-Pro-Lys, an angiotensin I-converting enzyme inhibitory peptide derived from broccoli (Brassica oleracea Italica). Food Chem. 2006, 99, 143–148. [Google Scholar] [CrossRef]
- Ramlal, A.; Bhat, I.; Nautiyal, A.; Baweja, P.; Mehta, S.; Kumar, V.; Tripathi, S.; Mahto, R.K.; Saini, M.; Mallikarjuna, B.P.; et al. In silico analysis of angiotensin-converting enzyme inhibitory compounds obtained from soybean [Glycine max (L.) Merr.]. Front. Physiol. 2023, 14, 1172684. [Google Scholar] [CrossRef]
- Daskaya-Dikmen, C.; Yucetepe, Y.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 2017, 9, 316. [Google Scholar] [CrossRef]
- Torrance, J.W.; MacArthur, M.W.; Thornton, J.M. Evolution of binding sites for zinc and calcium ions playing structural roles. Proteins 2008, 71, 813–830. [Google Scholar] [CrossRef]
- Mousavi, B.; Azizi, M.H.; Abbasi, S. Antidiabetic bio-peptides of soft and hard wheat glutens. Food Chem. 2022, 4, 100104. [Google Scholar] [CrossRef]
- Geisslitz, S.; Weegels, P.; Shewry, P.; Zevallos, V.; Masci, S.; Sorrells, M.; Gregorini, A.; Colomba, M.; Jonkers, D.; Huang, X.; et al. Wheat amylase/trypsin inhibitors (ATIs): Occurrence, function and health aspects. Eur. J. Nutr. 2022, 61, 2873–2880. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Ereifej, K.; Abu-Zaiton, A.; Alrababah, M.; Almajwal, A.; Rababah, T.; Yang, W. Anti-oxidant, anti-diabetic and anti-hypertensive effects of extracted phenolics and hydrolyzed peptides from barley protein fractions. Int. J. Food Prop. 2012, 15, 781–795. [Google Scholar] [CrossRef]
- Gammoh, S.; Alu’datt, M.H.; Alhamad, M.N.; Rababah, T.; Ereifej, K.; Almajwal, A.; Zaid, A.; Ammari, Z.A.; Al Khateeb, W.; Hussein, N.M. Characterization of phenolic compounds extracted from wheat protein fractions using high-performance liquid chromatography/liquid chromatography mass spectrometry in relation to anti-allergenic, antioxidant, anti-hypertension, and anti-diabetic properties. Int. J. Food Prop. 2017, 20, 2383–2395. [Google Scholar] [CrossRef] [Green Version]
- Dockal, M.; Carter, D.C.; Rucker, F. Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J. Biol. Chem. 2000, 275, 3042–3050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braam, W.G.; Hilar, M.C.; Harmsen, B.J.; van Os, G.A. Short digestion of bovine serum albumin with pepsin. Isolation and characterization of fragments and their location in the albumin molecule. Int. J. Pept. Prot. Res. 1974, 6, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Kamal, M.Z.; Khan, R.H. Alkali-induced conformational transition in different domains of bovine serum albumin. Protein Pept. Lett. 2004, 11, 307–315. [Google Scholar] [CrossRef]
