A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer–Tropsch Synthesis over Transition Metals
Abstract
:1. Introduction
2. Cobalt-Based Catalysts
2.1. Cobalt
Species | E (eV) on Flat Surface | E (eV) on Stepped Surface | a | b | b | b | Co (111) b | Co (100) b | Co (311) b | Co (110) b | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 6.92 c, 6.71(5.61) d, 6.83 e, 6.46 f, 6.62 g, 6.54 h | 7.44 f, 7.53 g, 7.32 h | 7.09 a, 7.22 b,e | 7.43 | 8.15 | 7.81 a, 7.85 b,e | 7.07 | 7.55 | 6.80 | 8.01 | 7.69 | 7.25 |
O | 5.97 c, 5.89(5.72) i, 5.43(4.34) d, 5.65 e, 5.34 f | 5.59 f | 5.44 a, 5.63 b,e | 5.79 | 6.06 | 5.97 a, 6.04 b,e | 5.70 | 5.85 | 5.61 | 5.99 | 5.74 | 5.50 |
H | 2.90 c, 2.85(2.61) i, 2.88(2.29) d, 2.78 e, 2.72 f, 2.94 g, 2.85(2.60) j | 2.74 f, 2.90 g | 2.66 e | - | 0.58 | 0.47 b, 2.73 e | - | 0.52 | - | 0.44 | 0.49 | 0.43 |
CO | 1.81 c, 1.72(1.68) i, 1.88(0.78) d, 1.64 e, 1.66 f, 1.66 a, 1.77 k, 1.70(1.67) j | 1.90 f, 1.42 k | 1.65 a, 1.65 b,e | 1.71 | 1.85 | 1.70 a, 1.77 b,e | 1.70 | 1.82 | 1.61 | 1.71 | 1.71 | 1.61 |
CH | 6.46 c, 6.43(6.22)9, 6.31(5.48) d, 6.30 e, 5.99 g, 6.54 h, 6.72(6.51) j | 6.33 g, 6.88 h | 6.47 e | - | 7.02 | 6.84 b,e | - | 6.37 | - | 4.68 | 6.56 | 6.37 |
HCO | 2.22 c, 2.24(0.37) d, 2.14 e, 2.20 a, 2.17(1.93) j | 2.82 l | 2.56 e | - | 2.67 | 2.97 b,e | - | 2.40 | - | 2.80 | 2.68 | 2.54 |
No. | Elementary Steps | Co (0001) | Stepped Co (0001) | Other |
---|---|---|---|---|
1 | CO → C + O | 3.80 a, 2.28 c, 2.82 e, 2.79 (4.11) g, 3.37 m 2.40 h, 2.70 i, 2.46 k | 1.20 d, 1.61 i | 0.70 () b, 2.02 (), 1.27 (), 0.92 () h1.34 () k, 1.39 () k, 1.07 () l, 1.21 () l, 1.79 () l, 2.48 (111) l, 1.56 (311) l, 1.47 (110) i |
2 | CO + H → COH | 1.30 a, 1.80 f, 1.55 m | 2.29 d, 1.46 f | |
3 | COH → C + OH | 3.26 a, 2.68 m | ||
4 | COH + H → HCOH | 0.46 a, 0.85 f | 0.77 f | |
5 | CO + H → HCO | 1.43 a, 1.51 c, 1.31 e, 1.31 f, 1.18 k, 1.25 m | 0.09 d, 0.77 f | 0.61 () b, 0.95 () k, 1.13 () k, l,0.59 () l, 0.63 () l, 0.76 (311) l, 0.71 (110) l, 1.07 (100) i |
6 | HCO → CH + O | 0.95 a, 0.93 c, 1.00 e, 0.73 k, 0.90 m | 1.36 d | 0.52 () b, 0.72 () k, 1.04 () k,l, 0.59 () l, 0.63 () l, 0.76 (311) l, 0.71 (110) l, 1.07 (100) l |
7 | HCO + H → HCOH | 0.93 a, 1.23 f, 0.80 m | 1.59 f | |
8 | HCOH → CH + OH | 1.10 a, 0.73 m | ||
9 | HCOH + H → CH2OH | 0.82 f, 0.71 m | 0.43 f | |
10 | HCO + H → CH2O | 0.15 a, 0.62 c, 0.45 e, 0.55 f, 0.24 m | 0.61 d, 0.71 f | |
11 | CH2O → CH2 + O | 1.63 a, 0.70 c, 0.85 e, 0.95 f, 0.95 m | 1.22 d, 0.85 f | |
12 | CH2O + H → CH2OH | 1.27 f, 1.20 m | 1.34 f | |
13 | CH2OH → CH2 + OH | 0.83 m | ||
14 | CH2OH + H → CH3OH | 0.98 f | 0.82 f | |
15 | CH2O + H → CH3O | 0.86 f | 0.45 f | |
16 | CH3O + H → CH3OH | 1.45 f | 1.24 f | |
17 | CH3OH → CH3 + OH | 1.47 f | 1.07 f | |
18 | CH3CHO → CH3CH + O | 0.52 c, 0.63 (0.73) j |
2.2. Cobalt-Promoted Catalysts
2.3. Cobalt Carbide
2.4. Bimetallic
3. Non-Cobalt Catalysts
3.1. Iron
3.2. Nickel
3.3. Ruthenium
3.4. Rhodium
3.5. Bimetallic
4. Summary
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, S.-T.; Yan, H.; Wei, M.; Evans, D.G.; Duan, X. Hydrogenation mechanism of carbon dioxide and carbon monoxide on Ru(0001) surface: A density functional theory study. RSC Adv. 2014, 4, 30241–30249. [Google Scholar] [CrossRef]
- Mirwald, J.W.; Inderwildi, O.R. Unraveling the Fischer–Tropsch mechanism: A combined DFT and microkinetic investigation of C–C bond formation on Ru. Phys. Chem. Chem. Phys. 2012, 14, 7028–7031. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-P.; Liu, S.J.-X.; Li, W.-X. Carbon Monoxide Activation on Cobalt Carbide for Fischer–Tropsch Synthesis from First-Principles Theory. ACS Catal. 2019, 9, 8093–8103. [Google Scholar] [CrossRef]
- Voss, G.J.B.; Fløystad, J.B.; Voronov, A.; Rønning, M. The State of Nickel as Promotor in Cobalt Fischer–Tropsch Synthesis Catalysts. Top. Catal. 2015, 58, 896–904. [Google Scholar] [CrossRef]
- Ashwell, A.P.; Lin, W.; Hofman, M.S.; Yang, Y.; Ratner, M.A.; Koel, B.E.; Schatz, G.C. Hydrogenation of CO to Methanol on Ni(110) through Subsurface Hydrogen. J. Am. Chem. Soc. 2017, 139, 17582–17589. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Yang, J.; Chen, D.; Holmen, A. Recent Progresses in Understanding of Co-Based Fischer–Tropsch Catalysis by Means of Transient Kinetic Studies and Theoretical Analysis. Catal. Lett. 2015, 145, 145–161. [Google Scholar] [CrossRef]
- Yang, J.; Qi, Y.; Zhu, J.; Zhu, Y.-A.; Chen, D.; Holmen, A. Reaction mechanism of CO activation and methane formation on Co Fischer–Tropsch catalyst: A combined DFT, transient, and steady-state kinetic modeling. J. Catal. 2013, 308, 37–49. [Google Scholar] [CrossRef]
- Tan, K.F.; Xu, J.; Chang, J.; Borgna, A.; Saeys, M. Carbon deposition on Co catalysts during Fischer–Tropsch synthesis: A computational and experimental study. J. Catal. 2010, 274, 121–129. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C.M. Density Functional Theory Study of Iron and Cobalt Carbides for Fischer−Tropsch Synthesis. J. Phys. Chem. C 2010, 114, 1085–1093. [Google Scholar] [CrossRef]
- Williams, H.; Gnanamani, M.K.; Jacobs, G.; Shafer, W.D.; Coulliette, D. Fischer–Tropsch Synthesis: Computational Sensitivity Modeling for Series of Cobalt Catalysts. Catalysts 2019, 9, 857. [Google Scholar] [CrossRef]
- Lu, W.; Wang, J.; Ma, Z.; Chen, C.; Liu, Y.; Hou, B.; Li, D.; Wang, B. Classifying and understanding the role of carbon deposits on cobalt catalyst for Fischer-Tropsch synthesis. Fuel 2023, 332, 126115. [Google Scholar] [CrossRef]
- Cheng, J.; Gong, X.-Q.; Hu, P.; Lok, C.M.; Ellis, P.; French, S. A quantitative determination of reaction mechanisms from density functional theory calculations: Fischer–Tropsch synthesis on flat and stepped cobalt surfaces. J. Catal. 2008, 254, 285–295. [Google Scholar] [CrossRef]
