Trivinylphosphine Oxide: Synthesis, Characterization, and Polymerization Reactivity Investigated Using Single-Crystal Analysis and Density Functional Theory
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structural Analysis
2.2. DFT Calculations
2.2.1. Nucleophilic Addition Reaction (Pseudo-Michael Addition) Using Piperazine
2.2.2. Anionic Addition Reaction Using a Grignard Reagent
3. Materials and Methods
3.1. Materials
3.2. NMR Spectroscopy
3.3. Single-Crystal X-ray Analysis
3.4. Computational Methods
3.5. Synthesis of Trivinylphosphine Oxide (TVPO)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wiesinger, H.; Wang, Z.; Hellweg, S. Deep Dive into Plastic Monomers, Additives, and Processing Aids. Environ. Sci. Technol. 2021, 55, 9339–9351. [Google Scholar] [CrossRef]
- Nazir, R.; Gaan, S. Recent developments in P(O/S)-N containing flame retardants. J. Appl. Polym. Sci. 2020, 137, 47910. [Google Scholar] [CrossRef]
- Ambrogi, V.; Carfagna, C.; Cerruti, P.; Marturano, V. Additives in Polymers. In Modification of Polymer Properties; Jasso-Gastinel, C.F., Kenny, J.M., Eds.; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 87–108. [Google Scholar]
- Salmeia, K.A.; Gaan, S.; Malucelli, G. Recent advances for flame retardancy of textiles based on phosphorus chemistry. Polymers 2016, 8, 319. [Google Scholar] [CrossRef]
- Salmeia, K.A.; Gaan, S. An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications. Polym. Degrad. Stab. 2015, 113, 119–134. [Google Scholar] [CrossRef]
- Stawinski, J.; Kraszewski, A. How To Get the Most Out of Two Phosphorus Chemistries. Studies on H-Phosphonates. Acc. Chem. Res. 2002, 35, 952–960. [Google Scholar] [CrossRef]
- Montchamp, J.-L. Phosphinate Chemistry in the 21st Century: A Viable Alternative to the Use of Phosphorus Trichloride in Organophosphorus Synthesis. Acc. Chem. Res. 2014, 47, 77–87. [Google Scholar] [CrossRef]
- Silva, V.B.; Santos, Y.H.; Hellinger, R.; Mansour, S.; Delaune, A.; Legros, J.; Zinoviev, S.; Nogueira, E.S.; Orth, E.S. Organophosphorus chemical security from a peaceful perspective: Sustainable practices in its synthesis, decontamination and detection. Green Chem. 2022, 24, 585–613. [Google Scholar] [CrossRef]
- Sbei, N.; Martins, G.M.; Shirinfar, B.; Ahmed, N. Electrochemical Phosphorylation of Organic Molecules. Chem. Rec. 2020, 20, 1530–1552. [Google Scholar] [CrossRef]
- Demchuk, O.M.; Jasinski, R.; Strzelecka, D.; Dziuba, K.; Kula, K.; Chrzanowski, J.; Krasowska, D. A clean and simple method for deprotection of phosphines from borane complexes. Pure Appl. Chem. 2018, 90, 49–62. [Google Scholar] [CrossRef]
- Wendels, S.; Chavez, T.; Bonnet, M.; Salmeia, K.A.; Gaan, S. Recent developments in organophosphorus flame retardants containing P-C bond and their applications. Materials 2017, 10, 784. [Google Scholar] [CrossRef]
- Fedorov, S.V.; Krivdin, L.B.; Rusakov, Y.Y.; Chernysheva, N.A.; Mikhailenko, V.L. Trivinylphosphine and trivinylphosphine chalcogenides: Stereochemical trends of 31P-1H spin-spin coupling constants. Magn. Reson. Chem. 2010, 48, S48. [Google Scholar] [CrossRef]
- Gusarova, N.K.; Verkhoturova, S.I.; Kazantseva, T.I.; Chernysheva, N.A.; Mikhailenko, V.L.; Malysheva, S.F.; Trofimov, B.A. Nucleophilic addition of phosphine to vinyl sulfoxides. Russ. J. Gen. Chem. 2008, 78, 1011–1013. [Google Scholar] [CrossRef]
- Gusarova, N.K.; Chernysheva, N.A.; Arbuzova, S.N.; Bogdanova, M.V.; Ivanova, N.I.; Kudryavtsev, A.A.; Trofimov, B.A. Thiol elimination from tris [2-(phenylthio)ethyl]phosphine oxide: A convenient route to trivinylphosphine oxide. Mendeleev Commun. 2006, 16, 31. [Google Scholar] [CrossRef]
- Monkowius, U.; Nogai, S.; Schmidbaur, H. Contributions to the Little Known Chemistry of Trivinylphosphine and Trivinylarsine. Organometallics 2003, 22, 145–152. [Google Scholar] [CrossRef]
