Removal of Hexamethyldisiloxane via a Novel Hydrophobic (3–Aminopropyl)Trimethoxysilane-Modified Activated Porous Carbon
Abstract
:1. Introduction
2. Results and Discussion
2.1. Basic Characterization of APC and APTMS@APC–0.125
2.2. Effect of APTMS on Textural Properties and Hydrophobicity
2.3. Effect of APCs on Dynamic Adsorption Performance
2.4. Effect of Solvents on Adsorption
2.5. Effect of Process Conditions on Adsorption
2.6. Assessment of Regeneration Capacity
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of APCs
3.2.1. APC Preparation
3.2.2. APTMS@APC–x Preparation
3.3. Characterization
3.4. Dynamic Adsorption Tests of L2
3.5. Regeneration of Spent APCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rucker, C.; Kummerer, K. Environmental chemistry of organosiloxanes. Chem. Rev. 2015, 115, 466–524. [Google Scholar] [CrossRef] [PubMed]
- Bak, C.U.; Lim, C.J.; Kim, Y.D.; Kim, W.S. Multi–stage adsorptive purification process for improving desulfurization performance of biogas. Sep. Purif. Technol. 2019, 227, 115702. [Google Scholar] [CrossRef]
- Vali, S.A.; Moral-Vico, J.; Font, X.; Sánchez, A. Adsorptive removal of siloxanes from biogas: Recent advances in catalyst reusability and water content effect. Biomass Convers. Biorefin. 2023, 1–15. [Google Scholar] [CrossRef]
- Ajhar, M.; Travesset, M.; Yüce, S.; Melin, T. Siloxane removal from landfill and digester gas—A technology overview. Bioresour. Technol. 2010, 101, 2913–2923. [Google Scholar] [CrossRef] [PubMed]
- Bletsou, A.A.; Asimakopoulos, A.G.; Stasinakis, A.S.; Thomaidis, N.S.; Kannan, K. Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in greece. Environ. Sci. Technol. 2013, 47, 1824–1832. [Google Scholar] [CrossRef]
- Pascual, C.; Cantera, S.; Lebrero, R. Volatile siloxanes emissions: Impact and sustainable abatement perspectives. Trends Biotechnol. 2021, 39, 1245–1248. [Google Scholar] [CrossRef] [PubMed]
- Chuah, C.Y.; Goh, K.; Yang, Y.; Gong, H.; Li, W.; Karahan, H.E.; Guiver, M.D.; Wang, R.; Bae, T.H. Harnessing filler materials for enhancing biogas separation membranes. Chem. Rev. 2018, 118, 8655–8769. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zhang, Y.; Hu, D.; Fan, J.; Zeng, G. A review on removal of siloxanes from biogas: With a special focus on volatile methylsiloxanes. Environ. Sci. Pollut. Res. Int. 2018, 25, 30847–30862. [Google Scholar] [CrossRef]
- Bernardo, F.; Gonzalez-Hernandez, P.; Ratola, N.; Pino, V.; Alves, A.; Homem, V. Using design of experiments to optimize a screening analytical methodology based on solid–phase microextraction/gas chromatography for the determination of volatile methylsiloxanes in water. Molecules 2021, 26, 3429. [Google Scholar] [CrossRef]
- Piechota, G. Siloxanes in biogas: Approaches of sampling procedure and GC–MS method determination. Molecules 2021, 26, 1953. [Google Scholar] [CrossRef]
- Piechota, G. Removal of siloxanes from biogas upgraded to biomethane by Cryogenic Temperature Condensation System. J. Clean. Prod. 2021, 308, 127404. [Google Scholar] [CrossRef]