- Santos-Carballal, D.; Cadi-Essadek, A.; de Leeuw, N.H. Catalytic Conversion of CO and H2 into Hydrocarbons on the Cobalt Co(111) Surface: Implications for the Fischer–Tropsch Process. J. Phys. Chem. C 2021, 125, 11891–11903. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Q.; Wang, G.; Hou, B.; Jia, L.; Li, D. Mechanistic Insight into the C2 Hydrocarbons Formation from Syngas on fcc-Co(111) Surface: A DFT Study. J. Phys. Chem. C 2016, 120, 9132–9147. [Google Scholar] [CrossRef]
- Nippes, R.P.; Macruz, P.D.; Scaliante, M.H.N.O.; Cardozo-Filho, L. Fischer–Tropsch synthesis using cobalt catalysts supported on graphene materials: A systematic review. Res. Chem. Intermed. 2023, 49, 2025–2052. [Google Scholar] [CrossRef]
- Dry, E.M. The Fischer–Tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241. [Google Scholar] [CrossRef]
- Pichler, V.H.; Schulz, H. Neuere Erkenntnisse Auf Dem Gebiet Der Synthese. Chem. Ing. Tech. 1970, 42, 1162–1174. [Google Scholar] [CrossRef]
- Su, H.-Y.; Zhao, Y.; Liu, J.-X.; Sun, K.; Li, W.-X. First-principles study of structure sensitivity of chain growth and selectivity in Fischer–Tropsch synthesis using HCP cobalt catalysts. Catal. Sci. Technol. 2017, 7, 2967–2977. [Google Scholar] [CrossRef]
- Zhang, M.; Chi, S.; Huang, H.; Yu, Y. Mechanism insight into MnO for CO activation and O removal processes on Co(0001) surface: A DFT and kMC study. Appl. Surf. Sci. 2021, 567, 150854. [Google Scholar] [CrossRef]
- Petersen, M.A.; Berg, J.-A.v.D.; Ciobîcă, I.M.; van Helden, P. Revisiting CO Activation on Co Catalysts: Impact of Step and Kink Sites from DFT. ACS Catal. 2017, 7, 1984–1992. [Google Scholar] [CrossRef]
- Liu, J.X.; Su, H.Y.; Li, W.X. Structure Sensitivity of CO Methanation on Co (0001), (102) and (110) Surfaces: Density Functional Theory Calculations. Catal. Today 2013, 215, 36–42. [Google Scholar] [CrossRef]
- Ishihara, T.; Eguchi, K.; Arai, H. Hydrogenation of carbon monoxide over SiO2-supported Fe-Co, Co-Ni and Ni-Fe bimetallic catalysts. Appl. Catal. 1987, 30, 225–238. [Google Scholar] [CrossRef]
- Ishihara, T.; Horiuchi, N.; Inoue, T.; Eguchi, K.; Takita, Y.; Arai, H. Effect of Alloying on CO Hydrogenation Activity over SiO2-Supported Co Ni Alloy Catalysts. J. Catal. 1992, 136, 232–241. [Google Scholar] [CrossRef]
- Borji, F.; Pour, A.N.; Karimi, J.; Izadyar, M.; Keyvanloo, Z.; Hashemian, M. The Molecular Adsorption of Carbon Monoxide on Cobalt Surfaces: A Dft Study. Prog. React. Kinet. Mech. 2017, 42, 89–98. [Google Scholar] [CrossRef]
- Schweicher, J.; Bundhoo, A.; Frennet, A.; Kruse, N.; Daly, H.; Meunier, F.C. DRIFTS/MS Studies during Chemical Transients and SSITKA of the CO/H2 Reaction over Co-MgO Catalysts. J. Phys. Chem. C 2010, 114, 2248–2255. [Google Scholar] [CrossRef]
- Liu, J.-X.; Wang, P.; Xu, W.; Hensen, E.J. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts. Engineering 2017, 3, 467–476. [Google Scholar] [CrossRef]
- Tominaga, H.; Aoki, Y.; Nagai, M. Hydrogenation of CO on molybdenum and cobalt molybdenum carbides. Appl. Catal. A Gen. 2012, 423–424, 192–204. [Google Scholar] [CrossRef]
- Schulz, H. Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A Gen. 1999, 186, 3–12. [Google Scholar] [CrossRef]
- van Helden, P.; Prinsloo, F.; van den Berg, J.-A.; Xaba, B.; Erasmus, W.; Claeys, M.; van de Loosdrecht, J. Cobalt-nickel bimetallic Fischer-Tropsch catalysts: A combined theoretical and experimental approach. Catal. Today 2020, 342, 88–98. [Google Scholar] [CrossRef]
- Pedersen, E.Ø.; Svenum, I.-H.; Blekkan, A. Mn promoted Co catalysts for Fischer-Tropsch production of light olefins—An experimental and theoretical study. J. Catal. 2018, 361, 23–32. [Google Scholar] [CrossRef]
- Yao, Z.; Guo, C.; Mao, Y.; Hu, P. Quantitative Determination of C–C Coupling Mechanisms and Detailed Analyses on the Activity and Selectivity for Fischer–Tropsch Synthesis on Co(0001): Microkinetic Modeling with Coverage Effects. ACS Catal. 2019, 9, 5957–5973. [Google Scholar] [CrossRef]
- Liao, K.; Fiorin, V.; Gunn, D.S.D.; Jenkins, S.J.; King, D.A. Single-crystal adsorption calorimetry and density functional theory of CO chemisorption on fcc Co{110}. Phys. Chem. Chem. Phys. 2013, 15, 4059–4065. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, J.; Holmen, A.; Chen, D. Investigation of C1 + C1 Coupling Reactions in Cobalt-Catalyzed Fischer-Tropsch Synthesis by a Combined DFT and Kinetic Isotope Study. Catalysts 2019, 9, 551. [Google Scholar] [CrossRef]
- Shen, W.-J.; Ichihashi, Y.; Matsumura, Y. A Comparative Study of Palladium and Copper Catalysts in Methanol Synthesis. Catal. Lett. 2002, 79, 125–127. [Google Scholar] [CrossRef]
- Valero, M.C.; Raybaud, P. Cobalt Catalyzed Fischer–Tropsch Synthesis: Perspectives Opened by First Principles Calculations. Catal. Lett. 2013, 143, 1–17. [Google Scholar] [CrossRef]
- Wolf, M.; Fischer, N.; Claeys, M. Formation of metal-support compounds in cobalt-based Fischer-Tropsch synthesis: A review. Chem Catal. 2021, 1, 1014–1041. [Google Scholar] [CrossRef]
- Anderson, R.B. Forty Years With The Fischer-Tropsch Synthesis 1944–1984. Stud. Surf. Sci. Catal. 1984, 19, 457–461. [Google Scholar] [CrossRef]
- Ishihara, T.; Eguchi, K.; Arai, H. Supported iron—Cobalt—Nickel ternary alloy catalysts for the hydrogenation of carbon monoxide. Appl. Catal. 1988, 40, 87–100. [Google Scholar] [CrossRef]
- Rytter, E.; Skagseth, T.H.; Eri, S.; Sjåstad, A.O. Cobalt Fischer−Tropsch Catalysts Using Nickel Promoter as a Rhenium Substitute to Suppress Deactivation. Ind. Eng. Chem. Res. 2010, 49, 4140–4148. [Google Scholar] [CrossRef]
