Recycling of Waste Bamboo Biomass and Papermaking Waste Liquid to Synthesize Sodium Lignosulfonate/Chitosan Glue-Free Biocomposite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mechanical Properties of the L/C Bamboo Biocomposite
2.2. Water Resistance of the L/C Bamboo Biocomposite
2.3. Heat Resistance Analysis of the L/C Bamboo Biocomposite
2.4. Chemical Characterization Analysis of the L/C Bamboo Biocomposite
2.5. Waste Recycling and Environmental Analysis
3. Materials and Methods
3.1. Source of Experimental Materials
3.2. Pretreatment of the Bamboo Powder and the L/C Bamboo Biocomposite
3.3. Measurements of Physical Properties of L/C Bamboo Biocomposite
3.4. Functional Group Changes and Composition Changes of Biocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, J.; Zheng, P.; Wang, Q. Lime mud from papermaking process as a potential ameliorant for pollutants at ambient conditions: A review. J. Clean. Prod. 2015, 103, 828–836. [Google Scholar] [CrossRef]
- He, L.; Yu, Y.; Lin, J.; Hong, Z.; Dai, Z.; Liu, X.; Tang, C.; Xu, J. Alkaline lignin does not immobilize cadmium in soils but decreases cadmium accumulation in the edible part of lettuce (Lactuca sativa L.). Environ. Pollut. 2022, 310, 119879. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, H.; Xiao, X.; Cao, J.; Yang, C.; Zhang, K. Resource value flow analysis of paper-making enterprises: A Chinese case study. J. Clean. Prod. 2019, 213, 577–587. [Google Scholar] [CrossRef]
- Zaied, M.; Bellakhal, N. Electrocoagulation treatment of black liquor from paper industry. J. Hazard. Mater. 2009, 163, 995–1000. [Google Scholar] [CrossRef]
- Pola, L.; Collado, S.; Oulego, P.; Calvo, P.Á.; Díaz, M. Characterisation of the wet oxidation of black liquor for its integration in Kraft paper mills. Chem. Eng. J. 2021, 405, 126610. [Google Scholar] [CrossRef]
- Velusamy, K.; Chellam, P.; Kumar, P.S.; Venkatachalam, J.; Periyasamy, S.; Saravanan, R. Functionalization of MXene-based nanomaterials for the treatment of micropollutants in aquatic system: A review. Environ. Pollut. 2022, 301, 119034. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Ho, S.-H.; Wang, X.; Li, Y.; Wang, C. Application of biodegradable cellulose-based biomass materials in wastewater treatment. Environ. Pollut. 2021, 290, 118087. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Luo, F.; Rao, Y.; Wang, Y.; Yu, J.; Li, H.; Chen, X. Laser synthesis of superhydrophilic O/S co-doped porous graphene derived from sodium lignosulfonate for enhanced microsupercapacitors. J. Power Source 2021, 513, 230558. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Weng, L.; Ge, S.; Jiang, D.; Huang, M.; Mulvihill, D.M.; Chen, Q.; Guo, Z.; Jazzar, A.; et al. A Roadmap Review of Thermally Conductive Polymer Composites: Critical Factors, Progress, and Prospects. Adv. Funct. Mater. 2023, 2301549. [Google Scholar] [CrossRef]
- Breilly, D.; Fadlallah, S.; Froidevaux, V.; Colas, A.; Allais, F. Origin and industrial applications of lignosulfonates with a focus on their use as superplasticizers in concrete. Constr. Build. Mater. 2021, 301, 124065. [Google Scholar] [CrossRef]
- Yang, J.; Wang, F.; Fang, L.; Tan, T. Synthesis, characterization and application of a novel chemical sand-fixing agent-poly (aspartic acid) and its composites. Environ. Pollut. 2007, 149, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hou, Y.; Huang, W.; Liu, X.; Wen, P.; Wang, Y.; Yu, Z.; Zhou, S. Alkali lignin and sodium lignosulfonate additives promote the formation of humic substances during paper mill sludge composting. Bioresour. Technol. 2021, 320, 124361. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Huang, C.; Ling, Z.; He, Y.-C. Enhancing cellulosic digestibility of wheat straw by adding sodium lignosulfonate and sodium hydroxide to hydrothermal pretreatment. Bioresour. Technol. 2023, 379, 129058. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, P.; Zhang, S.; Wen, Z.; Wen, Y.; Zhou, W.; Dong, X.; Liu, Y.; Liang, Y. Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery. J. Colloid Interface Sci. 2021, 600, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, Y.; Chen, S.; Xie, D.; Yao, X.; Cui, P.; Xu, X. An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. J. Mater. Chem. A 2017, 5, 16984–16993. [Google Scholar] [CrossRef]
