The Influence of the Sous Vide Cooking Time on Selected Characteristics of Pork Lion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Basic Composition
2.2. Cooking Loss
2.3. Colour Analysis
2.4. Thiamine
2.5. Rheology
- ns: concentration of segments;
- R: gas constant;
- T: temperature.
2.6. Texture Analysis
2.6.1. WBSF
2.6.2. Texture Profile Analysis (TPA)
2.6.3. Sensory Evaluation
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Primary Composition Analysis
Protein Content
- X: the protein content (%);
- a: the amount of 0.1 nH2SO4 (cm3) consumed for titration;
- b: the weighed amount (g);
- 1.4: the amount of nitrogen corresponding to 1 cm3 of 0.l nH2SO4;
- 6.25: the conversion factor for the amount of total nitrogen to protein.
Total Water Content
- X: the water content (%);
- a: the mass of the weighed amount with blotting paper before drying (g);
- b: the mass of the weighed amount of the blotting paper after drying (g);
- c: the mass of the weighed amount (g).
Cooking Loss
- CL: the cooking loss (%);
- mR: the mass of raw meat (g);
- mh: the mass of cooked meat (g).
PH Measurement
Fat Content
- X: the fat content (%);
- a: the weight of the thimble before extraction (g);
- b: the weight of the thimble after extraction (g);
- c: the mass of the weighed amount (g).
Total Thiamine Content
- To: the total thiamine (μg/100 g);
- c: the concentration of total thiamine (μg/2 mL) read from the standard curve;
- M: the mass of the test sample (g).
3.2.2. Instrumental Colour Assessment
- L*: lightness (0: a perfectly black body; 100: a perfectly white body);
- a*: redness (when positive), green (when negative), or grey (when 0);
- b*: yellowness (when positive), blue (when negative), or grey (when 0).
- ΔE: total colour difference;
- L*0, a*0, b*0: means of colour parameters determined for the control samples;
- L*1, a*1, b*1: means of colour parameters determined for the test samples.
- when 0 < ΔE < 1, the observer does not notice the difference;
- when 1 < ΔE < 2, only an experienced observer may notice the difference;
- when 2 < ΔE < 3.5, an inexperienced observer notices the difference;
- when 3.5 < ΔE < 5, a clear difference in colour is noticed; and
- when 5 < ΔE, an observer notices two different colours.
3.2.3. Rheological Properties
3.2.4. Texture Analysis
Warner–Bratzler Shear Blade Test (WBFS)
Texture Profile Analysis (TPA)
Sensory Evaluation
3.2.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, J.; Hong, Y.K.; Inanoglu, S.; Liu, F. Microwave pasteurization for ready-to-eat meals. Curr. Opin. Food Sci. 2018, 23, 133–141. [Google Scholar] [CrossRef]
- Kumar, P.; Verma, A.K.; Kumar, D.; Umaraw, P.; Mehta, N.; Malav, O.P. Meat Snacks: A novel technological perspective. In Innovations in Traditional Foods; Woodhead Publishing: Sawston, UK, 2019; pp. 293–321. [Google Scholar]
- Erdem, N.; Karakaya, M. Sous vide application technology on foods. Turk. JAF Sci. Tech. 2021, 9, 1618–1630. [Google Scholar] [CrossRef]
- Kathuria, D.; Dhiman, A.K.; Attri, S. Sous vide, a culinary technique for improving quality of food products: A review. Trends Food Sci. Technol. 2022, 119, 57–68. [Google Scholar] [CrossRef]
- Bıyıklı, M.; Akoğlu, A.; Kurhan, Ş.; Akoğlu, İ.T. Effect of different sous vide cooking temperature-time combinations on the physicochemical, microbiological, and sensory properties of turkey cutlet. Int. J. Gastron. Food Sci. 2020, 20, 100204. [Google Scholar] [CrossRef]
- Hasani, E.; Csehi, B.; Darnay, L.; Ladányi, M.; Dalmadi, I.; Kenesei, G. Effect of Combination of Time and Temperature on Quality Characteristics of Sous Vide Chicken Breast. Foods 2022, 11, 521. [Google Scholar] [CrossRef]
- Pandita, G.; Bhosale, Y.K.; Choudhary, P. Sous Vide: A Proposition to Nutritious and Superior Quality Cooked Food. Food Sci. Technol. 2023, 3, 592–599. [Google Scholar] [CrossRef]