- Filot, I.A.W.; Broos, R.J.P.; van Rijn, J.P.M.; van Heugten, G.J.H.A.; van Santen, R.A.; Hensen, E.J.M. First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface. ACS Catal. 2015, 5, 5453–5467. [Google Scholar] [CrossRef]
- Pour, A.N.; Tayyari, S.F. Water-gas-shift reaction over nickel catalysts: DFT studies and kinetic modeling. Struct. Chem. 2019, 30, 1843–1852. [Google Scholar] [CrossRef]
- Mei, D.; Rousseau, R.; Kathmann, S.M.; Glezakou, V.-A.; Engelhard, M.H.; Jiang, W.; Wang, C.; Gerber, M.A.; White, J.F.; Stevens, D.J. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: A combined experimental and theoretical modeling study. J. Catal. 2010, 271, 325–342. [Google Scholar] [CrossRef]
- Shiba, N.C.; Liu, X.; Yao, Y. Advances in lower olefin production over cobalt-based catalysts via the Fischer-Tropsch process. Fuel Process. Technol. 2022, 238, 107489. [Google Scholar] [CrossRef]
- Rommens, K.T.; Saeys, M. Molecular Views on Fischer–Tropsch Synthesis. Chem. Rev. 2022, 123, 5798–5858. [Google Scholar] [CrossRef] [PubMed]
- Rytter, E.; Holmen, A. Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts—A Mini-Review. Catalysts 2015, 5, 478–499. [Google Scholar] [CrossRef]
- Chai, J.; Jiang, J.; Gong, Y.; Wu, P.; Wang, A.; Zhang, X.; Wang, T.; Meng, X.; Lin, Q.; Lv, Y.; et al. Recent Mechanistic Understanding of Fischer-Tropsch Synthesis on Fe-Carbide. Catalysts 2023, 13, 1052. [Google Scholar] [CrossRef]
- Mousavi, S.; Zamaniyan, A.; Irani, M.; Rashidzadeh, M. Generalized kinetic model for iron and cobalt based Fischer–Tropsch synthesis catalysts: Review and model evaluation. Appl. Catal. A: Gen. 2015, 506, 57–66. [Google Scholar] [CrossRef]
- Horáček, J. Fischer–Tropsch synthesis, the effect of promoters, catalyst support, and reaction conditions selection. Monatshefte Für Chem. Chem. Mon. 2020, 151, 649–675. [Google Scholar] [CrossRef]
- Hovi, J.-P.; Lahtinen, J.; Liu, Z.S.; Nieminen, R.M. Monte Carlo study of CO hydrogenation on cobalt model catalysts. J. Chem. Phys. 1995, 102, 7674–7682. [Google Scholar] [CrossRef]
- Torkashvand, M.; Tafreshi, S.S.; de Leeuw, N.H. Density Functional Theory Study of the Hydrogenation of Carbon Monoxide over the Co (001) Surface: Implications for the Fischer–Tropsch Process. Catalysts 2023, 13, 837. [Google Scholar] [CrossRef]
- Wen, G.; Wang, Q.; Zhang, R.; Li, D.; Wang, B. Insight into the mechanism about the initiation, growth and termination of the C–C chain in syngas conversion on the Co(0001) surface: A theoretical study. Phys. Chem. Chem. Phys. 2016, 18, 27272–27283. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Song, T.; Hu, P.; Lok, C.M.; Ellis, P.; French, S. A density functional theory study of the α-olefin selectivity in Fischer–Tropsch synthesis. J. Catal. 2008, 255, 20–28. [Google Scholar] [CrossRef]
- Zijlstra, B.; Broos, R.J.; Chen, W.; Filot, I.A.; Hensen, E.J. First-principles based microkinetic modeling of transient kinetics of CO hydrogenation on cobalt catalysts. Catal. Today 2020, 342, 131–141. [Google Scholar] [CrossRef]
- Zijlstra, B.; Broos, R.J.P.; Chen, W.; Bezemer, G.L.; Filot, I.A.W.; Hensen, E.J.M. The Vital Role of Step-Edge Sites for Both CO Activation and Chain Growth on Cobalt Fischer–Tropsch Catalysts Revealed through First-Principles-Based Microkinetic Modeling Including Lateral Interactions. ACS Catal. 2020, 10, 9376–9400. [Google Scholar] [CrossRef]
- van Helden, P.; Berg, J.-A.v.D.; Petersen, M.A.; van Rensburg, W.J.; Ciobîcă, I.M.; van de Loosdrecht, J. Computational investigation of the kinetics and mechanism of the initial steps of the Fischer–Tropsch synthesis on cobalt. Faraday Discuss. 2017, 197, 117–151. [Google Scholar] [CrossRef]
- van Helden, P.; Ciobîcă, I.M. A DFT Study of Carbon in the Subsurface Layer of Cobalt Surfaces. ChemPhysChem 2011, 12, 2925–2928. [Google Scholar] [CrossRef]
- van Helden, P.; van den Berg, J.-A.; Weststrate, C.J. Hydrogen Adsorption on Co Surfaces: A Density Functional Theory and Temperature Programmed Desorption Study. ACS Catal. 2012, 2, 1097–1107. [Google Scholar] [CrossRef]
- Yu, M.; Liu, L.; Wang, Q.; Jia, L.; Hou, B.; Si, Y.; Li, D.; Zhao, Y. High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics. Int. J. Hydrogen Energy 2018, 43, 5576–5590. [Google Scholar] [CrossRef]
- Pour, A.N.; Keyvanloo, Z.; Izadyar, M.; Modaresi, S.M. Dissociative hydrogen adsorption on the cubic cobalt surfaces: A DFT study. Int. J. Hydrogen Energy 2015, 40, 7064–7071. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C.M. A First-Principles Study of Oxygenates on Co Surfaces in Fischer−Tropsch Synthesis. J. Phys. Chem. C 2008, 112, 9464–9473. [Google Scholar] [CrossRef]
- Huo, C.-F.; Li, Y.-W.; Wang, J.; Jiao, H. Adsorption and Dissociation of CO as Well as CHx Coupling and Hydrogenation on the Clean and Oxygen Pre-covered Co(0001) Surfaces. J. Phys. Chem. C 2008, 112, 3840–3848. [Google Scholar] [CrossRef]
- Elahifard, M.R.; Jigato, M.P.; Niemantsverdriet, J.W. Direct versus Hydrogen-Assisted CO Dissociation on the Fe (100) Surface: A DFT Study. ChemPhysChem 2012, 13, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M.; Borgna, A.; Saeys, M. Effect of the CO coverage on the Fischer–Tropsch synthesis mechanism on cobalt catalysts. J. Catal. 2013, 297, 217–226. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, J.; Duan, X.; Zhu, Y.-A.; Chen, D.; Holmen, A. Discrimination of the mechanism of CH4 formation in Fischer–Tropsch synthesis on Co catalysts: A combined approach of DFT, kinetic isotope effects and kinetic analysis. Catal. Sci. Technol. 2014, 4, 3534–3543. [Google Scholar] [CrossRef]