- Warchalewski, J.R. Purification and characteristics of an endogenous alpha-amylase and trypsin inhibitor from wheat seeds. Food Nahrung 1987, 31, 1015–1031. [Google Scholar] [CrossRef]
- Fu, Z.; Akula, S.; Thorpe, M.; Hellman, L. Marked difference in efficiency of the digestive enzymes pepsin, trypsin, chymotrypsin, and pancreatic elastase to cleave tightly folded proteins. Biol. Chem. 2021, 402, 861–867. [Google Scholar] [CrossRef] [PubMed]
- del Rio, A.R.; Keppler, J.K.; Boom, R.M.; Janssen, A.E. Protein acidification and hydrolysis by pepsin ensure efficient trypsin-catalyzed hydrolysis. Food Funct. 2021, 12, 4570–4581. [Google Scholar] [CrossRef] [PubMed]
- American Association of Cereal Chemists (AACC). AACC 64-60.01 Sampling of flour, grain products, and feed products in sacks. In AACC Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010; ISBN 1891127128. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 20th ed; AOAC International: Gaithersburg, MD, USA, 2016; ISBN 0935584870. [Google Scholar]
- Kwon, K.; Park, K.H.; Rhee, K.C. Fractionation and characterization of proteins from coconut (Cocos nucifera L.). J. Agric. Food Chem. 1996, 44, 1741–1745. [Google Scholar] [CrossRef]
- Gammoh, S.; Alu’datt, M.H.; Alhamad, M.N.; Rababah, T.; Al-Mahasneh, M.; Qasaimeh, A.; Johargy, A.; Kubow, S.; Hussein, N.M. The effects of protein-phenolic interactions in wheat protein fractions on allergenicity, antioxidant activity and the inhibitory activity of angiotensin-I converting enzyme (ACE). Food Biosci. 2018, 24, 50–55. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Alu’datt, M.H.; Rababah, T.; Ereifej, K.; Alli, I.; Alrababah, M.A.; Almajwal, A.; Masadeh, N.; Alhamad, M.N. Effects of barley flour and barley protein isolate on chemical, functional, nutritional and biological properties of Pita bread. Food Hydrocoll. 2012, 26, 135–143. [Google Scholar] [CrossRef]
- Ijarotimi, O.S., Jr.; Olopade, A.J. Determination of amino acid content and protein quality of complementary food produced from locally available food materials in Ondo State, Nigeria. Mal. J. Nutr. 2009, 15, 87–95. [Google Scholar]
- Alu’datt, M.H.; Al-U’datt, D.G.; Alhamad, M.N.; Tranchant, C.C.; Rababah, T.; Gammoh, S.; Althnaibat, R.M.; Daradkeh, M.G.; Kubow, S. Characterization and biological properties of peptides isolated from dried fermented cow milk products by RP-HPLC: Amino acid composition, antioxidant, antihypertensive, and antidiabetic properties. J. Food Sci. 2021, 86, 3046–3060. [Google Scholar] [CrossRef]
- Kinsella, J.E. Milk proteins: Physicochemical and functional properties. Crit. Rev. Food Sci. Nutr. 1984, 21, 197–262. [Google Scholar] [CrossRef]