- Collins, D.J.; Rowley, L.E.; Swan, J.M. Organophosphorus compounds. XIII. Synthesis of some 4-phenylperhydro-1,4-azaphosphorines. Aust. J. Chem. 1974, 27, 841. [Google Scholar] [CrossRef]
- Gaan, S.; Hufenus, R.; Nazir, R.; Simonetti, P.; Salmeia, K.; Parida, D.; Gooneie, A. Phosphorus-Containing Oligomers and Polymers. U.S. Patent US20210371591A1, 2 December 2021. [Google Scholar]
- Nazir, R.; Parida, D.; Borgstadt, J.; Lehner, S.; Jovic, M.; Rentsch, D.; Bulbul, E.; Huch, A.; Altenried, S.; Ren, Q.; et al. In-situ phosphine oxide physical networks: A facile strategy to achieve durable flame retardant and antimicrobial treatments of cellulose. Chem. Eng. J. 2021, 417, 128028. [Google Scholar] [CrossRef]
- Nazir, R.; Parida, D.; Guex, A.G.; Rentsch, D.; Zarei, A.; Gooneie, A.; Salmeia, K.A.; Yar, K.M.; Alihosseini, F.; Sadeghpour, A.; et al. Structurally Tunable pH-responsive Phosphine Oxide Based Gels by Facile Synthesis Strategy. ACS Appl. Mater. Interfaces 2020, 12, 7639–7649. [Google Scholar] [CrossRef]
- Gamoke, B.; Neff, D.; Simons, J. Nature of PO Bonds in Phosphates. J. Phys. Chem. A 2009, 113, 5677–5684. [Google Scholar] [CrossRef]
- Yamada, K.; Koga, N. Variationally determined electronic states for the theoretical analysis of intramolecular interaction. II. Qualitative nature of the P-O bond in phosphine oxides. J. Comput. Chem. 2013, 34, 149–161. [Google Scholar] [CrossRef]
- Kaczor, A.A.; Kijkowska-Murak, U.; Pihlaja, K.; Sinkkonen, J.; Wysocki, W.; Karczmarzyk, Z.; Matosiuk, D. The pseudo-Michael reaction of 1-aryl-4,5-dihydro-1H-imidazol-2-amines with ethyl ethoxymethylenecyanoacetate. Monatsh. Chem. 2013, 144, 1171–1182. [Google Scholar] [CrossRef]
- Matosiuk, D.; Pihlaja, K.; Ovcharenko, V.V.; Dybała, I.; Kozioł, A.E.; Gdaniec, M.; Szumiło, H.; Karczmarzyk, Z. The psuedo-michael reaction of 2-aminoimidazolines 2. Part 1. Synthesis and structure assignment of isomeric 5(1H)-Oxo and 7(1H)-Oxo-2,3-dihydroimidazo [1,2-a]pyrimidine-6-carboxylates. J. Heterocycl. Chem. 2003, 40, 93–99. [Google Scholar] [CrossRef]
- Chang, R. Physical Chemistry for the Biosciences, 1st ed.; University Science Books: Melville, NY, USA, 2005. [Google Scholar]
- Lin, Z.; Zhai, D.-H.; Sun, Y.-M.; Zheng, H.-X.; Li, Q.; Wang, Y.-L.; Wen, J.-H.; Zhao, C.-Q. Tandem addition of nucleophilic and electrophilic reagents to vinyl phosphinates: The stereoselective formation of organophosphorus compounds with congested tertiary carbons. RSC Adv. 2023, 13, 14060–14064. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Sameera, W.M.C.; Jin, M.; Adak, L.; Okuzono, C.; Iwamoto, T.; Kato, M.; Nakamura, M.; Morokuma, K. DFT and AFIR Study on the Mechanism and the Origin of Enantioselectivity in Iron-Catalyzed Cross-Coupling Reactions. J. Am. Chem. Soc. 2017, 139, 16117–16125. [Google Scholar] [CrossRef]
- Peltzer, R.M.; Eisenstein, O.; Nova, A.; Cascella, M. How Solvent Dynamics Controls the Schlenk Equilibrium of Grignard Reagents: A Computational Study of CH3MgCl in Tetrahydrofuran. J. Phys. Chem. B 2017, 121, 4226–4237. [Google Scholar] [CrossRef] [PubMed]
- Peltzer, R.M.; Gauss, J.; Eisenstein, O.; Cascella, M. The Grignard Reaction–Unraveling a Chemical Puzzle. J. Am. Chem. Soc. 2020, 142, 2984–2994. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Young, J.A.; Perez, M.S.; Hankerson, H.A.; Chavez, A.M. Progress on the Cu-Catalyzed 1,4-Conjugate Addition to Thiochromones. Catalysts 2023, 13, 713. [Google Scholar] [CrossRef]
- Bertz, S.H.; Miao, G.; Rossiter, B.E.; Snyder, J.P. New Copper Chemistry. 25. Effect of TMSCl on the Conjugate Addition of Organocuprates to .alpha.-Enones: A New Mechanism. J. Am. Chem. Soc. 1995, 117, 11023–11024. [Google Scholar] [CrossRef]
