Prediction of Cu Zeolite NH3-SCR Activity from Variable Temperature 1H NMR Spectroscopy
Abstract
:1. Introduction
2. Results
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
Sample | Synthesis Details | Si/Al Ratio | Cu/Al Ratio | NOx Conversion (µmol NOx/g Catalyst. s) | TOF (mol NO/mol Cu. s−1) | Tonset (K) | |
---|---|---|---|---|---|---|---|
Refs. | Comments | ||||||
CHA-1H | [51] | 9.1 | 0.3 | 2.7 | 5.3 × 10−3 | 303 ± 10 | |
CHA-1L | [51] | 9.1 | 0.21 | 2.1 | 6.0 × 10−3 | 343 ± 10 | |
CHA-2H | [51] | 8.8 | 0.3 | 4.2 | 8.3 × 10−3 | 243 ± 10 | |
CHA-2L | [51] | 8.8 | 0.23 | 2.1 | 5.4 × 10−3 | 303 ± 10 | |
CHA-3 | [52] | 6.4 | 0.22 | 3.3 | 6.7 × 10−3 | 283 ± 10 | |
CHA-4 | [51,53] | Mixed gel synthesis | 4.8 | 0.17 | 5.6 | 1.1 × 10−2 | 223 ± 10 |
CHA-5 | [51] | 7 | 0.36 | 3.9 | 5.2 × 10−3 | 243 ± 10 | |
CHA-6 | [53] | 4.8 | 0.22 | 4.3 | 6.7 × 10−3 | 243 ± 10 | |
CHA-7 | [54] | Based on sample Cu-SSZ-13 | 5.5 | 0.32 | 5.4 | 6.5 ×10−3 | 203 ± 10 |
CHA-8 | [53] | Synthesis temperature 110 °C | 4 | 0.17 | 6 | 9.8 × 10−3 | 165 * |
AFX-1 | [54] | Based on sample Cu-SSZ-16; NaOH conc. in gel x2 | 4.5 | 0.21 | 4.1 | 6.4 × 10−3 | 263 ± 10 |
AFX-2 | [55] | 5.3 | 0.19 | 2.1 | 4.1 × 10−3 | 283 ± 10 | |
AEI-1 | [51] | 6.2 | 0.2 | 2.9 | 6.1 × 10−3 | 303 ± 10 | |
ERI-CHA-31% CHA | [56] | 6.2 | 0.18 | 2.4 | 5.6 × 10−3 | 343 ± 10 | |
ERI-CHA-2 51% CHA | [56] | 6.7 | 0.26 | 3.3 | 5.8 × 10−3 | 303 ± 10 | |
ERI-OFF-1 | Supplementary Section S3 | 2.6 | 0.11 | 1.9 | 4.4 × 10−3 | 303 ± 10 | |
BEA-1L | Zeolyst | Cu loading as described in ref. [51] | 12.5 | 0.25 | 1.4 | 4.6 × 10−3 | 365 * |
BEA-1H | Zeolyst | Cu loading as described in ref. [22] | 12.5 | 0.33 | 1.3 | 3.3 × 10−3 | 369 * |
References
- Locci, C.; Vervisch, L.; Farcy, B.; Domingo, P.; Perret, N. Selective Non-Catalytic Reduction (SNCR) of Nitrogen Oxide Emissions: A Perspective from Numerical Modeling. Flow Turbul. Combust. 2018, 100, 301–340. [Google Scholar] [CrossRef]
- Han, L.; Cai, S.; Gao, M.; Hasegawa, J.-Y.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chem. Rev. 2019, 119, 10916–10976. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; De Prins, M.; Sree, S.P.; Vanbutsele, G.; Smet, S.; Chandran, C.V.; Radhakrishnan, S.; Breynaert, E.; Martens, J.A. Selective Catalytic Reduction of NOx with Ammonia (NH3-SCR) over Copper Loaded LEV Type Zeolites Synthesized with Different Templates. Phys. Chem. Chem. Phys. 2022, 24, 15428–15438. [Google Scholar] [CrossRef]
- Borfecchia, E.; Beato, P.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S. Cu-CHA—A Model System for Applied Selective Redox Catalysis. Chem. Soc. Rev. 2018, 47, 8097–8133. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, C.; Di Iorio, J.R.; Schneider, W.F.; Gounder, R. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. Acc. Chem. Res. 2020, 53, 1881–1892. [Google Scholar] [CrossRef] [PubMed]