- Narayana, K.; Narasinga Rao, M.S. Functional properties of raw and heat processed winged bean (Psophocarpus tetragonolobus) flour. J. Food Sci. 1982, 47, 1534–1538. [Google Scholar] [CrossRef]
- Yasumatsu, K.; Sawada, K.; Moritaka, S.; Misaki, M.; Toda, J.; Wada, T.; Ishii, K. Whipping and emulsifying properties of soybean products. Agric. Biol. Chem. 1972, 36, 719–727. [Google Scholar] [CrossRef]
- Megias, C.; del Mar Yust, M.; Pedroche, J.; Lquari, H.; Giron-Calle, J.; Alaiz, M.; Millan, F.; Vioque, J. Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J. Agric. Food Chem. 2004, 52, 1928–1932. [Google Scholar] [CrossRef] [PubMed]
- Gammoh, S.; Alu’datt, M.H.; Tranchant, C.C.; Al-U’datt, D.G.; Alhamad, M.N.; Rababah, T.; Kubow, S.; Haddadin, M.S.; Ammari, Z.; Maghaydah, S.; et al. Modification of the functional and bioactive properties of camel milk casein and whey proteins by ultrasonication and fermentation with Lactobacillus delbrueckii subsp. lactis. LWT—Food Sci. Technol. 2020, 129, 109501. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Cushman, D.W.; Cheung, H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971, 20, 1637–1648. [Google Scholar] [CrossRef]
- McCue, P.; Kwon, Y.I.; Shetty, K. Anti-amylase, anti-glucosidase and anti-angiotensin 1-converting enzyme potential of selected foods. J. Food Biochem. 2005, 29, 278–294. [Google Scholar] [CrossRef]
Amino Acids | Wheat Flour | Albumins | Glutelins-1 | Glutelins-2 | Prolamins |
---|---|---|---|---|---|
Cysteine | 23.54 ± 0.22 aB | 31.03 ± 1.01 aA | 22.98 ± 0.02 aB | 22.71 ± 0.07 aB | 0.84 ± 0.73 eC |
Glutamic acid | 12.81 ± 0.09 bC | 13.17 ± 0.24 bBC | 13.55 ± 0.09 bBC | 14.47 ± 0.04 bB | 20.90 ± 1.3 aA |
Leucine * | 11.30 ± 0.06 cA | 9.37 ± 0.32 cC | 11.10 ± 0.02 cA | 10.45 ± 0.03 cB | 2.24 ± 0.27 deD |
Arginine | 6.75 ± 0.54 eB | 5.92 ± 0.31 dC | 5.90 ± 0.04 fC | 7.40 ± 0.05 dA | 0.33 ± 0.13 eD |
Threonine * | 7.39 ± 0.08 dA | 4.68 ± 2.97 defA | 5.47 ± 0.03 gA | 6.92 ± 0.02 eA | 0.19 ± 0.03 eB |
Phenylalanine * | 7.00 ± 0.17 eB | 5.41 ± 0.18 dB | 7.47 ± 0.01 dA | 6.69 ± 0.19 fAB | 1.36 ± 0.80 deC |
Alanine | 6.28 ± 0.08 fA | 5.68 ± 0.19 dA | 6.88 ± 0.03 eA | 6.47 ± 0.03 gA | 1.45 ± 0.76 deB |
Histidine * | 3.52 ± 0.02 hB | 4.79 ± 0.16 deA | 3.70 ± 0.01 iB | 4.77 ± 0.08 hA | 4.87 ± 0.18 deA |
Tyrosine | 1.76 ± 0.01 jD | 2.04 ± 0.04 ghC | 2.88 ± 0.02 kB | 4.33 ± 0.04 iA | 1.11 ± 0.02 deE |
Valine * | 6.16 ± 0.17 fA | 5.36 ± 0.11 dAB | 5.46 ± 0.01 gAB | 4.19 ± 0.03 iAB | 3.27 ± 1.88 deB |
Isoleucine * | 5.19 ± 0.02 gA | 2.89 ± 0.09 ghC | 4.347 ± 0.03 hB | 3.05 ± 0.01 jC | 0.39 ± 0.15 eD |