- Liu, R.; Peng, Y.; Cao, J.; Chen, Y. Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers. Compos. Sci. Technol. 2014, 103, 1–7. [Google Scholar] [CrossRef]
- Emenike, P.C.; Tenebe, I.T.; Neris, J.B.; Omole, D.O.; Afolayan, O.; Okeke, C.U.; Emenike, I.K. An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. Environ. Pollut. 2020, 265, 114795. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Rajangam, A.S.; Salameh, T.; Al-Othman, A.; Alkasrawi, M. Characterization of paper mill sludge as a renewable feedstock for sustainable hydrogen and biofuels production. Int. J. Hydrogen Energy 2021, 46, 4761–4775. [Google Scholar] [CrossRef]
- Qiu, C.; Tang, Q.; Zhang, X.; Li, M.-C.; Zhang, X.; Xie, J.; Zhang, S.; Su, Z.; Qi, J.; Xiao, H. High-efficient double-cross-linked biohybrid aerogel biosorbent prepared from waste bamboo paper and chitosan for wastewater purification. J. Clean. Prod. 2022, 338, 130550. [Google Scholar] [CrossRef]
- Nkeuwa, W.N.; Zhang, J.; Semple, K.E.; Chen, M.; Xia, Y.; Dai, C. Bamboo-based composites: A review on fundamentals and processes of bamboo bonding. Compos. Part B Eng. 2022, 235, 109776. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Mi, R.; Gan, W.; Dai, J.; Jiao, M.; Xie, H.; Yao, Y.; Xiao, S.; Hu, L. A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 2020, 32, 1906308. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; He, M.; Li, Z. Novel engineered wood and bamboo composites for structural applications: State-of-art of manufacturing technology and mechanical performance evaluation. Constr. Build. Mater. 2020, 249, 118751. [Google Scholar] [CrossRef]
- Dutta, S.; Iris, K.; Tsang, D.C.; Su, Z.; Hu, C.; Wu, K.C.; Yip, A.C.; Ok, Y.S.; Poon, C.S. Influence of green solvent on levulinic acid production from lignocellulosic paper waste. Bioresour. Technol. 2020, 298, 122544. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Qin, Y.; Wu, J.; Ye, M.; Li, Y.-Y. Characterization of biogas production and microbial community in thermophilic anaerobic co-digestion of sewage sludge and paper waste. Bioresour. Technol. 2021, 337, 125371. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.R.; Taylor, A.; Serwinowski, N.; Parkerson, Z.J.; Confer, M.P.; Kammakakam, I.; Bara, J.E.; Esfahani, A.R.; Mahmoodi, S.N.; Koutahzadeh, N. Sustainable novel bamboo-based membranes for water treatment fabricated by regeneration of bamboo waste fibers. ACS Sustain. Chem. Eng. 2020, 8, 4225–4235. [Google Scholar] [CrossRef]
- Guo, H.; Gu, J.; Wang, X.; Song, Z.; Yu, J.; Lei, L. Microbial mechanisms related to the effects of bamboo charcoal and bamboo vinegar on the degradation of organic matter and methane emissions during composting. Environ. Pollut. 2021, 272, 116013. [Google Scholar] [CrossRef]
- Yang, K.; Yang, J.; Jiang, Y.; Wu, W.; Lin, D. Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar. Environ. Pollut. 2016, 210, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Hiziroglu, S.; Jarusombuti, S.; Bauchongkol, P.; Fueangvivat, V. Overlaying properties of fiberboard manufactured from bamboo and rice straw. Ind. Crops Prod. 2008, 28, 107–111. [Google Scholar] [CrossRef]
- Kalter, V.; Passow, U. Quantitative review summarizing the effects of oil pollution on subarctic and arctic marine invertebrates. Environ. Pollut. 2022, 319, 120960. [Google Scholar] [CrossRef]
- Jia, L.; Chu, J.; Li, J.; Ren, J.; Huang, P.; Li, D. Formaldehyde and VOC emissions from plywood panels bonded with bio-oil phenolic resins. Environ. Pollut. 2020, 264, 114819. [Google Scholar] [CrossRef]
- Atwater, A.R.; Petty, A.J.; Liu, B.; Green, C.L.; Silverberg, J.I.; DeKoven, J.G.; Belsito, D.V.; Reeder, M.J.; Sasseville, D.; Taylor, J.S. Contact dermatitis associated with preservatives: Retrospective analysis of North American Contact Dermatitis Group data, 1994 through 2016. J. Am. Acad. Dermatol. 2021, 84, 965–976. [Google Scholar] [CrossRef]