- Borfecchia, E.; Lomachenko, K.A.; Giordanino, F.; Falsig, H.; Beato, P.; Soldatov, A.V.; Bordiga, S.; Lamberti, C. Revisiting the Nature of Cu Sites in the Activated Cu-SSZ-13 Catalyst for SCR Reaction. Chem. Sci. 2015, 6, 548–563. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Peng, Q.; Jiaqiang, E.; Xie, B.; Wei, J.; Yin, R.; Fu, G. Mechanism, Performance and Modification Methods for NH3-SCR Catalysts: A Review. Fuel 2023, 331, 125885. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Meng, Y.; Pang, L.; Guo, Y.; Luo, Z.; Fang, Y.; Dong, Y.; Cai, W.; Li, T. Insight into Solid-State Ion-Exchanged Cu-Based Zeolite (SSZ-13, SAPO-18, and SAPO-34) Catalysts for the NH3-SCR Reaction: The Promoting Role of NH4-Form Zeolite Substrates. Appl. Surf. Sci. 2022, 571, 151328. [Google Scholar] [CrossRef]
- Khivantsev, K.; Kwak, J.-H.; Jaegers, N.R.; Koleva, I.Z.; Vayssilov, G.N.; Derewinski, M.A.; Wang, Y.; Aleksandrov, H.A.; Szanyi, J. Identification of the Mechanism of NO Reduction with Ammonia (SCR) on Zeolite Catalysts. Chem. Sci. 2022, 13, 10383–10394. [Google Scholar] [CrossRef]
- Chen, L.; Janssens, T.V.W.; Vennestrøm, P.N.R.; Jansson, J.; Skoglundh, M.; Grönbeck, H. A Complete Multisite Reaction Mechanism for Low-Temperature NH3-SCR over Cu-CHA. ACS Catal. 2020, 10, 5646–5656. [Google Scholar] [CrossRef]
- Bendrich, M.; Scheuer, A.; Hayes, R.E.; Votsmeier, M. Unified Mechanistic Model for Standard SCR, Fast SCR, and NO2 SCR over a Copper Chabazite Catalyst. Appl. Catal. B Environ. 2018, 222, 76–87. [Google Scholar] [CrossRef]
- Grossale, A.; Nova, I.; Tronconi, E.; Chatterjee, D.; Weibel, M. The Chemistry of the NO/NO2–NH3 “Fast” SCR Reaction over Fe-ZSM5 Investigated by Transient Reaction Analysis. J. Catal. 2008, 256, 312–322. [Google Scholar] [CrossRef]
- Negri, C.; Selleri, T.; Borfecchia, E.; Martini, A.; Lomachenko, K.A.; Janssens, T.V.W.; Cutini, M.; Bordiga, S.; Berlier, G. Structure and Reactivity of Oxygen-Bridged Diamino Dicopper(II) Complexes in Cu-Ion-Exchanged Chabazite Catalyst for NH3-Mediated Selective Catalytic Reduction. J. Am. Chem. Soc. 2020, 142, 15884–15896. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Mei, D.; Wang, Y.; Szanyi, J.; Peden, C.H.F. Selective Catalytic Reduction over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis. J. Am. Chem. Soc. 2017, 139, 4935–4942. [Google Scholar] [CrossRef]
- Paolucci, C.; Parekh, A.A.; Khurana, I.; Di Iorio, J.R.; Li, H.; Albarracin Caballero, J.D.; Shih, A.J.; Anggara, T.; Delgass, W.N.; Miller, J.T.; et al. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in Ssz-13 Zeolites. J. Am. Chem. Soc. 2016, 138, 6028–6048. [Google Scholar] [CrossRef]