- Liu, J.-X.; Su, H.-Y.; Sun, D.-P.; Zhang, B.-Y.; Li, W.-X. Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC. J. Am. Chem. Soc. 2013, 135, 16284–16287. [Google Scholar] [CrossRef]
- Ge, Q.; Neurock, M. Adsorption and Activation of CO over Flat and Stepped Co Surfaces: A First Principles Analysis. J. Phys. Chem. B 2006, 110, 15368–15380. [Google Scholar] [CrossRef]
- Huo, C.-F.; Li, Y.-W.; Wang, J.; Jiao, H. Formation of CHx Species from CO Dissociation on Double-Stepped Co(0001): Exploring Fischer−Tropsch Mechanism. J. Phys. Chem. C 2008, 112, 14108–14116. [Google Scholar] [CrossRef]
- Nachtigall, P.; Arean, C.O. Themed Issue on characterization of adsorbed species. Phys. Chem. Chem. Phys. 2010, 12, 6307–6308. [Google Scholar] [CrossRef]
- Inderwildi, O.R.; Jenkins, S.J.; King, D.A. Fischer−Tropsch Mechanism Revisited: Alternative Pathways for the Production of Higher Hydrocarbons from Synthesis Gas. J. Phys. Chem. C 2008, 112, 1305–1307. [Google Scholar] [CrossRef]
- Zhuo, M.; Tan, K.F.; Borgna, A.; Saeys, M. Density Functional Theory Study of the CO Insertion Mechanism for Fischer−Tropsch Synthesis over Co Catalysts. J. Phys. Chem. C 2009, 113, 8357–8365. [Google Scholar] [CrossRef]
- Van Helden, P.; van den Berg, J.-A.; Ciobîcă, I.M. Hydrogen-assisted CO dissociation on the Co(211) stepped surface. Catal. Sci. Technol. 2012, 2, 491–494. [Google Scholar] [CrossRef]
- Ojeda, M.; Nabar, R.; Nilekar, A.U.; Ishikawa, A.; Mavrikakis, M.; Iglesia, E. CO activation pathways and the mechanism of Fischer–Tropsch synthesis. J. Catal. 2010, 272, 287–297. [Google Scholar] [CrossRef]
- Gong, X.-Q.; Raval, R.; Hu, P. CO dissociation and O removal on Co(0001): A density functional theory study. Surf. Sci. 2004, 562, 247–256. [Google Scholar] [CrossRef]
- Gong, X.-Q.; Raval, R.; Hu, P. CHx hydrogenation on Co(0001): A density functional theory study. J. Chem. Phys. 2005, 122, 024711. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.; van Santen, R.A. Hydrogen induced CO activation on open Ru and Co surfaces. Phys. Chem. Chem. Phys. 2010, 12, 6330–6332. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Tao, H.; Li, Y.; Li, Y.; Ding, K.; Huang, X.; Chen, W.; Zhang, Y. Toward improving CO2 dissociation and conversion to methanol via CO-hydrogenation on Cu(100) surface by introducing embedded Co nanoclusters as promoters: A DFT study. Appl. Surf. Sci. 2018, 427, 837–847. [Google Scholar] [CrossRef]
- Carlotto, S.; Natile, M.M.; Glisenti, A.; Vittadini, A. Adsorption of CO and formation of carbonates at steps of pure and Co-doped SrTiO3 surfaces by DFT calculations. Appl. Surf. Sci. 2016, 364, 522–527. [Google Scholar] [CrossRef]
- Rodriguez-Gomez, A.; Holgado, J.P.; Caballero, A. Cobalt Carbide Identified as Catalytic Site for the Dehydrogenation of Ethanol to Acetaldehyde. ACS Catal. 2017, 7, 5243–5247. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C.M. A DFT study of the chain growth probability in Fischer–Tropsch synthesis. J. Catal. 2008, 257, 221–228. [Google Scholar] [CrossRef]
- Arab, A. DFT study of the interaction between carbon monoxide and Rh-Cu bimetallic nanoclusters. Mater. Today Commun. 2021, 26, 102013. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, R.; Ling, L.; Wang, Q.; Wang, B.; Li, D. Insight into the preferred formation mechanism of long-chain hydrocarbons in Fischer–Tropsch synthesis on Hcp Co(10−11) surfaces from DFT and microkinetic modeling. Catal. Sci. Technol. 2017, 7, 3758–3776. [Google Scholar] [CrossRef]
- Ha, N.T.T.; Long, N.B.; Cam, L.M. Conversion of Carbon Monoxide into Methanol on Alumina-Supported Cobalt Catalyst: Role of the Support and Reaction Mechanism—A Theoretical Study. Catalysts 2019, 9, 6. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Zhao, T.; Qian, W.; Wang, Y.; Holmen, A.; Jiang, W.; Chen, D.; Ben, H. Kinetic insights into the effect of promoters on Co/Al2O3 for Fischer-Tropsch synthesis. Chem. Eng. J. 2022, 445, 136655. [Google Scholar] [CrossRef]
- Johnson, G.R.; Werner, S.; Bell, A.T. An Investigation into the Effects of Mn Promotion on the Activity and Selectivity of Co/SiO2 for Fischer–Tropsch Synthesis: Evidence for Enhanced CO Adsorption and Dissociation. ACS Catal. 2015, 5, 5888–5903. [Google Scholar] [CrossRef]
- Daga, Y.; Kizilkaya, A.C. Mechanistic Insights into the Effect of Sulfur on the Selectivity of Cobalt-Catalyzed Fischer–Tropsch Synthesis: A DFT Study. Catalysts 2022, 12, 425. [Google Scholar] [CrossRef]
- Vázquez-Parga, D.; Jurado, A.; Roldan, A.; Viñes, F. A computational map of the probe CO molecule adsorption and dissociation on transition metal low Miller indices surfaces. Appl. Surf. Sci. 2023, 618, 156581. [Google Scholar] [CrossRef]
- Ducreux, O.; Lynch, J.; Rebours, B.; Roy, M.; Chaumette, P. In Situ Characterisation of Cobalt Based Fischer-Tropsch Catalysts: A New Approach to the Active Phase. Stud. Surf. Sci. Catal. 1998, 119, 125–130. [Google Scholar] [CrossRef]
- Valero, M.C.; Raybaud, P. Stability of Carbon on Cobalt Surfaces in Fischer–Tropsch Reaction Conditions: A DFT Study. J. Phys. Chem. C 2014, 118, 22479–22490. [Google Scholar] [CrossRef]
- Bengoa, J.; Alvarez, A.; Cagnoli, M.; Gallegos, N.; Marchetti, S. Influence of intermediate iron reduced species in Fischer-Tropsch synthesis using Fe/C catalysts. Appl. Catal. A Gen. 2007, 325, 68–75. [Google Scholar] [CrossRef]
- Schulz, H.; Riedel, T.; Schaub, G. Fischer–Tropsch principles of co-hydrogenation on iron catalysts. Top. Catal. 2005, 32, 117–124. [Google Scholar] [CrossRef]
- Kwak, G.; Woo, M.H.; Kang, S.C.; Park, H.-G.; Lee, Y.-J.; Jun, K.-W.; Ha, K.-S. In situ monitoring during the transition of cobalt carbide to metal state and its application as Fischer–Tropsch catalyst in slurry phase. J. Catal. 2013, 307, 27–36. [Google Scholar] [CrossRef]