- House, H.O.; Respess, W.L.; Whitesides, G.M. The Chemistry of Carbanions. XII. The Role of Copper in the Conjugate Addition of Organometallic Reagents1. J. Org. Chem. 1966, 31, 3128–3141. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment–Olex2 dissected. Acta Cryst. A 2015, 71, 59–75. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Wiberg, K.B. Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ. J. Comput. Chem. 2004, 25, 1342–1346. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account. 2008, 120, 215–241. [Google Scholar]
- Tomasi, J.; Mennucci, B.; Cancès, E. The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struc. Theochem. 1999, 464, 211–226. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem. Phys. Lett. 1998, 286, 253–260. [Google Scholar] [CrossRef]
- Cancès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Gonzalez, C.; Schlegel, H.B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527. [Google Scholar] [CrossRef]
Identification Code | TVPO (CCDC 2260460) | TVPO (CCDC 1277428) [15] |
---|---|---|
Empirical formula | C6H9OP | C6H9OP |
Formula weight | 128.10 | 128.10 |
Temperature (K) | 173.15 | 143 |
Crystal system | Orthorhombic | Orthorhombic |
Space group | Pnma | Pnma |
a (Å) | 9.4940 (7) | 9.5130 (2) |
b (Å) | 10.7754 (12) | 10.7830 (3) |
c (Å) | 7.0590 (6) | 7.0590 (3) |
α (°) | 90 | 90 |
β (°) | 90 | 90 |
γ (°) | 90 | 90 |
Volume (Å3) | 722.15 (11) | 724.10 (4) |
Z | 4 | 4 |
ρcalc (g/cm3) | 1.178 | 1.175 |
μ (mm−1) | 0.286 | 0.286 |
F(000) | 272.0 | 272.0 |
Crystal size (mm3) | 0.5 × 0.3 × 0.2 | 0.5 × 0.20 × 0.15 |
Radiation | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ Range for data collection (°) | 6.9 to 51.168 | 3.45 to 27.60 |
Index ranges | −10 ≤ h ≤ 11 −12 ≤ k ≤ 13 −8 ≤ l ≤ 8 | 0 ≤ h ≤ 12 0 ≤ k ≤ 14 0 ≤ l ≤ 8 |
Reflections collected | 2929 | 25094 |
Independent reflections | 723 [Rint = 0.0424, Rsigma = 0.0240] | 839 [Rint = 0.036] |
Data/restraints/parameters | 723/0/437 | 839/0/65 |
Goodness-of-fit on F2 | 1.213 | 1.092 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0275, wR2 = 0.0673 | R1 = 0.0353, wR2 = 0.1030 |
Final R indexes [all data] | R1 = 0.0327, wR2 = 0.0855 | R1 = 0.0355, wR2 = 0.1032 |
Largest diff. peak/hole (e Å−3) | 0.22/−0.44 | 0.258/−0.305 |
CCDC 2260460 a | CCDC 1277428 b | Calculated, This Study c | |
---|---|---|---|
P−O | 1.486 (2) | 1.5004 (13) | 1.503 |
P−C1 | 1.7886 (18) | 1.796 (2) | 1.792 |
P−C3 | 1.787 (3) | 1.7929 (14) | 1.791 |
C1−C5 | 1.310 (3) | 1.316 (3) | 1.314 |
C2−C3 | 1.313 (4) | 1.321 (2) | 1.320 |
O···H2A | 2.7165 (15) | 2.78 (4) | 2.743 |
O···H5A | 2.7065 (8) | 2.75 (3) | 2.731 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmeia, K.A.; Afaneh, A.T.; Habash, R.R.; Neels, A. Trivinylphosphine Oxide: Synthesis, Characterization, and Polymerization Reactivity Investigated Using Single-Crystal Analysis and Density Functional Theory. Molecules 2023, 28, 6097. https://doi.org/10.3390/molecules28166097
Salmeia KA, Afaneh AT, Habash RR, Neels A. Trivinylphosphine Oxide: Synthesis, Characterization, and Polymerization Reactivity Investigated Using Single-Crystal Analysis and Density Functional Theory. Molecules. 2023; 28(16):6097. https://doi.org/10.3390/molecules28166097
Chicago/Turabian StyleSalmeia, Khalifah A., Akef T. Afaneh, Reem R. Habash, and Antonia Neels. 2023. "Trivinylphosphine Oxide: Synthesis, Characterization, and Polymerization Reactivity Investigated Using Single-Crystal Analysis and Density Functional Theory" Molecules 28, no. 16: 6097. https://doi.org/10.3390/molecules28166097
APA StyleSalmeia, K. A., Afaneh, A. T., Habash, R. R., & Neels, A. (2023). Trivinylphosphine Oxide: Synthesis, Characterization, and Polymerization Reactivity Investigated Using Single-Crystal Analysis and Density Functional Theory. Molecules, 28(16), 6097. https://doi.org/10.3390/molecules28166097