- Fan, L.; Xie, J.; Zheng, Y.; Wei, D.; Yao, D.; Zhang, J.; Zhang, T. Antibacterial, self-adhesive, recyclable, and tough conductive composite hydrogels for ultrasensitive strain sensing. ACS Appl. Mater. Interfaces 2020, 12, 22225–22236. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wang, Y.; Yu, Q.; Ge, S.; Fan, W.; Zhang, M.; Huang, Z.; Manzo, M.; Cai, L.; Wang, L. Bio-based composites fabricated from wood fibers through self-bonding technology. Chemosphere 2022, 287, 132436. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Z.; Zhang, L.; Song, F.; Ren, Y.; Zhang, X.; Zhang, J.; Liew, R.K.; Foong, S.Y.; Chong, W.W.F. Recent advances in the control of volatile organic compounds emissions from indoor wood-based panels: A comprehensive review. Sci. Total Environ. 2023, 884, 163741. [Google Scholar] [CrossRef] [PubMed]
- Vedrtnam, A.; Kumar, S.; Chaturvedi, S. Experimental study on mechanical behavior, biodegradability, and resistance to natural weathering and ultraviolet radiation of wood-plastic composites. Compos. Part B Eng. 2019, 176, 107282. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, K.; Zhang, J.; Zhu, L.; Du, G.; Zheng, R. Cheap, high yield, and strong corn husk-based textile bio-fibers with low carbon footprint via green alkali retting-splicing-twisting strategy. Ind. Crops Prod. 2022, 188, 115699. [Google Scholar] [CrossRef]
- Shi, Y.; Jiang, J.; Ye, H.; Sheng, Y.; Zhou, Y.; Foong, S.Y.; Sonne, C.; Chong, W.W.F.; Lam, S.S.; Xie, Y. Transforming municipal cotton waste into a multilayer fibre biocomposite with high strength. Environ. Res. 2023, 218, 114967. [Google Scholar] [CrossRef]
- Wang, Z.; Gnanasekar, P.; Sudhakaran Nair, S.; Farnood, R.; Yi, S.; Yan, N. Biobased epoxy synthesized from a vanillin derivative and its reinforcement using lignin-containing cellulose nanofibrils. ACS Sustain. Chem. Eng. 2020, 8, 11215–11223. [Google Scholar] [CrossRef]
- Trovagunta, R.; Zou, T.; Österberg, M.; Kelley, S.S.; Lavoine, N. Design strategies, properties and applications of cellulose nanomaterials-enhanced products with residual, technical or nanoscale lignin—A review. Carbohydr. Polym. 2021, 254, 117480. [Google Scholar] [CrossRef]
- Ge, S.; Ma, N.L.; Jiang, S.; Ok, Y.S.; Lam, S.S.; Li, C.; Shi, S.Q.; Nie, X.; Qiu, Y.; Li, D.; et al. Processed Bamboo as a Novel Formaldehyde-Free High-Performance Furniture Biocomposite. Acs Appl. Mater. Interfaces 2020, 12, 30824–30832. [Google Scholar] [CrossRef]
- Sun, X.; Jia, X.; Yang, J.; Wang, S.; Li, Y.; Shao, D.; Song, H. Bamboo fiber-reinforced chitosan sponge as a robust photothermal evaporator for efficient solar vapor generation. J. Mater. Chem. A 2021, 9, 23891–23901. [Google Scholar] [CrossRef]
- Zhang, H.; Li, R.; Zhang, Z. A versatile EDTA and chitosan bi-functionalized magnetic bamboo biochar for simultaneous removal of methyl orange and heavy metals from complex wastewater. Environ. Pollut. 2022, 293, 118517. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Du, H.; Zheng, T.; Liu, W.; Zhang, M.; Liu, H.; Zhang, X.; Si, C. Lignin-containing cellulose nanomaterials: Preparation and applications. Green Chem. 2021, 23, 9723–9746. [Google Scholar] [CrossRef]
- Ge, S.; Ouyang, H.; Ye, H.; Shi, Y.; Sheng, Y.; Peng, W. High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Adv. Compos. Hybrid Mater. 2023, 6, 44. [Google Scholar] [CrossRef]
- Berglund, J.; Mikkelsen, D.; Flanagan, B.M.; Dhital, S.; Gaunitz, S.; Henriksson, G.; Lindström, M.E.; Yakubov, G.E.; Gidley, M.J.; Vilaplana, F. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat. Commun. 2020, 11, 4692. [Google Scholar] [CrossRef]
- Sun, S.-C.; Sun, D.; Wang, H.-M.; Li, H.-Y.; Cao, X.-F.; Sun, S.-N.; Yuan, T.-Q. Effect of integrated treatment on improving the enzymatic digestibility of poplar and the structural features of isolated hemicelluloses. Carbohydr. Polym. 2021, 252, 117164. [Google Scholar] [CrossRef]
- Jose, S.; Thomas, S.; Jibin, K.; Sisanth, K.; Kadam, V.; Shakyawar, D. Surface modification of wool fabric using sodium lignosulfonate and subsequent improvement in the interfacial adhesion of natural rubber latex in the wool/rubber composites. Ind. Crops Prod. 2022, 177, 114489. [Google Scholar] [CrossRef]