- Zhao, Z.; Lu, W.; Yang, R.; Zhu, H.; Dong, W.; Sun, F.; Jiang, Z.; Lyu, Y.; Liu, T.; Du, H.; et al. Insight into the Formation of Co@Co2C Catalysts for Direct Synthesis of Higher Alcohols and Olefins from Syngas. ACS Catal. 2017, 8, 228–241. [Google Scholar] [CrossRef]
- Xiang, Y.; Chitry, V.; Liddicoat, P.; Felfer, P.; Cairney, J.; Ringer, S.; Kruse, N. Long-Chain Terminal Alcohols through Catalytic CO Hydrogenation. J. Am. Chem. Soc. 2013, 135, 7114–7117. [Google Scholar] [CrossRef] [PubMed]
- Gnanamani, M.K.; Jacobs, G.; Graham, U.M.; Ribeiro, M.C.; Noronha, F.B.; Shafer, W.D.; Davis, B.H. Influence of carbide formation on oxygenates selectivity during Fischer-Tropsch synthesis over Ce-containing Co catalysts. Catal. Today 2016, 261, 40–47. [Google Scholar] [CrossRef]
- Anton, J.; Nebel, J.; Song, H.; Froese, C.; Weide, P.; Ruland, H.; Muhler, M.; Kaluza, S. The effect of sodium on the structure–activity relationships of cobalt-modified Cu/ZnO/Al2O3 catalysts applied in the hydrogenation of carbon monoxide to higher alcohols. J. Catal. 2016, 335, 175–186. [Google Scholar] [CrossRef]
- Enger, B.C.; Holmen, A. Nickel and Fischer-Tropsch Synthesis. Catal. Rev. 2012, 54, 437–488. [Google Scholar] [CrossRef]
- van de Loosdrecht, J.; Botes, F.G.; Ciobica, I.M.; Ferreira, A.; Gibson, P.; Moodley, D.J.; Saib, A.M.; Visagie, J.L.; Weststrate, C.J.; Niemantsverdriet, J.W. Fischer-Tropsch Synthesis: Catalysts and Chemistry. In Comprehensive Inorganic Chemistry II: From Elements to Applications, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; ISBN 9780080965291. [Google Scholar]
- Du, J.; Wu, G.; Wang, J. Density Functional Theory Study of the Interaction of Carbon Monoxide with Bimetallic Co−Mn Clusters. J. Phys. Chem. A 2010, 114, 10508–10514. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C.M. Chain Growth Mechanism in Fischer−Tropsch Synthesis: A DFT Study of C−C Coupling over Ru, Fe, Rh, and Re Surfaces. J. Phys. Chem. C 2008, 112, 6082–6086. [Google Scholar] [CrossRef]
- Nassir, M.; Frühberger, B.; Dwyer, D. Coverage dependence of CO dissociation on clean and hydrogen presaturated Fe(100) surface. Surf. Sci. 1994, 312, 115–123. [Google Scholar] [CrossRef]
- Lu, J.P.; Albert, M.R.; Bernasek, S.L. Effects of postdosed species on preadsorbed carbon monoxide on iron (100): Adsorption site conversion caused by site competition. J. Phys. Chem. 2002, 94, 6028–6033. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, H.; Du, H.; Lu, W. Theoretically Predicted CO Adsorption and Activation on the Co-Doped hcp-Fe7C3 Catalyst. Catalysts 2023, 13, 564. [Google Scholar] [CrossRef]
- Amaya-Roncancio, S.; Linares, D.H.; Duarte, H.A.; Lener, G.; Sapag, K. Effect of Hydrogen in Adsorption and Direct Dissociation of CO on Fe (100) Surface: A DFT Study. Am. J. Anal. Chem. 2015, 06, 38–46. [Google Scholar] [CrossRef]
- Xiao, J.; Frauenheim, T. Activation mechanism of carbon monoxide on α-Fe2O3 (0001) surface studied by using first principle calculations. Appl. Phys. Lett. 2012, 101, 41603. [Google Scholar] [CrossRef]
- van Steen, E.; Claeys, M. Promoting χ-Fe5C2(100)0.25 with copper—A DFT study. Catal. Struct. React. 2015, 1, 11–18. [Google Scholar] [CrossRef]
- Yongwu Lu, R.Z.B.C.B.G. Elucidating the Copper–Hägg Iron Carbide Synergistic for Selective CO Hydrogenation to Higher Alcohols. ACS Catal. 2017, 7, 5500–5512. [Google Scholar]
- Ma, W.; Jacobs, G.; Sparks, D.E.; Todic, B.; Bukur, D.B.; Davis, B.H. Quantitative comparison of iron and cobalt based catalysts for the Fischer-Tropsch synthesis under clean and poisoning conditions. Catal. Today 2020, 343, 125–136. [Google Scholar] [CrossRef]
- Nerlov, J.; Chorkendorff, I. Methanol Synthesis from CO2, CO, and H2over Cu(100) and Ni/Cu(100). J. Catal. 1999, 181, 271–279. [Google Scholar] [CrossRef]
- John, R. Catalysis; Anderson, J.R., Boudart, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; ISBN 978-3-642-93249-6. [Google Scholar]
- Tu, W.; Ghoussoub, M.; Singh, C.V.; Chin, Y.-H.C. Consequences of Surface Oxophilcity of Ni, Ni-Co, and Co Clusters on Methane Activation. J. Am. Chem. Soc. 2017, 139, 6928–6945. [Google Scholar] [CrossRef]
- Heine, C.; Lechner, B.A.J.; Bluhm, H.; Salmeron, M. Recycling of CO2: Probing the Chemical State of the Ni(111) Surface during the Methanation Reaction with Ambient-Pressure X-Ray Photoelectron Spectroscopy. J. Am. Chem. Soc. 2016, 138, 13246–13252. [Google Scholar] [CrossRef]
- Fajín, J.L.C.; Gomes, J.R.B.; Cordeiro, M.N.D.S. Mechanistic Study of Carbon Monoxide Methanation over Pure and Rhodium- or Ruthenium-Doped Nickel Catalysts. J. Phys. Chem. C 2015, 119, 16537–16551. [Google Scholar] [CrossRef]
- Roiaz, M.; Monachino, E.; Dri, C.; Greiner, M.; Knop-Gericke, A.; Schloegl, R.; Comelli, G.; Vesselli, E. Reverse Water–Gas Shift or Sabatier Methanation on Ni(110)? Stable Surface Species at Near-Ambient Pressure. J. Am. Chem. Soc. 2016, 138, 4146–4154. [Google Scholar] [CrossRef] [PubMed]
- Remediakis, I.N.; Abild-Pedersen, F.; Nørskov, J.K. DFT Study of Formaldehyde and Methanol Synthesis from CO and H2 on Ni(111). J. Phys. Chem. B 2004, 108, 14535–14540. [Google Scholar] [CrossRef]
- McGuinness, D.S.; Patel, J.; Amin, M.H.; Bhargava, S.K. DFT Study of Nickel-Catalyzed Low-Temperature Methanol Synthesis. ChemCatChem 2017, 9, 1837–1844. [Google Scholar] [CrossRef]
- Loveless, B.T.; Buda, C.; Neurock, M.; Iglesia, E. CO Chemisorption and Dissociation at High Coverages during CO Hydrogenation on Ru Catalysts. J. Am. Chem. Soc. 2013, 135, 6107–6121. [Google Scholar] [CrossRef]