- Urban, W.; Lohmann, H.; Gómez, J.I.S. Catalytically upgraded landfill gas as a cost–effective alternative for fuel cells. J. Power Sources 2009, 193, 359–366. [Google Scholar] [CrossRef]
- Molino, G.; Gandiglio, M.; Fiorilli, S.; Lanzini, A.; Drago, D.; Papurello, D. Design and performance of an adsorption bed with activated carbons for biogas purification. Molecules 2022, 27, 7882. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Ma, X.; Fu, Q.; Zheng, Y.; Ma, Z. Removal of hexamethyldisiloxane by NaOH–activated porous carbons produced from coconut shells. Catalysts 2023, 13, 918. [Google Scholar] [CrossRef]
- Hou, X.; Zheng, Y.; Lv, S.; Ma, Z.; Ma, X. Effective removal of hexamethyldisiloxane using a citric acid modified three–dimensional graphene aerogel. Renew. Energy 2022, 199, 62–70. [Google Scholar] [CrossRef]
- Haider, J.; Qyyum, M.A.; Riaz, A.; Naquash, A.; Kazmi, B.; Yasin, M.; Nizami, A.-S.; Byun, M.; Lee, M.; Lim, H. State—of—the—art process simulations and techno—economic assessments of ionic liquid—based biogas upgrading techniques: Challenges and prospects. Fuel 2022, 314, 123064. [Google Scholar] [CrossRef]
- Yu, M.; Gong, H.; Chen, Z.; Zhang, M. Adsorption characteristics of activated carbon for siloxanes. J. Environ. Chem. Eng. 2013, 1, 1182–1187. [Google Scholar] [CrossRef]
- Bekhoukh, A.; Kiari, M.; Moulefera, I.; Sabantina, L.; Benyoucef, A. New hybrid adsorbents based on polyaniline and polypyrrole with silicon dioxide: Synthesis, characterization, kinetics, equilibrium, and thermodynamic studies for the removal of 2,4-Dichlorophenol. Polymers 2023, 15, 2032. [Google Scholar] [CrossRef] [PubMed]
- Santos-Clotas, E.; Cabrera-Codony, A.; Ruiz, B.; Fuente, E.; Martín, M.J. Sewage biogas efficient purification by means of lignocellulosic waste-based activated carbons. Bioresour. Technol. 2019, 275, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.-Y.; Liu, Y.-H.; Ma, Z.-C.; Hou, X.-F. The regulation of micro/mesoporous silica gel by polyethylene imine for enhancing the siloxane removal. Inorg. Chem. Commun. 2020, 112, 107754. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, Y.; Li, X.; Ma, Z. Removal of siloxane (L2) from biogas using methyl–functionalised silica gel as adsorbent. Chem. Eng. J. 2020, 389, 124440. [Google Scholar] [CrossRef]
- Jiang, T.; Zhong, W.; Jafari, T.; Du, S.; He, J.; Fu, Y.-J.; Singh, P.; Suib, S.L. Siloxane D4 adsorption by mesoporous aluminosilicates. Chem. Eng. J. 2016, 289, 356–364. [Google Scholar] [CrossRef]
- Jung, H.; Lee, D.-Y.; Jurng, J. Low-temperature regeneration of novel polymeric adsorbent on decamethylcyclopentasiloxane (D5) removal for cost-effective purification of biogases from siloxane. Renew. Energy 2017, 111, 718–723. [Google Scholar] [CrossRef]
- Zheng, Y.; Hou, X.; Liu, Y.; Ma, Z. Hexamethyldisiloxane removal from biogas using reduced graphene-oxide aerogels as adsorbents. Renew. Energy 2021, 178, 153–161. [Google Scholar] [CrossRef]
- Gargiulo, N.; Peluso, A.; Aprea, P.; Marino, O.; Cioffi, R.; Jannelli, E.; Cimino, S.; Lisi, L.; Caputo, D. Chromium-based MIL-101 metal organic framework as a fully regenerable D4 adsorbent for biogas purification. Renew. Energy 2019, 138, 230–235. [Google Scholar] [CrossRef]