- Krishna, S.H.; Goswami, A.; Wang, Y.; Jones, C.B.; Dean, D.P.; Miller, J.T.; Schneider, W.F.; Gounder, R. Influence of Framework Al Density in Chabazite Zeolites on Copper Ion Mobility and Reactivity during NOx Selective Catalytic Reduction with NH3. Nat. Catal. 2023 63 2023, 6, 276–285. [Google Scholar] [CrossRef]
- Paolucci, C.; Khurana, I.; Parekh, A.A.; Li, S.; Shih, A.J.; Li, H.; Di Iorio, J.R.; Albarracin-Caballero, J.D.; Yezerets, A.; Miller, J.T.; et al. Dynamic Multinuclear Sites Formed by Mobilized Copper Ions in NOx Selective Catalytic Reduction. Science 2017, 357, 898–903. [Google Scholar] [CrossRef]
- Oda, A.; Shionoya, H.; Hotta, Y.; Takewaki, T.; Sawabe, K.; Satsuma, A. Spectroscopic Evidence of Efficient Generation of Dicopper Intermediate in Selective Catalytic Reduction of NO over Cu-Ion-Exchanged Zeolites. ACS Catal. 2020, 10, 12333–12339. [Google Scholar] [CrossRef]
- Liu, C.; Kubota, H.; Amada, T.; Kon, K.; Toyao, T.; Maeno, Z.; Ueda, K.; Ohyama, J.; Satsuma, A.; Tanigawa, T.; et al. In Situ Spectroscopic Studies on the Redox Cycle of NH3−SCR over Cu−CHA Zeolites. ChemCatChem 2020, 12, 3050–3059. [Google Scholar] [CrossRef]
- Hu, W.; Selleri, T.; Gramigni, F.; Fenes, E.; Rout, K.R.; Liu, S.; Nova, I.; Chen, D.; Gao, X.; Tronconi, E. On the Redox Mechanism of Low-Temperature NH3-SCR over Cu-CHA: A Combined Experimental and Theoretical Study of the Reduction Half Cycle. Angew. Chemie Int. Ed. 2021, 60, 7197–7204. [Google Scholar] [CrossRef]
- Nielsen, D.; Gao, Q.; Janssens, T.V.W.; Vennestrøm, P.N.R.; Mossin, S. Cu-Speciation in Dehydrated CHA Zeolites Studied by H 2 -TPR and In Situ EPR. J. Phys. Chem. C 2023, 127, 12995–13004. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, W.; Ahn, S.H.; Wang, Y.; Walter, E.D.; Chen, Y.; Derewinski, M.A.; Washton, N.M.; Rappé, K.G.; Wang, Y.; et al. Interplay between Copper Redox and Transfer and Support Acidity and Topology in Low Temperature NH3-SCR. Nat. Commun. 2023, 14, 2633. [Google Scholar] [CrossRef] [PubMed]
- Göltl, F.; Sautet, P.; Hermans, I. The Impact of Finite Temperature on the Coordination of Cu Cations in the Zeolite SSZ-13. Catal. Today 2016, 267, 41–46. [Google Scholar] [CrossRef]
- Göltl, F.; Sautet, P.; Hermans, I. Can Dynamics Be Responsible for the Complex Multipeak Infrared Spectra of NO Adsorbed to Copper(II) Sites in Zeolites? Angew. Chem. Int. Ed. 2015, 54, 7799–7804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; McEwen, J.S.; Kollár, M.; Gao, F.; Wang, Y.; Szanyi, J.; Peden, C.H.F. NO Chemisorption on Cu/SSZ-13: A Comparative Study from Infrared Spectroscopy and DFT Calculations. ACS Catal. 2014, 4, 4093–4105. [Google Scholar] [CrossRef]
- Lee, H.; Song, I.; Jeon, S.W.; Kim, D.H. Mobility of Cu Ions in Cu-SSZ-13 Determines the Reactivity of Selective Catalytic Reduction of NOxwith NH3. J. Phys. Chem. Lett. 2021, 12, 3210–3216. [Google Scholar] [CrossRef]