Lysine * | 3.57 ± 0.05 hB | 2.99 ± 0.14 fgBC | 2.95 ± 0.01 jBC | 2.72 ± 0.23 kC | 4.90 ± 0.56 deA |
Serine | 2.71 ± 0.05 iB | 2.07 ± 0.04 ghC | 2.65 ± 0.03 lB | 2.55 ± 0.01 kB | 6.37 ± 0.33 cdA |
Methionine * | 0.25 ± 0.01 kA | 1.17 ± 0.08 hiA | 2.15 ± 0.02 nA | 1.65 ± 0.01 lA | 1.63 ± 0.98 deA |
Aspartic acid | – | – | – | 0.013 ± 0.04 mB | 7.86 ± 2.01 bcA |
Ammonia ‡ | 1.78 ± 0.03 jB | 3.47 ± 0.14 efgB | 2.51 ± 0.01 mB | 1.64 ± 0.11 lB | 12.38 ± 4.15 bA |
SE | 0.121 | 0.586 | 0.023 | 0.063 | 1.753 |
Wheat Flour or Protein Fractions | Water Holding Capacity (%) | Foam Stability (%) | Emulsion Stability (%) |
---|---|---|---|
Wheat flour | 84.4 ± 0.57 a | 18.3 ± 2.36 d | 41.9 ± 3.12 ab |
Albumins | 6.0 ± 2.81 e | 76.4 ± 1.96 | 43.9 ± 3.26 ab |
Glutelins-1 | 37.6 ± 4.26 c | 16.2 ± 2.75 d | 50.0 ± 5.40 a |
Glutelins-2 | 22.0 ± 2.83 d | 41.4 ± 2.02 b | 38.5 ± 2.12 b |
Prolamins | 53.6 ± 2.26 b | 31.1 ± 3.36 c | 38.0 ± 2.83 b |
Globulins | 6.0 ± 2.63 e | 5.8 ± 1.18 e | 15.6 ± 4.22 c |
SE | 2.30 | 1.68 | 2.61 |
Wheat Flour or Protein Fractions | Total Antioxidant Compounds (mg GAE/g) | Antioxidant Activity (%) | ACE Inhibitory Activity (%) | α-Amylase Inhibitory Activity (%) |
---|---|---|---|---|
Pre-hydrolysis (time 0 at pH 8.0) | ||||
Wheat flour | 4.46 ± 0.70 b | 17.14 ± 0.05 a | 66.29 ± 0.19 b | 97.22 ± 1.31 a |
Albumins | 5.16 ± 0.03 b | 5.29 ± 0.79 d | 54.92 ± 0.04 d | 7.44 ± 0.05 d |
Glutelins-1 | 8.80 ± 1.19 a | 11.14 ± 2.20 b | 66.00 ± 1.42 b | 73.16 ± 1.31 b |
Glutelins-2 | 4.59 ± 0.83 b | 6.88 ± 2.14 cd | 63.16 ± 4.07 c | 62.98 ± 4.24 c |
Prolamins | 1.32 ± 0.26 c | 16.54 ± 1.43 a | 63.83 ± 0.57 c | 93.52 ± 3.92 a |
Globulins | 1.86 ± 0.25 c | 10.02 ± 1.11 bc | 70.64 ± 0.19 a | 94.45 ± 0.16 a |
SE | 0.478 | 1.129 | 0.380 | 1.964 |
Post-hydrolysis with TC for 3 h | ||||
Wheat flour | 11.68 ± 0.06 a | 8.55 ± 0.21 bc | 60.04 ± 0.21 c | 93.52 ± 1.31 a |
Albumins | 8.32 ± 0.58 b | 5.74 ± 1.56 c | 47.06 ± 0.09 e | 9.29 ± 2.62 c |
Glutelins-1 | 11.02 ± 0.03 a | 12.23 ± 2.23 ab | 67.80 ± 0.19 b | 75.93 ± 2.21 b |
Glutelins-2 | 11.46 ± 0.12 a | 9.98 ± 2.17 bc | 52.08 ± 0.14 d | 7.44 ± 2.15 c |
Prolamins | 2.75 ± 0.29 c | 14.74 ± 1.86 a | 70.08 ± 1.33 a | 97.22 ± 1.31 a |
Globulins | 2.46 ± 0.19 c | 11.70 ± 0.64 ab | 69.67 ± 1.18 a | 93.52 ± 1.25 a |
SE | 0.199 | 1.342 | 0.417 | 1.463 |
Post/pre-hydrolysis ratios | ||||
Wheat flour | 2.62 | 0.50 | 0.91 | 0.96 |
Albumins | 1.61 | 1.08 | 0.86 | 1.24 |
Glutelins-1 | 1.25 | 1.10 | 1.03 | 1.04 |
Glutelins-2 | 2.50 | 1.45 | 0.82 | 0.12 |
Prolamins | 2.08 | 0.89 | 1.10 | 1.04 |
Globulins | 1.32 | 1.17 | 0.99 | 0.99 |