- Sun, S.; Rasmussen, F.D.; Cavender, G.A.; Sullivan, G.A. Texture, color and sensory evaluation of sous-vide cooked beef steaks processed using high pressure processing as method of microbial control. LWT Food Sci. Technol. 2019, 103, 169–177. [Google Scholar] [CrossRef]
- Naqvi, Z.B.; Thomson, P.C.; Ha, M.; Campbell, M.A.; McGill, D.M.; Friend, M.A.; Warner, R.D. Effect of sous vide cooking and ageing on tenderness and water-holding capacity of low-value beef muscles from young and older animals. Meat Sci. 2021, 175, 108435. [Google Scholar] [CrossRef]
- Haghighi, H.; Belmonte, A.M.; Masino, F.; Minelli, G.; Lo Fiego, D.P.; Pulvirenti, A. Effect of time and temperature on physicochemical and microbiological properties of sous vide chicken breast fillets. Appl. Sci. 2021, 11, 3189. [Google Scholar] [CrossRef]
- Cui, Z.; Yan, H.; Manoli, T.; Mo, H.; Bi, J.; Zhang, H. Advantages and challenges of sous vide cooking. Food Sci. Technol. Res. 2021, 27, 25–34. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Interventions of two-stage thermal sous-vide cooking on the toughness of beef semitendinosus. Meat Sci. 2019, 157, 107882. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.; Ertbjerg, P.; Løje, H.; Risbo, J.; van den Berg, F.W.; Christensen, M. Relationship between meat toughness and properties of connective tissue from cows and young bulls heat treated at low temperatures for prolonged times. Meat Sci. 2013, 93, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.I.; Lee, E.J.; Hong, G.P. Effects of temperature and time on the cookery properties of sous-vide processed pork loin. Food Sci. Anim. Resour. 2019, 39, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Ortuño, J.; Mateo, L.; Rodríguez-Estrada, M.T.; Bañón, S. Effects of sous vide vs grilling methods on lamb meat colour and lipid stability during cooking and heated display. Meat Sci. 2021, 171, 108287. [Google Scholar] [CrossRef] [PubMed]
- Tornberg, E.V.A. Effects of heat on meat proteins–Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Zhang, R.; Liu, L.; Zhu, Z.; Mo, H.; Xu, M.; Shi, L.; Zhang, H. Proteomics analysis to investigate the impact of diversified thermal processing on meat tenderness in Hengshan goat meat. Meat Sci. 2022, 183, 108655. [Google Scholar] [CrossRef]
- Alugwu, S.U.; Okonkwo, T.M.; Ngadi, M.O. Effect of Thermal Treatments on Selected Minerals and Water Soluble Vitamins of Chicken Breast Meat. Eur. J. Nutr. Food Saf. 2023, 15, 10–43. [Google Scholar] [CrossRef]
- Jiang, S.; Xue, D.; Zhang, Z.; Shan, K.; Ke, W.; Zhang, M.; Zhao, D.; Nian, Y.; Xu, X.; Li, C. Effect of Sous-vide cooking on the quality and digestion characteristics of braised pork. Food Chem. 2022, 375, 131683. [Google Scholar] [CrossRef]
- Ježek, F.; Kameník, J.; Macharáčková, B.; Bogdanovičová, K.; Bednář, J. Cooking of meat: Effect on texture, cooking loss and microbiological quality—A review. Acta Vet. Brno 2020, 88, 487–496. [Google Scholar] [CrossRef]
- Ángel-Rendón, S.V.; Filomena-Ambrosio, A.; Hernández-Carrión, M.; Llorca, E.; Hernando, I.; Quiles, A.; Sotelo-Díaz, I. Pork meat prepared by different cooking methods. A microstructural, sensorial and physicochemical approach. Meat Sci. 2020, 163, 108089. [Google Scholar] [CrossRef]
- Purslow, P.P.; Oiseth, S.; Hughes, J.; Warner, R.D. The structural basis of cooking loss in beef: Variations with temperature and ageing. Food Res. Int. 2016, 89, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Ayub, H.; Ahmad, A. Physiochemical changes in sous-vide and conventionally cooked meat. Int. J. Gastron. Food Sci. 2019, 17, 100145. [Google Scholar] [CrossRef]