- Foppa, L.; Iannuzzi, M.; Copéret, C.; Comas-Vives, A. Adlayer Dynamics Drives CO Activation in Ru-Catalyzed Fischer–Tropsch Synthesis. ACS Catal. 2018, 8, 6983–6992. [Google Scholar] [CrossRef]
- Zhao, P.; He, Y.; Cao, D.-B.; Xiang, H.; Jiao, H.; Yang, Y.; Li, Y.-W.; Wen, X.-D. CO Self-Promoting Hydrogenation on CO-Saturated Ru(0001): A New Theoretical Insight into How H2 Participates in CO Activation. J. Phys. Chem. C 2019, 123, 6508–6515. [Google Scholar] [CrossRef]
- Filot, I.A.W.; van Santen, R.A.; Hensen, E.J.M. Quantum chemistry of the Fischer–Tropsch reaction catalysed by a stepped ruthenium surface. Catal. Sci. Technol. 2014, 4, 3129–3140. [Google Scholar] [CrossRef]
- Moraru, I.-T.; Martínez-Prieto, L.M.; Coppel, Y.; Chaudret, B.; Cusinato, L.; del Rosal, I.; Poteau, R. A combined theoretical/experimental study highlighting the formation of carbides on Ru nanoparticles during CO hydrogenation. Nanoscale 2021, 13, 6902–6915. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Liu, Z.; Xu, X. Dynamic and Intermediate-Specific Local Coverage Controls the Syngas Conversion on Rh(111) Surfaces: An Operando Theoretical Analysis. ACS Catal. 2021, 11, 3830–3841. [Google Scholar] [CrossRef]
- Studt, F.; Abild-Pedersen, F.; Wu, Q.; Jensen, A.D.; Temel, B.; Grunwaldt, J.-D.; Nørskov, J.K. CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment. J. Catal. 2012, 293, 51–60. [Google Scholar] [CrossRef]
- Llorca, J.; de la Piscina, P.R.; Homs, N.; Pereira, E.B.; Moral, P.; Martin, G. Synthesis of alcohols from syngas over Ni-based catalyst: Comparison with the hydroformylation reaction. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1997; Volume 107, pp. 9–14. [Google Scholar] [CrossRef]
- Dou, M.; Zhang, M.; Chen, Y.; Yu, Y. Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst. Surf. Sci. 2018, 672–673, 7–12. [Google Scholar] [CrossRef]
Reactions | (001) | (0001) | ||||||
---|---|---|---|---|---|---|---|---|
Reaction Barrier | Reaction Energy | Reaction Barrier | Reaction Energy | Reaction Barrier | Reaction Energy | Reaction Barrier | Reaction Energy | |
CO → C + O | - | - | 2.46 | 0.69 | 1.34 | −0.58 | 1.39 | 0.32 |
CO + H → HCO | 1.08 | 0.57 | 1.18 | 1.10 | 1.13 | 0.36 | 0.95 | 0.57 |
HCO → CH + O | - | - | 0.73 | −0.80 | 1.04 | −0.91 | 0.72 | −0.54 |
C + H → CH | - | - | 0.73 | −0.39 | 0.69 | 0.03 | 0.63 | −0.28 |
CH + H → CH2 | 0.065 | 0.01 | 0.55 | 0.33 | 0.65 | 0.52 | 0.57 | 0.36 |
CH2 + H → CH3 | 0.96 | 0.67 | 0.55 | −0.13 | 0.65 | −0.06 | 0.31 | −0.31 |
CH3 + H → CH4 | 1.08 | 0.49 | 0.99 | −0.07 | 0.86 | 0.07 | 0.76 | −0.10 |
Reaction | Ea/KJ.mole−1 | ΔH/KJ.mole−1 | |
---|---|---|---|
(R1) | CO → C + O | 231.4 | 89.2 |
(R2) | CO + H → COH | 184.8 | 88.1 |
(R3) | CO + H → CHO | 130.2 | 114.1 |
(R4) | CHO → CH + O | 62.9 | −63.1 |
(R5) | CHO + H → CHOH | 104.2 | 25.1 |
(R6) | CHOH → CH + OH | 71.3 | −73.5 |
(R7) | CHO + H → CH2O | 51.9 | 13.7 |
(R8) | CH2O → CH2 + O | 65.3 | −54.8 |
(R9) | CH2O + H → CH2OH | 88.9 | 31.8 |
(R10) | CH2OH → CH2 + OH | 54.6 | −77.5 |
(R11) | CH2O + H → CH3O | 46.6 | −48.3 |
(R12) | CH3O → CH3 + O | 142.9 | −25.8 |
(R13) | CH3O + H → CH3OH | 148.6 | 63.9 |
(R14) | CH → C + H | 101.8 | 27.6 |
(R15) | CH + H → CH2 | 55.9 | 36.0 |
(R16) | CH2 + H → CH3 | 54.2 | −11.5 |
(R17) | CH3 + H → CH4 | 91.7 | −4.7 |
(R18) | CH + CO → CHCO | 99.0 | 58.9 |
(R19) | CH2 + CO → CH2CO | 66.9 | 60.8 |
(R20) | CH3 + CO → CH3CO | 132.6 | 46.1 |
(R21) | CH + CHO → CHCHO | 39.4 | 19.3 |
(R22) | CH2 + CHO → CH2CHO | 1.7 | 0.1 |
(R23) | CHCO + H → CH2CO | 61.2 | 32.9 |
(R24) | CHCO + H → CHCHO | 95.7 | 68.3 |
(R25) | CH2 CO + H → CH2CHO | 31.4 | −37.3 |
(R26) | CH2CO + H → CH3CO | 33.2 | −33.2 |
(R27) | CHCHO + H → CH2CHO | 88.3 | −18.9 |
(R28) | CHCO → CHC + O | 138.8 | −22.0 |
(R29) | CH2CO → CH2C + O | 83.6 | −48.8 |
(R30) | CH3CO → CH3C + O | 63.0 | −65.4 |
(R31) | CHCHO → C2H2 + O | 13.0 | −127.4 |
(R32) | CH2CHO → CH2CH + O | 109.4 | −17.3 |
(R33) | CHC + H → CHCH | 64.2 | −26.5 |
(R34) | CHC + H → CH2C | 43.0 | −15.7 |
(R35) | CH2C + H → CH2CH | 0 | −0.1 |
(R36) | CH2C + H → CH3C | 22.3 | −46.0 |
(R37) | CH3C + H → CH3CH | 68.0 | 58.7 |
(R38) | CHCH + H → CH2CH | 107.4 | 68.2 |
(R39) | CH2CH + H → C2H4 | 31.5 | −11.6 |
(R40) | CH2CH + H → CH3CH | 39.1 | −4.2 |
(R41) | CH3CH + H → CH3CH2 | 44.2 | 1.7 |
(R42) | CH3CH2 + H → C2H6 | 61.4 | −32.4 |
(R43) | CH + CH → C2H2 | 62.0 | −53.4 |
(R44) | CH2 + CH → CH2CH | 60.8 | −15.7 |
(R45) | CH2 + CH2 → C2H4 | 40.1 | −53.0 |
(R46) | CH3 + CH → CH3CH | 98.4 | −2.6 |
(R47) | CH3 + CH2 → CH3CH2 | 83.5 | −23.7 |
(R48) | CH3 + CH3 → C2H6 | 201.2 | −31.8 |
(R49) | O + H → OH | 47.4 | 16.6 |
(R50) | OH + H → H2O | 150.7 | 60.0 |
(R51) | OH + OH → H2O + O | 48.3 | 4.7 |
Reaction | Flat Surface | Stepped Surface | ||
---|---|---|---|---|
Ea | ΔH | Ea | ΔH | |
CO + H → CHO | 130.2 | 114.1 | 117.8 | 77.1 |
CHCH + H → CH2CH | 107.4 | 68.2 | 95.7 | 32.5 |
CH3 + H → CH4 | 91.7 | −4.7 | 97.6 | 29.7 |
nH2 | Surface/Dissociation Route | Co (311) | Co (111) | Co (110) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ΔE | Eact | Edes | ΔE | Eads | Edes | ΔE | Eads | Edes | ||
1H2 | 1H2 → 2H | −51.0 | 13.0 | 36.4 | −71.1 | 2.7 | 21.6 | −42.1 | 14.5 | 21.6 |
2H2 | 2H2 → 1H2 + 2H | −50.2 | 12.7 | 37.6 | −67.3 | 4.0 | 25.8 | −40.3 | 14.2 | 35.5 |
1H2 + 2H → 4H | −50.3 | 11.4 | 36.8 | −53.2 | 0.6 | 21.9 | −41.7 | 14.6 | 33.6 | |
3H2 | 3H2 → 2H2 + 2H | −45.7 | 11.7 | 39.1 | −73.3 | 3.9 | 20.5 | −40.3 | 14.1 | 36.9 |
2H2 + 2H → 1H2 + 4H | −51.0 | 10.6 | 34.6 | −75.3 | 2.6 | 26.6 | −41.9 | 13.8 | 37.0 | |
1H2 + 4H → 6H | −50.0 | 13.1 | 35.3 | −83.3 | 5.1 | 48.7 | −34.6 | 14.7 | 37.2 | |