- Tran, V.T.L.; Gélin, P.; Ferronato, C.; Fine, L.; Chovelon, J.M.; Postole, G. Exploring the potential of infrared spectroscopy on the study of the adsorption/desorption of siloxanes for biogas purification. Catal. Today 2018, 306, 191–198. [Google Scholar] [CrossRef]
- Cabrera-Codony, A.; Santos-Clotas, E.; Ania, C.O.; Martín, M.J. Competitive siloxane adsorption in multicomponent gas streams for biogas upgrading. Chem. Eng. J. 2018, 344, 565–573. [Google Scholar] [CrossRef]
- Song, T.; Tian, W.; Qiao, K.; Zhao, J.; Chu, M.; Du, Z.; Wang, L.; Xie, W. Adsorption behaviors of polycyclic aromatic hydrocarbons and oxygen derivatives in wastewater on N–doped reduced graphene oxide. Sep. Purif. Technol. 2021, 254, 117565. [Google Scholar] [CrossRef]
- Hou, X.; Zheng, Y.; Ma, X.; Liu, Y.; Ma, Z. The effects of hydrophobicity and textural properties on hexamethyldisiloxane adsorption in reduced graphene oxide aerogels. Molecules 2021, 26, 1130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jiang, C.; Li, D.; Lei, Y.; Yao, H.; Zhou, G.; Wang, K.; Rao, Y.; Liu, W.; Xu, C.; et al. Micro-mesoporous activated carbon simultaneously possessing large surface area and ultra-high pore volume for efficiently adsorbing various VOCs. Carbon 2020, 170, 567–579. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, Y.; Li, D.; Zhao, J.; Wang, Y.; Zhou, G.; Yan, C.; He, Q. Sudden heating of H3PO4-loaded coconut shell in CO2 flow to produce super activated carbon and its application for benzene adsorption. Renew. Energy 2020, 153, 1091–1099. [Google Scholar] [CrossRef]
- Liu, H.B.; Yang, B.; Xue, N.D. Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume. J. Hazard. Mater. 2016, 318, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Muslimov, A.E.; Gadzhiev, M.K.; Kanevsky, V.M. Synthesis of superhydrophobic barium hexaferrite coatings with low magnetic hardness. Materials 2022, 15, 7865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Sun, P.; Faye, M.C.A.S.; Zhang, Y. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. Carbon 2018, 130, 730–740. [Google Scholar] [CrossRef]
- Zhang, J.; Song, H.; Chen, Y.; Hao, T.; Li, F.; Yuan, D.; Wang, X.; Zhao, L.; Gao, J. Study on the preparation of amine-modified silicate MCM-41 adsorbent and its H2S removal performance. Prog. React. Kinet. Mech. 2019, 45, 1–13. [Google Scholar] [CrossRef]
- Hosseinzehi, M.; Ehrampoush, M.H.; Tamaddon, F.; Mokhtari, M.; Dalvand, A. Eco-environmental preparation of magnetic activated carbon modified with 3-aminopropyltrimethoxysilane (APTMS) from sawdust waste as a novel efficient adsorbent for humic acid removal: Characterisation, modelling, optimisation and equilibrium studies. Int. J. Environ. Anal. Chem. 2021, 1–21. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Zhang, J.; Zheng, Y.; Zhang, H.; Liu, J.; Cui, Y. Fabrication of hydrophobic regenerated activated carbon with high specific surface area. J. Mater. Sci. 2021, 56, 19969–19982. [Google Scholar] [CrossRef]