- Godiksen, A.; Vennestrøm, P.N.R.; Rasmussen, S.B.; Mossin, S. Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy. Top. Catal. 2017, 60, 13–29. [Google Scholar] [CrossRef]
- Lei, H.; Rizzotto, V.; Guo, A.; Ye, D.; Simon, U.; Chen, P. Recent Understanding of Low-Temperature Copper Dynamics in Cu-Chabazite NH3-SCR Catalysts. Catalysts 2021, 11, 52. [Google Scholar] [CrossRef]
- Iacobone, U.; Nova, I.; Tronconi, E.; Villamaina, R.; Ruggeri, M.P.; Collier, J.; Thompsett, D. Appraising Multinuclear Cu2+ Structure Formation in Cu-CHA SCR Catalysts via Low-T Dry CO Oxidation with Modulated NH3 Solvation. ChemistryOpen 2022, 11, e202200186. [Google Scholar] [CrossRef]
- Chen, P.; Khetan, A.; Jabłońska, M.; Simböck, J.; Muhler, M.; Palkovits, R.; Pitsch, H.; Simon, U. Local Dynamics of Copper Active Sites in Zeolite Catalysts for Selective Catalytic Reduction of NOx with NH3. Appl. Catal. B Environ. 2018, 237, 263–272. [Google Scholar] [CrossRef]
- Chen, P.; Rizzotto, V.; Khetan, A.; Xie, K.; Moos, R.; Pitsch, H.; Ye, D.; Simon, U. Mechanistic Understanding of Cu-CHA Catalyst as Sensor for Direct NH 3 -SCR Monitoring: The Role of Cu Mobility. ACS Appl. Mater. Interfaces 2019, 11, 8097–8105. [Google Scholar] [CrossRef]
- Kwak, J.H.; Varga, T.; Peden, C.H.F.; Gao, F.; Hanson, J.C.; Szanyi, J. Following the Movement of Cu Ions in a SSZ-13 Zeolite during Dehydration, Reduction and Adsorption: A Combined in situ TP-XRD, XANES/DRIFTS Study. J. Catal. 2014, 314, 83–93. [Google Scholar] [CrossRef]
- Millan, R.; Cnudde, P.; Hoffman, A.E.J.; Lopes, C.W.; Concepcion, P.; Van Speybroeck, V.; Boronat, M. Theoretical and Spectroscopic Evidence of the Dynamic Nature of Copper Active Sites in Cu-CHA Catalysts under Selective Catalytic Reduction (NH3-SCR-NOx) Conditions. J. Phys. Chem. Lett. 2020, 11, 10060–10066. [Google Scholar] [CrossRef] [PubMed]
- Rizzotto, V.; Chen, P.; Simon, U. Mobility of NH3-Solvated CUII Ions in Cu-SSZ-13 and Cu-ZSM-5 NH3-SCR Catalysts: A Comparative Impedance Spectroscopy Study. Catalysts 2018, 8, 162. [Google Scholar] [CrossRef]
- Millan, R.; Cnudde, P.; van Speybroeck, V.; Boronat, M. Mobility and Reactivity of Cu + Species in Cu-CHA Catalysts under NH 3 -SCR-NOx Reaction Conditions: Insights from AIMD Simulations. JACS Au 2021, 1, 1778–1787. [Google Scholar] [CrossRef] [PubMed]
- Kocman, V.; Di Mauro, G.M.; Veglia, G.; Ramamoorthy, A. Use of Paramagnetic Systems to Speed-up NMR Data Acquisition and for Structural and Dynamic Studies. Solid State Nucl. Magn. Reson. 2019, 102, 36–46. [Google Scholar] [CrossRef]