Antioxidant Activity | α-Amylase Inhibitory Activity | ACE Inhibitory Activity | |
---|---|---|---|
Total antioxidant compounds | –0.449 | –0.438 | –0.539 |
Antioxidant activity | 0.583 * | 0.812 * | |
α-Amylase inhibitory activity | 0.891 * |
Wheat Flour or Protein Fractions | Total Antioxidant Compounds (mg GAE/g) | Antioxidant Activity (%) | ACE inhibitory Activity (%) | α-Amylase Inhibitory Activity (%) |
---|---|---|---|---|
Pre-hydrolysis (time 0 at pH 2.0) | ||||
Wheat flour | 29.51 ± 1.85 d | 20.98 ± 2.09 d | 85.14 ± 2.36 a | 57.98 ± 5.37 b |
Albumins | 61.92 ± 4.76 a | 2.71 ± 1.50 e | 70.10 ± 2.87 c | 53.48 ± 0.28 b |
Glutelins-1 | 48.84 ± 4.52 b | 68.44 ± 1.04 b | 66.67 ± 0.69 c | 16.72 ± 4.31 c |
Glutelins-2 | 39.54 ± 0.82 c | 0.82 ± 0.23 e | 77.20 ± 3.20 b | 5.46 ± 3.24 d |
Prolamins | 2.47 ± 1.03 e | 94.18 ± 1.74 a | 66.67 ± 1.85 c | 71.49 ± 4.14 a |
Globulins | 9.88 ± 1.64 e | 57.71 ± 0.23 c | 39.36 ± 0.17 d | 55.73 ± 1.06 b |
SE | 2.263 | 0.951 | 1.249 | 2.670 |
Post-hydrolysis with P for 3 h | ||||
Wheat flour | 11.92 ± 0.82 b | 20.66 ± 1.62 d | 77.87 ± 0.84 b | 29.47 ± 2.12 c |
Albumins | 11.92 ± 1.23 b | 8.77 ± 0.35 e | 72.47 ± 0.87 c | 74.49 ± 2.10 a |
Glutelins-1 | 62.36 ± 3.91 a | 66.07 ± 2.09 b | 41.90 ± 4.86 d | 30.97 ± 4.24 c |
Glutelins-2 | 8.72 ± 0.01 bc | 7.79 ± 0.58 e | 77.37 ± 0.34 b | 22.72 ± 1.05 c |
Prolamins | 1.60 ± 1.03 d | 95.08 ± 1.86 a | 71.07 ± 0.46 c | 21.22 ± 5.43 c |
Globulins | 6.69 ± 1.64 c | 59.84 ± 0.23 c | 89.02 ± 0.90 a | 45.23 ± 7.55 b |
SE | 1.330 | 0.955 | 1.204 | 3.614 |
Post/pre-hydrolysis ratios | ||||
Wheat flour | 0.40 | 0.98 | 0.91 | 0.51 |
Albumins | 0.19 | 3.24 | 1.03 | 1.39 |
Glutelins-1 | 1.28 | 0.97 | 0.63 | 1.85 |
Glutelins-2 | 0.22 | 9.50 | 1.00 | 4.16 |
Prolamins | 0.65 | 1.01 | 1.06 | 0.30 |
Globulins | 0.68 | 1.04 | 2.26 | 0.81 |
Antioxidant Activity | α-Amylase Inhibitory Activity | ACE Inhibitory Activity | |
---|---|---|---|
Total antioxidant compounds | 0.160 | –0.059 | –0.878 * |
Antioxidant activity | –0.388 | –0.276 | |
α-Amylase inhibitory activity | 0.144 |
Biological Activity | Pre-TC Hydrolysis (pH 8.0) | TC Hydrolysates (pH 8.0) | Pre-P Hydrolysis (pH 2.0) | P Hydrolysates (pH 2.0) |
---|---|---|---|---|
Total antioxidant compounds | Glutelins-1 | WF, glutelins-1, glutelins-2 | Albumins, glutelins-1 | Glutelins-1, albumins, WF |
Antioxidant activity | WF, prolamins, glutenins-1, globulins | Prolamins, glutelins-1, globulins | Prolamins, glutelins-1, globulins | Prolamins, glutelins-1, globulins |
ACE inhibitory activity | Globulins, glutenins-1, WF | Prolamins, globulins, glutelins-1 | WF, glutelins-2, albumins, glutelins-1, prolamins | Globulins, glutelins-2, WF, albumins, prolamins |