4H2 | 4H2 → 3H2 + 2H | −39.5 | 11.8 | 25.3 | −40.5 | 14.8 | 23.6 | |||
3H2 + 2H → 2H2 + 4H | −50.0 | 11.6 | 19.0 | −44.8 | 12.5 | 23.7 | ||||
2H2 + 4H → 1H2 + 6H | −53.0 | 12.6 | 18.0 | −36.0 | 15.1 | 26.6 | ||||
5H2 | 5H2 → 4H2 + 2H | −62.4 | 11.9 | 25.0 | −51.2 | 14.1 | 23.1 | |||
4H2 + 2H → 3H2 + 4H | −37.1 | 13.1 | 33.8 | |||||||
6H2 | 6H2 → 5H2 + 2H | −40.4 | 11.7 | 26.0 | −42.4 | 13.6 | 24.3 | |||
5H2 + 2H → 4H2 + 4H | −50.2 | 14.3 | 15.5 |
111 | 100 | 110 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.25 | 0.50 | 1.00 | 0.25 | 0.50 | 1.00 | 0.25 | 0.5 | 1.00 | ||
Adsorption of hydrogen atoms on FCC cobalt surfaces | Echem (KJ/mol) | −344 | −334 | −262 | −371 | −349 | −299 | −360 | −338 | −279 |
ZH (Å) | 1.51 | 1.52 | 1.56 | 1.45 | 1.49 | 1.52 | 1.49 | 1.51 | 1.54 | |
ΔHads (KJ/mol) | −252 | −232 | −88 | −306 | −262 | −162 | −284 | −240 | −122 | |
Adsorption of hydrogen molecule on FCC cobalt surfaces | Ephys (KJ/mol) | −9.6 | −7.7 | −4.8 | −14.4 | −12.1 | −8.7 | −11.6 | −8.7 | −6.7 |
dH2 (Å) | 0.750 | 0.748 | 0.746 | 0.756 | 0.754 | 0.751 | 0.753 | 0.751 | 0.747 | |
ΔdH2 (Å) | 0.008 | 0.006 | 0.004 | 0.014 | 0.012 | 0.009 | 0.011 | 0.009 | 0.005 | |
ZH2 (Å) | 1.893 | 1.895 | 1.897 | 7.891 | 1.892 | 1.894 | 1.892 | 1.894 | 1.896 |
CH3 | HCO | HCOH | CH2 | CH | |
---|---|---|---|---|---|
CH3 | 1.84 | 0.80 | 0.77 | 0.62 | 0.75 |
HCO | 0.80 | _ | _ | 0.05 | 0.34 |
HCOH | 0.77 | _ | _ | 0.16 | 0.29 |
CH2 | 0.62 | 0.05 | 0.16 | 0.12 | 0.49 |
CH | 0.75 | 0.34 | 0.29 | 0.49 | 0.57 |
Carbide Mechanism | CO Insertion Mechanism | ||||||
---|---|---|---|---|---|---|---|
No. | Elementary Steps | Co (0001) | Stepped Co (0001) | No | Elementary Steps | Co (0001) | Stepped Co (0001) |
1 | CH3 + C → CH3C | 0.94 a | 1.09 a | 30 | CH + CO → CHCO | 1.11 e, 0.99 (0.92)d | - |
2 | CH3 + CH → CH3CH | 1.05 a | 1.55 a | 31 | CH2 + CO → CH2CO | 0.83 e, 0.77 (0.53)d | - |
3 | CH3 + CH2 → CH3CH2 | 1.11 a | 0.73 a | 32 | CH3 + CO → CH3CO | 1.92 e, 1.49 d | 1.46 f |
4 | CH2 + C → CH2C | 0.74 a | 1.34 a | 33 | CH3CO → CH3C + O | 1.30 e, 0.75 (0.92)d | - |
5 | CH2 + CH → CH2CH | 0.76 a | 1.32 a | 34 | CH2CO → CH2C + O | 2.38 e, 0.98 (1.21)d | - |
6 | CH2 + CH2 → CH2CH2 | 0.70 a | 0.22 a | 35 | CHCO → CHC + O | 1.87 (1.93) d | - |
7 | CH + C → CHC | 0.91 a | 1.96 a | 36 | CH2CO + H → CH3CO | 1.24 e, 0.78 (0.59) d | - |
8 | CH + CH → CHCH | 0.86 a | 1.76 a | 37 | CH2CO + H → CH2CHO | 0.74 e, 0.87 (0.75) d | - |
9 | C + C → CC | 1.22 a, 0.71 c | 2.43 a | 38 | CHCO + H → CHCHO | 1.44 (1.33) d | - |
10 | CH3 + C → CH3CH | 0.76 (0.60) d | 0.86 b | 39 | CHCO + H → CH2CO | 1.09 (0.93) d | - |
11 | CH3CH + H → CH3CH2 | - | 0.42 b | 40 | CHCHO + H → CH2CHO | 0.55 (0.49) d | - |
12 | CH3CH2 + H → CH3CH3 | - | 0.82 b | 41 | CH2CHO + H → CH3CHO | 1.41 e, 1.20 (0.92) d | - |
13 | CH3C + C → CH3C2 | - | 1..58 b | 42 | CH3CO + H → CH3CHO | 0.50 e, 0.63 (0.79) d | 0.35 f |
14 | CH3C + CH → CH3CCH | - | 1.44 b | 43 | CH3CHO → CH3CH + O | 0.52 e, 0.63 (0.73) d | - |
15 | CH3C + CH2 → CH3CCH2 | - | 1.61 b | 44 | CH2CHO → CH2CH + O | 1.50 e, 1.37 (1.62) d | - |
16 | CH3CH + C → CH3CHC | - | 1.28 b | 45 | CHCHO → CHCH + O | 0.73 (1.09) d | - |
17 | CH3CH + CH → CH4CHCH | - | 1.41 b | 46 | CH3CHO + H → CH3CH2O | - | 0.47 f |
18 | CH3CH + CH2 → CH3CHCH2 | - | 0.29 b | 47 | CH3CH2O + H → CH3CH2OH | - | 1.26 f |
19 | CH3CH2 + C → CH3CH2C | - | 1.18 b | ||||
20 | CH3CH2 + CH → CH3CH2CH | - | 1.75 b | ||||
21 | CH3CH2 + CH2 → CH3CH2CH2 | - | 0.74 b | ||||
22 | CH2C + H→CH2CH | 0.68 (0.37) d | - | ||||
23 | CH2C + H → CH3C | 0.63 (0.28) d | - | ||||
24 | CH2CH + H → CH3CH | 0.54 (0.21) d | - | ||||
25 | CHC + H → CH2C | 0.82 (0.70) d | - | ||||
26 | CHC + H → CHCH | 0.68 (0.57) d | - | ||||
27 | CHCH + H → CH2CH | 1.14 (1.09) d | - | ||||
28 | CH3CH2C + C → CH3CH2CC | - | 1.63 b | ||||
29 | CH3CH2C + CH → CH3CH2CCH | - | 1.47 b |
No. | Elementary Steps | Co (0001) | Stepped Co (0001) | Other Facets |
---|---|---|---|---|
1 | C + H → CH | 0.41 a, 0.83 c, 0.85 d, 0.73 e | 0.77 c, 0.82 d | 078 Co2 C (001) b, 0.69 Co () e, 0.63 Co () e |
2 | C + H → CH2 | 0.37 a, 0.65 c, 0.25, 0.66 d, 0.55, 0.55 e | 0.80 c, 0.84 d | 078 Co2 C (001) b, 0.65 Co () e, 0.57 Co () e |
3 | CH2 + H → CH3 | 0.60 c, 0.63 d, 0.55 e | 0.41 c, 0.43 d | 0.43 Co2 C (001) b, 065 Co () e, 0.31 Co () e |
4 | CH3 + H → CH4 | 0.96 d, 1.09 d, 0.99 e | 0.88 c, 0.96 d | 0.88 Co2 C (001) b, 086 Co () e, 0.76 Co () e |
B5-B Site | Kink Site | ||
---|---|---|---|
Eact (eV) | Eact (eV) | ||
CO → C + O | 1.24 | CO → C + O | 0.91 |
CO + H → HCO | 0.81 | CO + H → HCO | 0.71 |
HCO → CH + O | 0.49 | HCO → CH + O | 0.56 |
CO + H → COH | 1.41 | CO + H → COH | 1.22 |
COH → C + OH | 0.63 | COH → C + OH | 0.40 |
Species/ Surface | Eads (eV) | ||||
---|---|---|---|---|---|
Co (001) [45] | Co (111) [30] | Co/Mn/Co (111) [30] | Mn/Co (111) [30] | S/Co (111) [75] | |
CO | −2.26 | −1.76 | −2.13 | −2.55 | −0.72 |
C | - | −6.95 | −7.43 | −8.15 | −5.82 |
O | - | −5.73 | −6.19 | −7.27 | −4.67 |
H | - | −2.84 | −3.25 | −3.75 | −2.71 |
CH | −7.94 | −6.42 | −6.83 | −7.55 | −6.21 |
CH2 | −5.61 | −4.02 | −4.54 | −5.44 | −3.54 |
CH3 | −2.97 | −1.93 | −2.38 | −3.03 | −1.212 |
CH4 | −0.2 | −0.02 | −0.02 | −0.02 | −0.2 |
CO2/H2O | 503 K | 513 K | 523 K | 533 K |
---|---|---|---|---|
Co (0001) | 0.0835 | 0.1076 | 0.1254 | 0.2034 |
MnO/Co (0001) | 0.0158 | 0.0160 | 0.0162 | 0.0196 |
Ratio of Co (0001) and MnO/Co (0001) | 5.28 | 6.73 | 7.74 | 10.38 |
Species | Binding Energy/ΔGr a (KJ/mol C) | |
---|---|---|
carbon on-surface (hcp hollow) | −658/−4 | |
subsurface (octahedral) | −660/−6 | |
CH on-surface (hcp hollow) | −610/−18 | |
CH2 on-surface (hcp hollow) | −400/−17 | |
Graphene | ||
