Determination of Aflatoxins in Milk by PS-MWCNT/OH Composite Nanofibers Solid-Phase Extraction Coupled with HPLC-FLD
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Nanofibers
2.2. Fourier-Transform Infrared Spectroscopy Analysis
2.3. X-ray Diffraction Analysis (XRD)
2.4. Optimization of PS-HMWCNT Nanofibers Packed-Fiber Solid-Phase Extraction
2.5. Method Validation
2.6. Comparison of Methods
2.7. Application to Real Samples
3. Materials and Methods
3.1. Materials and Reagents
3.2. Experimental Instruments
3.3. Preparation of Standard Solution
3.4. Fabrication of Electrospinning Polystyrene Polymeric Multi-Walled Carbon Nanotube (PS-MWCNT/OH) Composite Nanofibers
3.5. Sample Pretreatment and Extraction
3.6. Chromatographic Conditions
3.7. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jelinek, C.F.; Pohland, A.E.; Wood, G.E. Worldwide occurrence of mycotoxins in foods and feeds-an update. J. Assoc. Off. Anal. Chem. 1989, 72, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Bullerman, L.B.; Bianchini, A. Stability of mycotoxins during food processing. Int. J. Food Microbiol. 2007, 119, 140–146. [Google Scholar] [CrossRef]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef] [PubMed]
- Wu, F. Global impacts of aflatoxin in maize: Trade and human health. World Mycotoxin J. 2015, 8, 137–142. [Google Scholar] [CrossRef]
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef]
- Murphy, P.A.; Hendrich, S.; Landgren, C.; Bryant, C.M. Food Mycotoxins: An Update. J. Food Sci. 2006, 71, 51–65. [Google Scholar] [CrossRef]
- Escrivá, L.; Font, G.; Manyes, L.; Berrada, H. Studies on the presence of mycotoxins in biological samples: An overview. Toxins 2017, 9, 251. [Google Scholar] [CrossRef]
- Peña, R.; Alcaraz, M.C.; Arce, L.; Ríos, A.; Valcárcel, M. Screening of aflatoxins in feed samples using a flow system coupled to capillary electrophoresis. J. Chromatogr. A 2002, 967, 303–314. [Google Scholar] [CrossRef]
- Stroka, J.; Van Otterdijk, R.; Anklam, E. Immunoaffinity column clean-up prior to thin-layer chromatography for the determination of aflatoxins in various food matrices. J. Chromatogr. A 2000, 904, 251–256. [Google Scholar] [CrossRef]
- Khayoon, W.S.; Saad, B.; Lee, T.P.; Salleh, B. High performance liquid chromatographic determination of aflatoxins in chilli, peanut and rice using silica based monolithic column. Food Chem. 2012, 133, 489–496. [Google Scholar] [CrossRef]
- Li, P.W.; Zhang, Q.; Zhang, W.; Zhang, J.Y.; Chen, X.M.; Jiang, J.; Xie, L.H.; Zhang, D. Development of a class-specific monoclonal antibody-based ELISA for aflatoxins in peanut. Food Chem. 2009, 115, 313–317. [Google Scholar] [CrossRef]
- Mo, R.H.; Zhang, Y.P.; Ni, Z.L.; Tang, F.B. Determination of benzo [a] pyrene in camellia oil via vortex-assisted extraction using the UPLC-FLD method. Food Sci. Biotechnol. 2017, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.Y.; Yang, C.; Pang, Y.H.; Xie, W.Y.; Shen, X.F. Dispersive solid-phase extraction using the metal-organic framework MIL-101 (Cr) for determination of benzo (a) pyrene in edible oil. Anal. Methods 2019, 11, 3467–3473. [Google Scholar] [CrossRef]
- Çorman, M.E.; Armutcu, C.; Uzun, L.; Denizli, A. Rapid, efficient and selective preconcentration of benzo [a] pyrene (BaP) by molecularly imprinted composite cartridge and HPLC. Mater. Sci. Eng. C 2017, 70, 41–53. [Google Scholar] [CrossRef]