- Jeong, K.; Hyeonbin, O.; Shin, S.Y.; Kim, Y.S. Effects of sous-vide method at different temperatures, times and vacuum degrees on the quality, structural, and microbiological properties of pork ham. Meat Sci. 2018, 143, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vaskoska, R.; Vénien, A.; Ha, M.; White, J.D.; Unnithan, R.R.; Astruc, T.; Warner, R.D. Thermal denaturation of proteins in the muscle fibre and connective tissue from bovine muscles composed of type I (masseter) or type II (cutaneous trunci) fibres: DSC and FTIR microspectroscopy study. Food Chem. 2021, 343, 128544. [Google Scholar] [CrossRef]
- Dominguez-Hernandez, E.; Salaseviciene, A.; Ertbjerg, P. Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Sci. 2018, 143, 104–113. [Google Scholar]
- Christensen, L.; Bertram, H.C.; Aaslyng, M.D.; Chistensen, M. Protein denaturation and water-protein interactions as affected by low temperature long time treatment of porcine longissimus dorsi. Meat Sci. 2011, 88, 718–722. [Google Scholar] [CrossRef]
- Sanchez del Pulgar, J.; Gazquez, A.; Ruiz-Carrascal, J. Physico-chemical, textural and structural characteristics of sousvide cooked pork cheeks as affected by vacuum, cooking temperature, and cooking time. Meat Sci. 2012, 90, 828–835. [Google Scholar] [CrossRef]
- Roldán, M.; Antequera, T.; Martín, A.; Mayoral, A.I.; Ruiz, J. Effect of different temperature–time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins. Meat Sci. 2013, 93, 572–578. [Google Scholar] [CrossRef]
- Ruiz-Carrascal, J.; Roldan, M.; Refolio, F.; Perez-Palacios, T.; Antequera, T. Sous-vide cooking of meat: A Maillarized approach. Int. J. Gastron. Food Sci. 2019, 16, 100138. [Google Scholar] [CrossRef]
- Vaudagna, S.R.; Sanchez, G.; Neira, M.S.; Insani, E.M.; Picallo, A.B.; Gallinger, M.M.; Lasta, J.A. Sous vide cooked beef muscles: Effects of low temperature–long time (LT–LT) treatments on their quality characteristics and storage stability. Int. J. Food Sci. 2002, 37, 425–441. [Google Scholar] [CrossRef]
- Botinestean, C.; Keenan, D.F.; Kerry, J.P.; Hamill, R.M. The effect of thermal treatments including sous-vide, blast freezing and their combinations on beef tenderness of M. Semitendinosus steaks targeted at elderly consumers. LWT Food Sci. Technol. 2016, 74, 154–159. [Google Scholar] [CrossRef]
- Brewer, M.S.; Zhu, L.G.; Bidner, B.; Meisinger, D.J.; McKeith, F.K. Measuring pork color: Effects of bloom time, muscle, pH and relationship to instrumental parameters. Meat Sci. 2001, 57, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Gochhayat, G.; Kumar, M.; Bhatt, S.; Saini, V.; Malik, A. Thiamine: A Key Role in Human Health. Int. J. Sci. Technol. Res. 2019, 8, 42–51. [Google Scholar]
- Gómez, I.; Janardhanan, R.; Ibañez, F.C.; Beriain, M.J. The Effects of Processing and Preservation Technologies on Meat Quality: Sensory and Nutritional Aspects. Foods 2020, 9, 1416. [Google Scholar] [CrossRef] [PubMed]
- Coe, S.; Spiro, A. Cooking at home to retain nutritional quality and minimise nutrient losses: A focus on vegetables, potatoes and pulses. Nutr. Bull. 2022, 47, 538–562. [Google Scholar] [CrossRef]
- Lombardi-Boccia, G.; Lanzi, S.; Aguzzi, A. Aspects of meat quality: Trace elements and B vitamins in raw and cooked meats. J. Food Compost. Anal. 2005, 18, 39–46. [Google Scholar] [CrossRef]
- Riccio, F.; Mennella, C.; Fogliano, V. Effect of cooking on the concentration of Vitamins B in fortified meat Meat and Nutrition products. J. Pharm. Biomed. Anal. 2006, 41, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Suleman, R.; Wang, Z.; Aadil, R.M.; Hui, T.; Hopkins, D.L.; Zhang, D. Effect of cooking on the nutritive quality, sensory properties and safety of lamb meat: Current challenges and future prospects. Meat Sci. 2020, 167, 108172. [Google Scholar] [CrossRef]