- Pell, A.J.; Pintacuda, G.; Grey, C.P. Progress in Nuclear Magnetic Resonance Spectroscopy Paramagnetic NMR in Solution and the Solid State. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1–271. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Joos, J.J.; Smet, P.F.; der Günne, J.S.A. Blind Spheres of Paramagnetic Dopants in Solid State NMR. Phys. Chem. Chem. Phys. 2019, 21, 10185–10194. [Google Scholar] [CrossRef]
- Parigi, G.; Benda, L.; Ravera, E.; Romanelli, M.; Luchinat, C. Pseudocontact Shifts and Paramagnetic Susceptibility in Semiempirical and Quantum Chemistry Theories. J. Chem. Phys. 2019, 150, 144101. [Google Scholar] [CrossRef]
- Boddenberg, B.; Hartmann, M. Proton Magnetic Resonance of Cu(II) Ammonia Complexes in Zeolite Y. Z. Fur Phys. Chem. 1995, 189, 251–262. [Google Scholar] [CrossRef]
- Grey, C.P.; Vega, A.J. Determination of the Quadrupole Coupling Constant of the Invisible Aluminum Spins in Zeolite HY with 1H/27A1 TRAPDOR NMR. J. Am. Chem. Soc. 1995, 117, 8232–8242. [Google Scholar] [CrossRef]
- Vallaey, B.; Radhakrishnan, S.; Heylen, S.; Chandran, C.V.; Taulelle, F.; Breynaert, E.; Martens, J.A. Reversible Room Temperature Ammonia Gas Absorption in Pore Water of Microporous Silica-Alumina for Sensing Applications. Phys. Chem. Chem. Phys. 2018, 20, 13528–13536. [Google Scholar] [CrossRef] [PubMed]
- Hunger, M. Brønsted Acid Sites in Zeolites Characterized by Multinuclear Solid-State NMR Spectroscopy. Catal. Rev. Sci. Eng. 1997, 39, 345–393. [Google Scholar] [CrossRef]
- Haase, F.; Sauer, J. 1H NMR Chemical Shifts of Ammonia, Methanol, and Water Molecules Interacting with Brønsted Acid Sites of Zeolite Catalysts: Ab-Initio Calculations. J. Phys. Chem. 1994, 98, 3083–3085. [Google Scholar] [CrossRef]
- De Prins, M.; Verheyen, E.; Hoffmann, A.; Vanbutsele, G.; Sree, S.P.; Kerkhofs, S.; Van Tendeloo, L.; Schütze, F.W.; Martens, J. Structural Parameters Governing Low Temperature Activity of Small Pore Copper Zeolites in NH3-SCR. J. Catal. 2020, 390, 224–236. [Google Scholar] [CrossRef]
- De Prins, M.; Verheyen, E.; Kerkhofs, S.; Hoffmann, A.; Vanbutsele, G.; Sree, S.P.; Radhakrishnan, S.; Van Tendeloo, L.; Breynaert, E.; Kirschhock, C.E.A.; et al. EU-7 Zeolite: A Synthetic BIK Type Zeolite with High Hydrothermal Stability. Chem. Commun. 2018, 54, 5626–5629. [Google Scholar] [CrossRef]
- Hahn, E.L. Spin Echoes. Phys. Rev. 1950, 80, 580–594. [Google Scholar] [CrossRef]
- Feike, M.; Demco, D.E.; Graf, R.; Gottwald, J.; Hafner, S.; Spiess, H.W. Broadband Multiple-Quantum NMR Spectroscopy. J. Magn. Reson. Ser. A 1996, 122, 214–221. [Google Scholar] [CrossRef]
- Jeener, J.; Meier, B.H.; Bachmann, P.; Ernst, R.R. Investigation of Exchange Processes by Two-dimensional NMR Spectroscopy. J. Chem. Phys. 1979, 71, 4546–4553. [Google Scholar] [CrossRef]