- Song, D.; Cho, E.-C.; Cho, Y.-H.; Conibeer, G.; Huang, Y.; Huang, S.; Green, M.A. Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix. Thin Solid Films 2008, 516, 3824–3830. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Shao, Q.; Wang, G. Physicochemical properties evolution of chars from palm kernel shell pyrolysis. J. Therm. Anal. Calorim. 2018, 133, 1271–1280. [Google Scholar] [CrossRef]
- Tao, W.; Duan, W.; Liu, C.; Zhu, D.; Si, X.; Zhu, R.; Oleszczuk, P.; Pan, B. Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics. Sci. Total Environ. 2020, 715, 136575. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, J.; Zeng, Q.; Liang, Z.; Ye, X.; Lv, Y.; Liu, M. Preparation of Eucommia ulmoides lignin-based high-performance biochar containing sulfonic group: Synergistic pyrolysis mechanism and tetracycline hydrochloride adsorption. Bioresour. Technol. 2021, 329, 124856. [Google Scholar] [CrossRef]
- Cosnier, F.; Celzard, A.; Furdin, G.; Bégin, D.; Marêché, J.F.; Barrès, O. Hydrophobisation of active carbon surface and effect on the adsorption of water. Carbon 2005, 43, 2554–2563. [Google Scholar] [CrossRef]
- Kim, K.-D.; Park, E.J.; Seo, H.O.; Jeong, M.-G.; Kim, Y.D.; Lim, D.C. Effect of thin hydrophobic films for toluene adsorption and desorption behavior on activated carbon fiber under dry and humid conditions. Chem. Eng. J. 2012, 200, 133–139. [Google Scholar] [CrossRef]
- Fang, J.; Gu, Z.; Gang, D.; Liu, C.; Ilton, E.S.; Deng, B. Cr(VI) removal from aqueous solution by activated carbon coated with quaternized poly(4-vinylpyridine). Environ. Sci. Technol. 2007, 41, 4748–4753. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Lai, D.; Xing, Z.; Liu, X.; Wang, Y. Strengthened removal of emerging contaminants over S/Fe codoped activated carbon fabricated by a mild one-step thermal transformation scheme. Chemosphere 2023, 310, 136897. [Google Scholar] [CrossRef] [PubMed]
- Jakša, G.; Štefane, B.; Kovač, J. Influence of different solvents on the morphology of APTMS-modified silicon surfaces. Appl. Surf. Sci. 2014, 315, 516–522. [Google Scholar] [CrossRef]
- Cabrera-Codony, A.; Gonzalez-Olmos, R.; Martin, M.J. Regeneration of siloxane-exhausted activated carbon by advanced oxidation processes. J. Hazard. Mater. 2015, 285, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Finocchio, E.; Montanari, T.; Garuti, G.; Pistarino, C.; Federici, F.; Cugino, M.; Busca, G. Purification of biogases from siloxanes by adsorption: On the regenerability of activated carbon sorbents. Energy Fuel 2009, 23, 4156–4159. [Google Scholar] [CrossRef]
- Gislon, P.; Galli, S.; Monteleone, G. Siloxanes removal from biogas by high surface area adsorbents. Waste Manag. 2013, 33, 2687–2693. [Google Scholar] [CrossRef] [PubMed]
Samples | SBET/m2 g−1 | Vtot/cm3 g−1 | Vmeso/cm3 g−1 a | Vmicro/cm3 g−1 | Daver/nm | CA/° |
---|---|---|---|---|---|---|
APC | 981 | 0.71 | 0.34 | 0.37 | 1.44 | 74.3 |
APTMS@APC–0.0625 | 1208 | 0.86 | 0.47 | 0.39 | 1.43 | 115.6 |
APTMS@APC–0.125 | 1274 | 0.88 | 0.47 | 0.41 | 1.37 | 127.1 |
APTMS@APC–0.25 | 1243 | 0.86 | 0.48 | 0.38 | 1.39 | 121.5 |
APTMS@APC–0.5 | 1206 | 0.83 | 0.44 | 0.39 | 1.39 | 116.3 |