- Wang, P.; Chen, C.; Shen, H.; Wei, J.; Lan, Y.; Liao, X.; Fan, H.; Hu, H.; Zhang, Y.; Huang, Z. In situ immobilization of ZIF-8 on sodium lignosulfonate/chitosan foams for the efficient removal of ciprofloxacin from water. Cellulose 2023, 30, 4353–4371. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Wang, Q.; Ji, X.; Yang, G.; Chen, J.; Fatehi, P. Strong, ductile and biodegradable polylactic acid/lignin-containing cellulose nanofibril composites with improved thermal and barrier properties. Ind. Crops Prod. 2021, 171, 113898. [Google Scholar] [CrossRef]
- Ling, Z.; Guo, Z.; Huang, C.; Yao, L.; Xu, F. Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility. Bioresour. Technol. 2020, 305, 123025. [Google Scholar] [CrossRef]
- Pena, C.A.; Soto, A.; King, A.W.; Rodríguez, H. Improved reactivity of cellulose via its crystallinity reduction by nondissolving pretreatment with an ionic liquid. ACS Sustain. Chem. Eng. 2019, 7, 9164–9171. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Zhou, F.; Li, F.; Han, Z.; Wang, L.; Xu, J.; Zhang, B.; Wang, M.; Fan, J.; Zhang, B. Superfine pulverisation pretreatment to enhance crystallinity of cellulose from Lycium barbarum L. leaves. Carbohydr. Polym. 2021, 253, 117207. [Google Scholar] [CrossRef]
- Willhammar, T.; Daicho, K.; Johnstone, D.N.; Kobayashi, K.; Liu, Y.; Midgley, P.A.; Bergström, L.; Saito, T. Local crystallinity in twisted cellulose nanofibers. ACS Nano 2021, 15, 2730–2737. [Google Scholar] [CrossRef]
- Finnegan, A.M.D.; Süsserott, R.C.; Gabbott, S.E.; Gouramanis, C. Man-made natural and regenerated cellulosic fibres greatly outnumber microplastic fibres in the atmosphere. Environ. Pollut. 2022, 310, 119808. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Li, H.; Wang, S.; Jiang, R.; Zou, J.; Zhang, X.; Liu, L.; Zhang, G. Experimental research on an innovative sawdust biomass-based insulation material for buildings. J. Clean. Prod. 2020, 260, 121029. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, W.; Xu, P.; Cai, X.; Dong, W.; Chen, M.; Du, M.; Liu, T.; Lemstra, P.J.; Ma, P. The bonding strength, water resistance and flame retardancy of soy protein-based adhesive by incorporating tailor-made core–shell nanohybrid compounds. Chem. Eng. J. 2022, 428, 132390. [Google Scholar] [CrossRef]
- Han, J.; Wang, S.; Zhu, S.; Huang, C.; Yue, Y.; Mei, C.; Xu, X.; Xia, C. Electrospun core–shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness. ACS Appl. Mater. Interfaces 2019, 11, 44624–44635. [Google Scholar] [CrossRef]
- Leow, Y.; Sequerah, V.; Tan, Y.C.; Yu, Y.; Peterson, E.C.; Jiang, C.; Zhang, Z.; Yang, L.; Loh, X.J.; Kai, D. A tough, biodegradable and water-resistant plastic alternative from coconut husk. Compos. Part B Eng. 2022, 241, 110031. [Google Scholar] [CrossRef]
- Devnani, G.; Sinha, S. Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber. Compos. Part B Eng. 2019, 166, 436–445. [Google Scholar] [CrossRef]
- Song, J.; He, H.; Wang, Y.; Shao, L.; Wang, Q.; Wei, Q.; Cai, Y. Shape-stabilized phase change composites supported by biomass loofah sponge-derived microtubular carbon scaffold toward thermal energy storage and electric-to-thermal conversion. J. Energy Storage 2022, 56, 105891. [Google Scholar] [CrossRef]
- Li, J.; Ding, Y.; Gao, Q.; Zhang, H.; He, X.; Ma, Z.; Wang, B.; Zhang, G. Ultrathin and flexible biomass-derived C@ CoFe nanocomposite films for efficient electromagnetic interference shielding. Compos. Part B Eng. 2020, 190, 107935. [Google Scholar] [CrossRef]
- Pawar, A.A.; Kim, A.; Kim, H. Synthesis and performance evaluation of plastic waste aerogel as sustainable and reusable oil absorbent. Environ. Pollut. 2021, 288, 117717. [Google Scholar] [CrossRef] [PubMed]
- Misyura, S. Developing the environmentally friendly technologies of combustion of gas hydrates. Reducing harmful emissions during combustion. Environ. Pollut. 2020, 265, 114871. [Google Scholar] [CrossRef] [PubMed]
- GB/T 17657-2013; Test Method for Physical and Chemical Properties of Wood-Based Panels and Decorative Wood-Based Panels. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2013.