- Herrera-Ardila, Y.M.; Orrego, D.; Bejarano-López, A.F.; Klotz-Ceberio, B. Effect of heat treatment on vitamin content during the manufacture of food products at industrial scale. DYNA 2022, 89, 127–132. [Google Scholar] [CrossRef]
- Bassam, S.M.; Noleto-Dias, C.; Farag, M.A. Dissecting grilled red and white meat flavor: Its characteristics, production mechanisms, influencing factors and chemical hazards. Food Chem. 2022, 371, 131139. [Google Scholar] [CrossRef]
- Bourne, M.C. Relationship between rheology and food texture. In Engineering and Food for the 21st Century; CRC Press: Boca Raton, FL, USA, 2002; pp. 321–336. [Google Scholar]
- Purslow, P.P. The structure and role of intramuscular connective tissue in muscle function. Front. Physiol. 2020, 11, 495. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H. Introduction: Measuring rheological properties of foods. In Rheology of Semisolid Foods; Springer: Cham, Switzerland, 2019; pp. 3–30. [Google Scholar]
- Wu, M.; Cao, Y.; Lei, S.; Liu, Y.; Wang, J.; Hu, J.; Li, R.; Ge, Q.; Yu, H. Protein structure and sulfhydryl group changes affected by protein gel properties: Process of thermal-induced gel formation of myofibrillar protein. Int. J. Food Prop. 2019, 22, 1834–1847. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Lanier, T.C. The contribution of non-muscle proteins to texture of gelled muscle protein foods. In Protein Quality and Effects of Processing; Phillips, R.D., Finley, J.W., Eds.; Marcel Dekker: New York, NY, USA, 1989. [Google Scholar]
- Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; J. Wiley: New York, NY, USA, 1980; pp. 175–180. [Google Scholar]
- Dara, P.K.; Geetha, A.; Mohanty, U.; Raghavankutty, M.; Mathew, S.; Nagarajarao, R.C.; Rangasamy, A. Extraction and characterization of myofibrillar proteins from different meat sources: A comparative study. J. Bioresour. Bioprod. 2021, 6, 367–378. [Google Scholar] [CrossRef]
- Holder, A.J.; Badiei, N.; Hawkins, K.; Wright, C.; Williams, P.R.; Curtis, D.J. Control of collagen gel mechanical properties through manipulation of gelation conditions near the sol-gel transition. Soft Matter 2018, 14, 574–580. [Google Scholar] [CrossRef]
- Glorieux, S.; Steen, L.; Paelinck, H.; Foubert, I.; Fraeye, I. Isothermal gelation behavior of myofibrillar proteins from white and red chicken meat at different temperatures. Poult. Sci. 2017, 96, 3785–3795. [Google Scholar] [CrossRef]
- Christensen, L.; Ertbjerg, P.; Aaslyng, M.D.; Christensen, M. Effect of prolonged heat treatment from 48 °C to 63 °C on toughness, cooking loss and color of pork. Meat Sci. 2011, 88, 280–285. [Google Scholar] [CrossRef]
- Bertola, N.C.; Bevilacqua, A.E.; Zaritzky, N.E. Heat treatment effect on texture changes and thermal denaturation of proteins in beef muscle. J. Food Process. Preserv. 1994, 18, 31–46. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.H.; Bakhsh, A.; Joo, S.T. The alternative approach of low temperature-long time cooking on bovine semitendinosus meat quality. Asian Australas. J. Anim. Sci. 2019, 32, 282–289. [Google Scholar] [CrossRef]
- Vasanthi, C.; Venkataramanujam, V.; Dushyanthan, K. Effect of cooking temperature and time on the physico-chemical, histological and sensory properties of female carabeef (buffalo) meat. Meat Sci. 2007, 76, 274–280. [Google Scholar] [CrossRef]
- Polak, E.; Markowska, J.; Madaj, M.; Sadłowska, K. Influence of sous-vide technology parameters on beef quality. Sci. Technol. Innov. Food Nutr. 2019, 64–74. (In Polish) [Google Scholar]
- Baldwin, D. Sous-vide Cooking. In Handbook of Molecular Gastronomy; CRC Press: Boca Raton, FL, USA, 2021; pp. 531–535. [Google Scholar]
- PN-75/A-0401:1975; The Determination of Nitrogen by the Kjeldahl Method and Conversion to Protein. Polish Committee for Standardization: Warsaw, Poland, 1975; Agricultural and Food Products.