carbon at fcc hollow and atop site | −769/−115 | |
carbon at bridge and near atop site | −770/−116 | |
Adsorption | Binding energy/ΔGr a (kJ/mol carbon) | |
P(4 × 8) unit cell | P(2 × 8) unit cell | |
Step site (S) | −747/−93 | −715/−61 |
Subsurface (Sub) | −652/+2 | |
P4g clock reconstruction (E1) | −662/−8 | −697/−43 |
Near-edge fcc hollow (E2) | −653/+1 |
Number of C Atoms | Co (111) “Flat” | Co (221) “Triangular” | Co (112) “Squared” |
---|---|---|---|
1 | −0.91 | −1.32 | −2.06 |
2 | −0.58 | −1.26 | −1.84 |
3 | −0.97 | −1.22 | −1.59 |
4 | −1.12 | −1.24 | −1.34 |
Surfaces | Eads (eV) | Eact (eV) | ΔE (eV) | Ef (eV) |
---|---|---|---|---|
Window I | ||||
(110)-C1A | −1.91 | 0.83 | −1.10 | 2.23 |
(110)-C2B | −1.70 | 0.86 | −0.92 | 3.42 |
Window II | ||||
(111)-C2B | −2.02 | 1.53 | −0.38 | 1.81 |
(011)-C | −2.11 | 1.67 | 0.16 | 1.09 |
Window III | ||||
(111)-C2A | −2.10 | 2.11 | 0.69 | 0.86 |
(110)-C2A | −1.74 | 2.13 | −0.33 | 1.26 |
(110)-C1B | −2.02 | 2.48 | −0.29 | 1.42 |
(100)-C | −1.96 | 2.57 | 0.13 | 0.90 |
(101)-C | −2.17 | 2.65 | 0.34 | 1.23 |
(010)-C | −2.21 | 3.17 | 0.36 | 1.42 |
Reaction | a | b | c | d |
---|---|---|---|---|
Distance (Å) | 1.636 | 1.546 | 1.516 | 1.556 |
Barrier (eV) | 1.72 | 1.42 | 0.73 | 1.61 |
Rh | Co | Ru | Fe | |
---|---|---|---|---|
E1 | 0.12 | 0.07 | 0.05 | 0.37 |
E2 | 0.56 | 0.66 | 0.54 | 1.32 |
E3 | 0.61 | 0.43 | 0.57 | 1.09 |
ΔH | −1.00 | −0.80 | −1.19 | −1.40 |
Rh | Co | Ru | Fe | |
---|---|---|---|---|
C + C | 2.26 | 2.46 | 1.80 | 2.93 |
C + CH | 1.78 | 2.04 | 1.34 | 2.52 |
C + CH2 | 2.14 | 2.02 | 1.67 | 2.45 |
C + CH3 | 2.11 | 1.55 | 1.84 | 2.19 |
CH + CH | 1.68 | 1.89 | 1.36 | 2.79 |
CH + CH2 | 2.24 | 2.07 | 1.84 | 2.94 |
CH + CH3 | 2.34 | 2.08 | 2.23 | 2.87 |
CH2 + CH2 | 1.97 | 1.59 | 2.00 | 2.91 |
CH2 + CH3 | 2.04 | 1.86 | 2.28 | 3.20 |
Reaction | EForward (eV) | EBack (eV) | ΔE (eV) |
---|---|---|---|
CO ↔ C + O* | 1.09 | 2.02 | −0.93 |
CO ↔ C + O | 1.13 | 2.28 | −1.15 |
CO + 2H ↔ C + O + 2H (asymmetric) | 1.06 | 1.63 | −0.57 |
CO + 2H ↔ C + O + 2H (symmetric) | 1.16 | 1.49 | −0.33 |
CO + 4H ↔ C + O + 4H | 0.90 | 1.15 | −0.25 |
Selectivity at 43% CO Conversion | |||
---|---|---|---|
TOS, h | 96.5 | 140.2 | |
CH4 | 2.82 | 8.34 | 2.95 |
C5+ | 78.92 | 83.42 | 1.06 |
CO2 | 32.03 | 0.61 | 0.02 |
C2 olefin content, % | 79.31 | 8.47 | 0.11 |
C4 olefin content, % | 74.04 | 54.38 | 0.73 |
Market price, USD/LB | 0.0245 | 10.66 | 435.1 |
Mechanism | A (cm, mol, s) | Activation Barrier (KJ.mol−1) | Activation Barrier (eV) | ΔE (eV) |
---|---|---|---|---|
Desorption | ||||
CO(s) → CO(g) | 3.5 × 1013 | 189.1 | 1.96 | ̶ |
CO Dissociation | ||||
CO(s) → C(s)+O(s) | 3.0 × 1022 | 217.1 | 2.25 | 0.69 |
Insertion | ||||
CH(s)+CO(s) → CHCO(s) | 3.7 × 1021 | 109.9 | 1.14 | 0.65 |
C〖H2〗(s)+CO(s) → CH2 CO(s) | 3.7 × 1021 | 116.8 | 1.21 | 0.47 |
Migration | ||||
CH(s)+CO(s) → CHCO(s) | 3.7 × 1021 | 116.8 | 1.21 | 0.56 |
C〖H2〗(s)+CO(s) → CH2 CO(s) | 3.7 × 1021 | 144.7 | 1.50 | 0.42 |
Carbonyl Dissociation | ||||
CHCO(s) → CHC(s)+O(s) | 3.0 × 1022 | 201.6 | 2.09 | 0.35 |
CH2CO(s) → CH2 C(s)+O(s) | 3.0 × 1022 | 137.9 | 1.43 | 0.35 |
(A) | CO Activation Pass | Step | Energy (KJ mol−1) | |
H*-assisted | 1. | ΔH1 | −42 | |
2. | ΔH2 | −15 | ||
3. | ΔH3 | 50 | ||
4. | E4 | 88 | ||
Eapp = ΔH2+ ΔH3+ E4 − ΔH1 | 165 | |||
(B) | Step | Energy (KJ mol−1) | ||
Direct | 1.CO (g) + * CO* | ΔH1 | −42 | |
6.CO* + * C* + O* | E6 | 280 | ||
Eapp = E6 − ΔH1 | 322 |
Route | Mechanism | kp (mol S−1) | kt (mol S−1) |
---|---|---|---|
CHCH | Carbide | 6.79 × 102 | 5.88 × 10−4 |
CCH3 | Carbide | 6.79 × 10−1 | 5.88 × 10−4 |
CH2CH2 | Carbide | 6.79 × 10−2 | 5.88 × 10−4 |
CHCO | CO insertion | 6.79 × 10−8 | 5.88 × 10−4 |
CHCHO | CO insertion | 6.79 × 10−12 | 5.88 × 10−4 |
CH2CO | CO insertion | 6.79 × 10−13 | 5.88 × 10−4 |
CH2CHO | CO insertion | 6.79 × 10−17 | 5.88 × 10−4 |
Pressure | CH3CHO Selectivity (%) | CH4 Selectivity (%) |
---|---|---|
3 Pa | 0.00 | 100.00 |
3 kPa | 2.47 | 97.53 |
3 MPa | 83.59 | 16.41 |
Catalysts | T (°C) | GHSV (h−1) | XCO (mol%) | Carbon-Based, CO2-Free Selectivity (mol%) | MeOHSTY g/(kgcat h) | TOF a molMeOH m−2 s−1 | ||
---|---|---|---|---|---|---|---|---|
MeOH | C2+ Oxygenates | HC | ||||||
CuNi/SiO2 | 250 | 2000 | 5.2 | 99.2 | 0.4 | 0.4 | 65 | 6.7 × 10−5 |
CuNi/SiO2 | 275 | 2000 | 12.1 | 99 | 0.4 | 0.6 | 167 | 1.7 × 10−4 |
CuNi/SiO2 | 300 | 4160 | 11.2 | 99 | 0.5 | 0.5 | 330 | 3.4 × 10−4 |
Cu/ZnO/Al2O3 | 250 | 16,000 | 7.2 | 99 | 0.9 | 0.1 | 842 | 9.2 × 10−5 |
Cu/ZnO/Al2O3 | 275 | 16,000 | 13.5 | 97.6 | 2.1 | 0.3 | 1315 | 1.4 × 10−4 |
Cu/ZnO/Al2O3 | 300 | 32,000 | 12.7 | 96.3 | 2.8 | 0.9 | 2666 | 2.9 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamaati, M.; Torkashvand, M.; Sarabadani Tafreshi, S.; de Leeuw, N.H. A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer–Tropsch Synthesis over Transition Metals. Molecules 2023, 28, 6525. https://doi.org/10.3390/molecules28186525
Jamaati M, Torkashvand M, Sarabadani Tafreshi S, de Leeuw NH. A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer–Tropsch Synthesis over Transition Metals. Molecules. 2023; 28(18):6525. https://doi.org/10.3390/molecules28186525
Chicago/Turabian StyleJamaati, Maryam, Mostafa Torkashvand, Saeedeh Sarabadani Tafreshi, and Nora H. de Leeuw. 2023. "A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer–Tropsch Synthesis over Transition Metals" Molecules 28, no. 18: 6525. https://doi.org/10.3390/molecules28186525
APA StyleJamaati, M., Torkashvand, M., Sarabadani Tafreshi, S., & de Leeuw, N. H. (2023). A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer–Tropsch Synthesis over Transition Metals. Molecules, 28(18), 6525. https://doi.org/10.3390/molecules28186525