α-amylase inhibitory activity | WF, globulins, prolamins, glutelins-1 | Prolamins, globulins, WF, glutelins-1 | Prolamins, WF, globulins, albumins | Albumins, globulins |
Wheat Flour or Protein Fractions | Total Antioxidant Compounds | Antioxidant Activity | ACE Inhibitory Activity | α-Amylase Inhibitory Activity |
---|---|---|---|---|
Pre-P/Pre-TC hydrolysis ratios | ||||
Wheat flour | 6.62 | 1.22 | 1.28 | 0.60 |
Albumins | 12.0 | 0.51 | 1.28 | 7.19 |
Glutelins-1 | 5.55 | 6.14 | 1.01 | 0.23 |
Glutelins-2 | 8.61 | 0.12 | 1.22 | 0.09 |
Prolamins | 1.87 | 5.69 | 1.04 | 0.76 |
Globulins | 5.31 | 5.76 | 0.56 | 0.59 |
Post-P/Post-TC hydrolysis ratios | ||||
Wheat flour | 1.02 | 2.42 | 1.30 | 0.32 |
Albumins | 1.43 | 1.53 | 1.54 | 8.02 |
Glutelins-1 | 5.66 | 5.40 | 0.62 | 0.41 |
Glutelins-2 | 0.76 | 0.78 | 1.49 | 3.05 |
Prolamins | 0.58 | 6.45 | 1.01 | 0.22 |
Globulins | 2.72 | 5.11 | 1.28 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gammoh, S.; Alu’datt, M.H.; Alhamad, M.N.; Tranchant, C.C.; Rababah, T.; Al-U’datt, D.; Hussein, N.; Alrosan, M.; Tan, T.-C.; Kubow, S.; et al. Functional and Bioactive Properties of Wheat Protein Fractions: Impact of Digestive Enzymes on Antioxidant, α-Amylase, and Angiotensin-Converting Enzyme Inhibition Potential. Molecules 2023, 28, 6012. https://doi.org/10.3390/molecules28166012
Gammoh S, Alu’datt MH, Alhamad MN, Tranchant CC, Rababah T, Al-U’datt D, Hussein N, Alrosan M, Tan T-C, Kubow S, et al. Functional and Bioactive Properties of Wheat Protein Fractions: Impact of Digestive Enzymes on Antioxidant, α-Amylase, and Angiotensin-Converting Enzyme Inhibition Potential. Molecules. 2023; 28(16):6012. https://doi.org/10.3390/molecules28166012
Chicago/Turabian StyleGammoh, Sana, Muhammad H. Alu’datt, Mohammad N. Alhamad, Carole C. Tranchant, Taha Rababah, Doa’a Al-U’datt, Neveen Hussein, Mohammad Alrosan, Thuan-Chew Tan, Stan Kubow, and et al. 2023. "Functional and Bioactive Properties of Wheat Protein Fractions: Impact of Digestive Enzymes on Antioxidant, α-Amylase, and Angiotensin-Converting Enzyme Inhibition Potential" Molecules 28, no. 16: 6012. https://doi.org/10.3390/molecules28166012
APA StyleGammoh, S., Alu’datt, M. H., Alhamad, M. N., Tranchant, C. C., Rababah, T., Al-U’datt, D., Hussein, N., Alrosan, M., Tan, T. -C., Kubow, S., Alzoubi, H., & Almajwal, A. (2023). Functional and Bioactive Properties of Wheat Protein Fractions: Impact of Digestive Enzymes on Antioxidant, α-Amylase, and Angiotensin-Converting Enzyme Inhibition Potential. Molecules, 28(16), 6012. https://doi.org/10.3390/molecules28166012