- PN-ISO 1442:2000; The Determination of Water. Reference Method. Polish Committee for Standardization: Warsaw, Poland, 2000; Meat and Meat Products.
- PN-ISO 1444:2000; The Determination of Fat Content. Polish Committee for Standardization: Warsaw, Poland, 2000; Meat and Meat Products.
- Waszkowiak, K.; Szymandera-Buszka, K. Effect of collagen preparations used as carriers of potassium iodide on retention of iodine and thiamine during cooking and storage of pork meatballs. J. Sci. Food Agric. 2007, 87, 1473–1479. [Google Scholar] [CrossRef]
- PN EN ISO 8586; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
Variant | Water, % | Fat, % | Fat Free Dry Matter, % | Protein, % | Cooking Loss, % | pH (-) |
---|---|---|---|---|---|---|
Raw Pork | 73.98 ± 2.80 a | 3.42 ± 0.14 a | 22.62 ± 1.32 a | 22.09 ± 1.35 a | - | 5.78 ± 0.01 |
Pork 6 h | 69.39 ± 2.17 b | 2.73 ± 0.11 b | 27.88 ± 1.45 bf | 27.05 ± 1.36 bc | 23.19 ± 1.29 a | - |
Pork 8 h | 67.28 ± 2.10 c | 4.95 ± 0.15 c | 27.78 ± 1.45 b | 27.22 ± 1.37 bd | 24.41 ± 1.02 a | - |
Pork 10 h | 67.66 ± 2.11 c | 5.48 ± 0.16 d | 26.86 ± 1.44 c | 26.70 ± 1.32 bc | 24.63 ± 1.11 a | - |
Pork 12 h | 67.33 ± 1.86 c | 5.81 ± 0.18 d | 26.95 ± 1.48 c | 26.50 ± 1.31 c | 25.35 ± 1.04 ab | - |
Pork 14 h | 67.36 ± 1.82 c | 4.01 ± 0.15 e | 28.64 ± 1.39 d | 28.21 ± 1.45 ef | 25.79 ± 1.19 ab | - |
Pork 16 h | 67.55 ± 2.07 c | 3.31 ± 0.14 a | 29.16 ± 1.47 e | 28.34 ± 1.46 e | 26.36 ± 1.18 bc | - |
Pork 18 h | 67.78 ± 2.12 c | 4.27 ± 0.14 e | 27.95 ± 1.45 f | 27.92 ± 1.38 df | 26.72 ± 1.16 c | - |
Autoclave | 62.80 ± 1.54 d | 5.50 ± 0.16 d | 31.71 ± 1.51 g | 30.85 ± 1.46 g | 33.87 ± 1.16 d | - |
Variant | L* | a* | b* | H* | C* | ΔE |
---|---|---|---|---|---|---|
Raw Pork | 45.38 a | −2.76 a | 6.00 a | 0.077 a | 6.60 a | 453.82 |
Pork 6 h | 75.04 b | 0.42 b | 10.22 b | 10.328 b | 10.23 b | Control simple |
Pork 8 h | 76.04 bc | 0.24 b | 10.40 b | 32.768 c | 10.40 b | 0.53 |
Pork 10 h | 76.60 c | 0.20 b | 10.02 b | 43.802 d | 10.02 b | 1.26 |
Pork 12 h | 73.62 bc | 0.62 b | 11.20 b | 5.69 e | 11.22 b | 1.51 |
Pork 14 h | 74.92 bc | 0.20 b | 10.00 b | 43.627 d | 10.00 b | 0.06 |
Pork 16 h | 73.66 b | 0.16 b | 10.22 b | 71.204 f | 10.22 b | 0.99 |
Pork 18 h | 76.28 bc | 0.70 b | 9.46 b | 3.182 e | 9.49 b | 1.10 |
Autoclave | 68.52 d | 4.78 c | 20.08 c | 0.302 a | 20.64 c | 12.60 |
Variant | Thiamine Content in the Muscle, % | Thiamine Content in the Thermal Drip, % | Thiamine Content in Fat-Free Dry Matter, % |
---|---|---|---|
Raw Pork | 100.00 | - | 100.00 |
Pork 6 h | 70.68 ± 0.98 a | 3.92 ± 0.22 a | 58.00 ± 0.87 a |
Pork 8 h | 68.02 ± 1.30 b | 5.77 ± 0.31 b | 56.20 ± 0.98 b |