APTMS@APC–1 | 1081 | 0.76 | 0.40 | 0.36 | 1.41 | 109.4 |
Adsorbents | Experimental | Dose–Response Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
tB/ min | QB/ mg g−1 | Qm/ mg g−1 | tB,th/ min | QB,th/ mg g−1 | Qm,th/ mg g−1 | q0 | a | R2 | Standard Deviation | |
APC | 24.25 | 200.7 | 223.2 | 24.83 | 207.2 | 223.2 | 0.2233 | 41.24 | 0.9987 | 0.01340 |
APTMS@APC–0.0625 | 38.88 | 322.8 | 356.3 | 38.19 | 320.0 | 357.6 | 0.3553 | 28.12 | 0.9984 | 0.01359 |
APTMS@APC–0.125 | 44.08 | 361.8 | 385.4 | 43.29 | 360.1 | 380.4 | 0.3822 | 55.57 | 0.9957 | 0.02024 |
APTMS@APC–0.25 | 41.96 | 346.9 | 375.9 | 41.00 | 342.8 | 374.3 | 0.3734 | 35.23 | 0.9978 | 0.01564 |
APTMS@APC–0.5 | 39.65 | 326.1 | 353.4 | 39.32 | 327.0 | 356.9 | 0.3580 | 35.12 | 0.9991 | 0.01021 |
APTMS@APC–1 | 36.18 | 299.5 | 332.8 | 35.18 | 293.7 | 323.5 | 0.3233 | 32.27 | 0.9954 | 0.02250 |
Term | Value | tB,th/ min | QB,th/ mg g−1 | Qm,th/ mg g−1 | q0 | a | R2 | Standard Deviation |
---|---|---|---|---|---|---|---|---|
T/°C | 0 | 58.42 | 480.3 | 529.4 | 0.5372 | 31.74 | 0.9977 | 0.01409 |
10 | 49.08 | 402.1 | 440.2 | 0.4484 | 33.74 | 0.9967 | 0.02017 | |
25 | 43.29 | 360.1 | 380.4 | 0.3822 | 55.57 | 0.9958 | 0.02024 | |
40 | 42.15 | 346.0 | 385.5 | 0.3916 | 28.87 | 0.9993 | 0.00861 | |
50 | 40.25 | 329.7 | 355.4 | 0.3626 | 40.96 | 0.9978 | 0.01665 | |
Cin/mg L−1 | 83.82 | 43.29 | 360.1 | 380.4 | 0.3822 | 55.57 | 0.9958 | 0.02024 |
65.08 | 53.19 | 338.4 | 376.2 | 0.4932 | 29.09 | 0.9975 | 0.01703 | |
47.36 | 75.00 | 333.5 | 359.4 | 0.6471 | 42.04 | 0.9932 | 0.02854 | |
38.28 | 85.07 | 320.5 | 341.6 | 0.7568 | 48.86 | 0.9977 | 0.01334 | |
31.04 | 100.40 | 307.0 | 330.3 | 0.9010 | 42.82 | 0.9995 | 0.00680 |
Adsorbent | Adsorbed Gas | Qm, mg g−1 | Regeneration Method | Qm, mg g−1 a | Reference |
---|---|---|---|---|---|
AC | D4 | 526 | Oxidation with H2O2 and O3 | 210.4 | [47] |
AC | D3 | 60 | Heating at 100–200 °C | 30 | [48] |
AC | L2 | 100 | Four-step heating treatment at 160 °C | 70–80 | [49] |
rGOA–200 | L2 | 32 | Heating at 80 °C | 32 | [29] |
APTMS@APC–0.125 | L2 | 380.4 | Heating at 100 °C | 253.3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, S.; Wang, Y.; Zheng, Y.; Ma, Z. Removal of Hexamethyldisiloxane via a Novel Hydrophobic (3–Aminopropyl)Trimethoxysilane-Modified Activated Porous Carbon. Molecules 2023, 28, 6493. https://doi.org/10.3390/molecules28186493
Lv S, Wang Y, Zheng Y, Ma Z. Removal of Hexamethyldisiloxane via a Novel Hydrophobic (3–Aminopropyl)Trimethoxysilane-Modified Activated Porous Carbon. Molecules. 2023; 28(18):6493. https://doi.org/10.3390/molecules28186493
Chicago/Turabian StyleLv, Siqi, Yingrun Wang, Yanhui Zheng, and Zichuan Ma. 2023. "Removal of Hexamethyldisiloxane via a Novel Hydrophobic (3–Aminopropyl)Trimethoxysilane-Modified Activated Porous Carbon" Molecules 28, no. 18: 6493. https://doi.org/10.3390/molecules28186493
APA StyleLv, S., Wang, Y., Zheng, Y., & Ma, Z. (2023). Removal of Hexamethyldisiloxane via a Novel Hydrophobic (3–Aminopropyl)Trimethoxysilane-Modified Activated Porous Carbon. Molecules, 28(18), 6493. https://doi.org/10.3390/molecules28186493