- McCullum, C.; Tchounwou, P.; Ding, L.S.; Liao, X.; Liu, Y.M. Extraction of aflatoxins from liquid foodstuff samples with polydopamine-coated superparamagnetic nanoparticles for HPLC-MS/MS analysis. J. Agric. Food Chem. 2014, 62, 4261–4267. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Peng, T.; He, J.L.; Shao, Y.; Fan, C.L.; Chen, Y.; Jiang, W.X.; Chen, M.; Wang, Q.; Pei, X.Y.; et al. Preparation and characterization of an immunoaffinity column for the selective extraction of aflatoxin B1 in 13 kinds of foodstuffs. J. Chromatogr. B 2015, 998, 50–56. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Wu, D.; Liu, J.; Li, X.; Luo, P.; Hu, N.; Wang, H.; Wu, Y. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends Food Sci. Technol. 2020, 96, 233–252. [Google Scholar] [CrossRef]
- Liu, Y.E.; Huang, L.Q.; Luo, X.J.; Tan, X.X.; Huang, C.C.; Corella, P.Z.; Mai, B.X. Determination of organophosphorus flame retardants in fish by freezing-lipid precipitation, solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2018, 1532, 68–73. [Google Scholar] [CrossRef]
- Muhamad, H.; Zainudin, B.H.; Abu Bakar, N.K. Comparative study of different clean-up techniques for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with electron capture detection. Food Chem. 2012, 134, 2489–2496. [Google Scholar] [CrossRef]
- Chigome, S.; Torto, N. A review of opportunities for electrospun nanofibers in analytical chemistry. Anal. Chim. Acta 2011, 706, 25–36. [Google Scholar] [CrossRef]
- Chigome, S.; Torto, N. Electrospun nanofiber-based solid-phase extraction. Trends Anal. Chem. 2012, 38, 21–31. [Google Scholar] [CrossRef]
- Chigome, S.; Darko, G.; Torto, N. Electrospun nanofibers as sorbent material for solid phase extraction. Analyst 2011, 136, 2879–2889. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.Z.; He, J.X.; Wang, S. Multiwalled Carbon Nanotubes as Sorbent for Online Solid-Phase Extraction of Resveratrol in Red Wines Prior to Fused-Core C18-Based Ultrahigh-Performance Liquid Chromatography−Tandem Mass Spectrometry Quantification. J. Chromatogr. A 2006, 1127, 12–17. [Google Scholar] [CrossRef] [PubMed]
- National Standard Method. Determination of Aflatoxin B and G Groups in Food. 2017. Available online: https://max.book118.com/html/2019/0421/7200141010002022.shtm (accessed on 13 August 2023).
- Hafez, E.; Abd El-Aziz, N.M.; Darwish, A.M.; Shehata, M.G.; Ibrahim, A.A.; Elframawy, A.M.; Badr, A.N. Validation of new ELISA technique for detection of Aflatoxin B1 contamination in food products versus HPLC and VICAM. Toxins 2021, 13, 747. [Google Scholar] [CrossRef]
- Hamed, A.M.; Abdel-Hamid, M.; Gámiz-Gracia, L.; García-Campaña, A.M.; Arroyo-Manzanares, N. Determination of aflatoxins in plant-based milk and dairy products by dispersive liquid–liquid microextraction and high-performance liquid chromatography with fluorescence detection. Anal. Lett. 2019, 52, 363–372. [Google Scholar] [CrossRef]
- Fan, S.; Li, Q.; Sun, L.; Du, Y.; Xia, J.; Zhang, Y. Simultaneous determination of aflatoxin B1 and M1 in milk, fresh milk and milk powder by LC-MS/MS utilising online turbulent flow chromatography. Food Addit. Contam. 2015, 32, 1175–1184. [Google Scholar] [CrossRef]
- Juck, M.; Technologies, A. Aflatoxin Analysis in Infant Formula with Enhanced Matrix Removal—Lipid by LC/MS/MS; 2016. Available online: https://www.agilent.com/cs/library/applications/5991-6818EN (accessed on 13 August 2023).