- Bräuniger, T.; Wormald, P.; Hodgkinson, P. Improved Proton Decoupling in NMR Spectroscopy of Crystalline Solids Using the SPINAL-64 Sequence. Monatshefte Fur Chem. 2002, 133, 1549–1554. [Google Scholar] [CrossRef]
- Hoffmann, A.; De Prins, M.; Smet, S.; Sree, S.P.; Verheyen, E.; Martens, J.; Van Tendeloo, L.; Schütze, F.-W. Stable Small-Pore Zeolites. WO Patent 2019219629, 21 November 2019. [Google Scholar]
- Verheyen, E.; Sree, S.P.; Smet, S.; Hoffmann, A.; De Prins, M.; Martens, J.; Van Tendeloo, L.; Schütze, F.-W. Stable CHA Zeolites. WO Patent 2017080722A1, 18 May 2017. [Google Scholar]
- Martens, J.; Sree, S.P.; Kerkhofs, S.; Verheyen, E.; Schütze, F.-W. One-Pot Synthesis of Copper Containing Small-Pore Zeolites. U.S. Patent 10,486,145, 26 November 2019. [Google Scholar]
- Fickel, D.W.; Lobo, R.F. Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. J. Phys. Chem. B 2010, 114, 1633–1640. [Google Scholar] [CrossRef]
- Hrabanek, P.; Zikanova, A.; Supinkova, T.; Drahokoupil, J.; Fila, V.; Lhotka, M.; Dragounova, H.; Laufek, F.; Brabec, L.; Jirka, I.; et al. Static In-Situ Hydrothermal Synthesis of Small Pore Zeolite SSZ-16 (AFX) Using Heated and Pre-Aged Synthesis Mixtures. Microporous Mesoporous Mater. 2016, 228, 107–115. [Google Scholar] [CrossRef]
- Sree, S.P.; Verheyen, E.; De Prins, M.; Van Der Donck, T.; Van Tendeloo, L.; Schuetze, F.; Martens, J.A. Synthesis of a New Zeolite, Intergrowth of Erionite and Chabazite. ACS Mater. Lett. 2021, 3, 658–662. [Google Scholar] [CrossRef]
Exp. | NOx Conversion (µmol NOx g Catalyst−1 s−1) |
---|---|
1 | 4.2 |
2 | 4.6 |
3 | 4.4 |
4 | 4.4 |
5 | 4.4 |
6 | 4.4 |
7 | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radhakrishnan, S.; Smet, S.; Chandran, C.V.; Sree, S.P.; Duerinckx, K.; Vanbutsele, G.; Martens, J.A.; Breynaert, E. Prediction of Cu Zeolite NH3-SCR Activity from Variable Temperature 1H NMR Spectroscopy. Molecules 2023, 28, 6456. https://doi.org/10.3390/molecules28186456
Radhakrishnan S, Smet S, Chandran CV, Sree SP, Duerinckx K, Vanbutsele G, Martens JA, Breynaert E. Prediction of Cu Zeolite NH3-SCR Activity from Variable Temperature 1H NMR Spectroscopy. Molecules. 2023; 28(18):6456. https://doi.org/10.3390/molecules28186456
Chicago/Turabian StyleRadhakrishnan, Sambhu, Sam Smet, C. Vinod Chandran, Sreeprasanth Pulinthanathu Sree, Karel Duerinckx, Gina Vanbutsele, Johan A. Martens, and Eric Breynaert. 2023. "Prediction of Cu Zeolite NH3-SCR Activity from Variable Temperature 1H NMR Spectroscopy" Molecules 28, no. 18: 6456. https://doi.org/10.3390/molecules28186456
APA StyleRadhakrishnan, S., Smet, S., Chandran, C. V., Sree, S. P., Duerinckx, K., Vanbutsele, G., Martens, J. A., & Breynaert, E. (2023). Prediction of Cu Zeolite NH3-SCR Activity from Variable Temperature 1H NMR Spectroscopy. Molecules, 28(18), 6456. https://doi.org/10.3390/molecules28186456