Pork 10 h | 61.77 ± 1.34 c | 6.80 ± 0.27 c | 53.12 ± 1.24 c |
Pork 12 h | 59.69 ± 1.70 d | 7.93 ± 0.26 d | 50.13 ± 1.38 d |
Pork 14 h | 51.72 ± 1.94 e | 7.86 ± 0.24 d | 40.31 ± 1.45 e |
Pork 16 h | 46.97 ± 2.26 f | 6.91 ± 0.15 c | 37.25 ± 1.63 f |
Pork 18 h | 37.72 ± 2.57 g | 4.53 ± 0.12 e | 30.11 ± 1.78 g |
Autoclave | 56.78 ± 2.31 h | 7.89 ± 0.21 d | 40.08 ± 1.52 e |
Variant | Shear Force, N | Shear Work, J | Hardness I, N | Hardness II, N | Springiness, mm | Elasticity, mm | Chewiness, Nxmm |
---|---|---|---|---|---|---|---|
Raw Pork | 17.82 a | 86.76 a | - | - | - | - | - |
Pork 6 h | 19.79 b | 98.57 b | 26.55 a | 23.47 a | 0.46 a | 0.46 a | 5.81 a |
Pork 8 h | 17.57 a | 85.63 a | 19.74 b | 17.37 b | 0.43 ab | 0.41 bd | 3.21 b |
Pork 10 h | 14.98 c | 59.28 c | 12.92 df | 10.29 cf | 0.47 a | 0.45 a | 2.55 bc |
Pork 12 h | 9.10 d | 57.85 cd | 14.60 de | 12.83 cd | 0.41 bd | 0.37 c | 2.15 c |
Pork 14 h | 14.75 c | 60.29 c | 16.32 ce | 13.82 de | 0.39 cd | 0.39 bc | 2.22 c |
Pork 16 h | 10.36 d | 55.10 d | 14.36 e | 12.61 cd | 0.37 c | 0.38 bc | 3.12 c |
Pork 18 h | 9.99 d | 56.55 d | 10.85 f | 8.79 f | 0.40 bd | 0.39 bc | 1.89 c |
Autoclave | 19.36 b | 108.16 e | 18.31 bc | 16.62 be | 0.61 e | 0.41 d | 5.15 a |
Variant | Juiciness | Tenderness | Smell | Flavour |
---|---|---|---|---|
Pork 6 h | 1.18 a | 1.23 a | 3.09 abc | 3.18 ab |
Pork 8 h | 1.77 b | 1.86 b | 3.18 abc | 3.27 ac |
Pork 10 h | 2.64 c | 2.50 c | 3.14 abc | 3.41 ac |
Pork 12 h | 4.55 d | 4.45 d | 3.36 a | 3.64 c |
Pork 14 h | 4.05 e | 4.05 c | 3.23 ac | 3.27 ac |
Pork 16 h | 4.50 d | 4.45 d | 3.27 a | 3.45 ac |
Pork 18 h | 4.50 d | 4.55 d | 2.91 bc | 3.50 ac |
Autoclave | 2.09 b | 1.95 b | 2.86 b | 2.86 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezler, R.; Krzywdzińska-Bartkowiak, M.; Piątek, M. The Influence of the Sous Vide Cooking Time on Selected Characteristics of Pork Lion. Molecules 2023, 28, 6102. https://doi.org/10.3390/molecules28166102
Rezler R, Krzywdzińska-Bartkowiak M, Piątek M. The Influence of the Sous Vide Cooking Time on Selected Characteristics of Pork Lion. Molecules. 2023; 28(16):6102. https://doi.org/10.3390/molecules28166102
Chicago/Turabian StyleRezler, Ryszard, Mirosława Krzywdzińska-Bartkowiak, and Michał Piątek. 2023. "The Influence of the Sous Vide Cooking Time on Selected Characteristics of Pork Lion" Molecules 28, no. 16: 6102. https://doi.org/10.3390/molecules28166102
APA StyleRezler, R., Krzywdzińska-Bartkowiak, M., & Piątek, M. (2023). The Influence of the Sous Vide Cooking Time on Selected Characteristics of Pork Lion. Molecules, 28(16), 6102. https://doi.org/10.3390/molecules28166102