- Zheng, G.; Ye, H.; Liang, Y.; Jin, X.; Xia, C.; Fan, W.; Shi, Y.; Xie, Y.; Li, J.; Ge, S. Pre-treatment of natural bamboo for use as a high-performance bio-composites via acetic acid ball milling technology. Constr. Build. Mater. 2023, 367, 130350. [Google Scholar] [CrossRef]
- GB/T 4472-2011; Determination of Density and Relative Density of Industrial Products. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011.
- GB/T 38794-2020; Determination of Safe Formaldehyde Emission from Chemical Substances in Furniture. State Administration for Market Regulation: Beijing, China, 2020.
- Medina-Carrasco, S.; Valverde, J.M. The Calcium Looping process for energy storage: Insights from in situ XRD analysis. Chem. Eng. J. 2022, 429, 132244. [Google Scholar] [CrossRef]
- Ge, S.; Foong, S.Y.; Ma, N.L.; Liew, R.K.; Mahari, W.A.W.; Xia, C.; Yek, P.N.Y.; Peng, W.; Nam, W.L.; Lim, X.Y.; et al. Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products. Renew. Sustain. Energy Rev. 2020, 127, 109871. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In situ irradiated XPS investigation on S-scheme TiO2@ ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Jiang, J.; Yang, Y.; Shi, J.; Sun, H.; Zhang, L.; Ge, S.; Zhang, Y.; Zhou, Y.; Liew, R.K.; et al. Ultra-strong and environmentally friendly waste polyvinyl chloride/paper biocomposites. Adv. Compos. Hybrid Mater. 2023, 6, 81. [Google Scholar] [CrossRef]
Sample | Crystallinity |
---|---|
BC | 52.69% |
AKBC | 56.71% |
5%L/C | 54.14% |
10%L/C | 56.49% |
15%L/C | 58.29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Zheng, G.; Jiang, J.; Fan, W.; Ge, S. Recycling of Waste Bamboo Biomass and Papermaking Waste Liquid to Synthesize Sodium Lignosulfonate/Chitosan Glue-Free Biocomposite. Molecules 2023, 28, 6058. https://doi.org/10.3390/molecules28166058
Ma Q, Zheng G, Jiang J, Fan W, Ge S. Recycling of Waste Bamboo Biomass and Papermaking Waste Liquid to Synthesize Sodium Lignosulfonate/Chitosan Glue-Free Biocomposite. Molecules. 2023; 28(16):6058. https://doi.org/10.3390/molecules28166058
Chicago/Turabian StyleMa, Qingzhi, Guiyang Zheng, Jinxuan Jiang, Wei Fan, and Shengbo Ge. 2023. "Recycling of Waste Bamboo Biomass and Papermaking Waste Liquid to Synthesize Sodium Lignosulfonate/Chitosan Glue-Free Biocomposite" Molecules 28, no. 16: 6058. https://doi.org/10.3390/molecules28166058
APA StyleMa, Q., Zheng, G., Jiang, J., Fan, W., & Ge, S. (2023). Recycling of Waste Bamboo Biomass and Papermaking Waste Liquid to Synthesize Sodium Lignosulfonate/Chitosan Glue-Free Biocomposite. Molecules, 28(16), 6058. https://doi.org/10.3390/molecules28166058