Analyte | Linearity Range (ng mL−1) | LOD (ng mL−1) | LOQ (ng mL−1) | Recovery (%) ± RSD (n = 3) | ||
---|---|---|---|---|---|---|
Added (ng mL−1) | Intra-Day | Inter-Day | ||||
AFTB1 | 0.5~20 | 0.13 | 0.44 | 0.5 | 88.85 ± 4.45 | 86.63 ± 6.41 |
2 | 90.13 ± 3.86 | 90.23 ± 4.14 | ||||
5 | 91.34 ± 3.63 | 91.47 ± 3.42 | ||||
AFTB2 | 0.2~10 | 0.07 | 0.23 | 0.25 | 89.66 ± 6.43 | 89.82 ± 5.60 |
1 | 90.49 ± 3.51 | 91.19 ± 3.94 | ||||
2.5 | 91.40 ± 2.99 | 92.45 ± 4.28 | ||||
AFTG1 | 0.5~40 | 0.16 | 0.53 | 1 | 89.45 ± 4.43 | 88.46 ± 7.75 |
5 | 90.09 ± 3.08 | 89.32 ± 3.43 | ||||
20 | 91.01 ± 2.81 | 90.88 ± 4.04 | ||||
AFTG2 | 0.5~20 | 0.13 | 0.45 | 0.5 | 88.06 ± 4.13 | 88.92 ± 5.39 |
2 | 89.80 ± 3.61 | 91.15 ± 3.96 | ||||
5 | 91.06 ± 3.49 | 91.56 ± 3.77 |
Extraction Methods | Detection Methods | Derivation Time | Recovery | LOD | Linear Range | Target | Real Sample | References |
---|---|---|---|---|---|---|---|---|
Extract DNA and PCR | ELISA | / | / | <1 ng mL−1 | 0~1.0 ng mL−1 | AFTB1 | Peanut, wheat flour, milk powder | [25] |
DLLME | HPLC-PCD | / | 82.0~104.0% | / | 0.5~10.0 ng mL−1 | AFTB1, AFTG2, AFTB2, and AFTG1 | Oat, rice, coconut, almond, and birdseed plant-based milk and milk-based products enriched with oats, almonds, and walnuts | [26] |
SPE | LC-MS/MS | / | 87.4–102.1% | 0.05 ng mL−1 | 0.1~20 ng mL−1 | AFTB1 | Milk | [27] |
/ | LC-MS/MS | / | / | 0.05 ng mL−1 | 0.01–2.5 ng mL−1 | AFTB1, AFTG2, AFTB2, and AFTG1 | Infant formula | [28] |
PFSPE | HPLC-RF | 30 min | 86.63~92.45% | 0.03~0.08 ng mL−1 | 0.2~40 ng mL−1 | AFTB1, AFTG2, AFTB2, and AFTG1 | Milk | This method |
Analyte | Structure | Formula | Molecular Weight (Da) | Retention Time (min) |
---|---|---|---|---|
AFTG1 | C17H12O7 | 328.27 | 6.217 | |
AFTB1 | C17H12O6 | 312.27 | 6.758 | |
AFTG2 | C17H14O7 | 330.29 | 7.390 | |
AFTB2 | C17H14O6 | 314.29 | 8.843 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Chen, Y.; Shao, D.; Li, J. Determination of Aflatoxins in Milk by PS-MWCNT/OH Composite Nanofibers Solid-Phase Extraction Coupled with HPLC-FLD. Molecules 2023, 28, 6103. https://doi.org/10.3390/molecules28166103
Wei L, Chen Y, Shao D, Li J. Determination of Aflatoxins in Milk by PS-MWCNT/OH Composite Nanofibers Solid-Phase Extraction Coupled with HPLC-FLD. Molecules. 2023; 28(16):6103. https://doi.org/10.3390/molecules28166103
Chicago/Turabian StyleWei, Lanlan, Yanan Chen, Dongliang Shao, and Jingjun Li. 2023. "Determination of Aflatoxins in Milk by PS-MWCNT/OH Composite Nanofibers Solid-Phase Extraction Coupled with HPLC-FLD" Molecules 28, no. 16: 6103. https://doi.org/10.3390/molecules28166103
APA StyleWei, L., Chen, Y., Shao, D., & Li, J. (2023). Determination of Aflatoxins in Milk by PS-MWCNT/OH Composite Nanofibers Solid-Phase Extraction Coupled with HPLC-FLD. Molecules, 28(16), 6103. https://doi.org/10.3390/molecules28166103