Recent Development of Novel Aminoethyl-Substituted Chalcones as Potential Drug Candidates for the Treatment of Alzheimer’s Disease
Abstract
:1. Introduction
2. Results and Discussion
2.1. Scaffold-Morphing-Based Bioisosteric Replacement
2.2. ADME Studies
2.3. Molecular Docking Studies
2.4. Binding Mode and Interactions of PS5 and PS10 with AChE
2.5. Chemistry
2.6. Biological Activity
2.6.1. In Vitro AChE Inhibition Studies
2.6.2. AGE Formation Inhibitory Activity
2.6.3. In Vitro Antioxidant Activity
2.6.4. In Vivo Activity
2.7. Molecular Dynamic Simulation Analysis
3. Material and Methods
3.1. Scaffold Morphing
3.2. Prediction of In Silico Pharmacokinetic Properties
3.3. Molecular Docking
3.4. Chemistry
- 3-(4-Hydroxyphenyl)-1-phenylprop-2-en-1-one (PS-1): Solid crystalline, yellow, yield 70%, m.p.: 187–189 °C; 1H NMR (500 MHz, CDCl3, δ ppm): 8.01–7.99 (2H, m, ArH), 7.79–7.76 (1H, d, J = 15.65 Hz, -CH), 7.58–7.55 (3H, d, m, ArH), 7.51–7.48 (2H, t, J1 = 7.85, J2 = 7.25 Hz, ArH), 7.42–7.39 (1H, d, J = 15.65 Hz, -CH), 6.90–6.88 (2H, m, ArH), 5.52 (1H, brs, OH). 13C NMR (500 MHz, DMSO, δ ppm): 188.87, 160.07, 144.40, 137.86, 132.6, 130.85, 128.54, 128.18, 125.62, 118.35, 115.71; IR(KBr): 3500–3100 cm−1 (-OH str, m); 1647 cm−1 (C=O, s); 1591 cm−1 (Ar C=C, s). MS (ESI) m/z = 225.11 (M + H)+. Rf value: 0.42 (hexane:ethylacetate, 7:3).
- 3-(4-(2-Bromoethoxy)phenyl)-1-phenylprop-2-en-1-one (1): Solid crystalline white, yield 70%, m.p.: 86–87 °C; 1H NMR (500 MHz, CDCl3, δ ppm): 8.01–7.99 (2H, d, J = 7.8 Hz, ArH), 7.78–7.75 (1H, d, J =12.52 Hz, -CH), 7.62–7.55 (3H, m, ArH), 7.51–7.48 (2H, t, J1 =7.75, J2 = 7.35 Hz, ArH), 7.44–7.40 (1H, d, J = 15.65 Hz, -CH), 6.95–6.93 (2H, d, J = 8.7 Hz, ArH), 4.34–4.31 (2H, t, J1 = J2 = 6.25 Hz, -CH2), 3.66–3.63 (2H, t, J1 = J2 = 6.25 Hz, -CH2), 13C NMR (500 MHz, CDCl3, δ ppm): 190.61, 160.58, 144.62, 138.49, 132.54, 130.26, 128.57, 128.43, 127.97, 120.12, 114.94, 65.02, 29.96; IR(KBr, cm−1): 3059 cm−1 (=C-H str, m); 1645 cm−1 (C=O) (s); 1605 cm−1 (Ar C=C str, m); MS (ESI) m/z = 331.03 (M + H)+. Rf value: 0.38 (hexane:ethylacetate, 8:2).
- 3-(4-(2-(Dimethylamino)ethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-2): Intermediate 1 was treated with dimethylamine according to the general procedure to give the desired product PS-2 as yellow, solid, yield 60%, m.p.: 92–95 °C; IR(KBr, cm−1): 1655 cm−1 (C=O, s); 1596 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 7.90–7.89 (2H, d, J = 7.82, 1.35 Hz, ArH), 7.68–7.65 (1H, d, J = 15.65 Hz, -CH), 7.49–7.43 (3H, m, ArH), 7.40–7.36 (2H, m, ArH), 7.32–7.29 (1H, d, J = 15.65 Hz, -CH), 6.85–6.83 (2H, d, J = 8.7 Hz, ArH), 4.02–3.98 (2H, m, -CH2), 2.64–2.62 (2H, t, J = 5.65, 5.7 Hz, -CH2), 2.23–2.21 (m, 6H, N(CH3)2), 13C NMR (500 MHz, CDCl3, δ ppm): 190.62, 158.65, 144.45, 138.46, 132.27, 130.24, 128.44, 128.33, 127.22, 119.81, 114.73, 66.48, 61.63, 46.12; MS (ESI) m/z = 296.16 (M + H)+. Rf value: 0.62 CHCl3:MeOH, 9:1).
- 3-(4-(2-(Diethylamino)ethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-3): Intermediate 1 was treated with diethylamine according to the general procedure to give the desired product PS-3 as light yellow, solid, yield 55%, m.p.: 89–91 °C; IR(KBr, cm−1): 1655 cm−1 (C=O, s); 1590 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 7.93–7.92 (2H, d, J = 7.4 HZ, ArH), 7.72–7.68 (1H, d, J = 15.7 Hz, -CH), 7.55–7.47 (3H, m, ArH), 7.43–7.31 (3H, m, ArH, -CH), 6.86–6.85 (2H, d, J = 8.55 Hz, ArH), 4.04–4.02 (2H, t, J1 = J2 = 6.25 Hz, -CH2), 2.85–2.83 (2H, t, J1 = J2 = 6.1 Hz, -CH2), 2.62–2.57 (4H, q, J1 = J2 = J3 = 7.1 Hz, 2(-CH2)), 1.02–1.00 (6H, t, J1 = J2 = 7.1 Hz, 2(-CH3)); 13C NMR (500 MHz, CDCl3, δ ppm): 190.61, 160.58, 144.12, 138.44, 132.34, 130.24, 128.54, 128.33, 127.21, 119.79, 114.71, 66.11, 61.62, 46.12, 15.06; MS (ESI) m/z = 324.19 (M + H)+. Rf value: 0.56 (CHCl3:MeOH, 9:1).
- 3-(4-(2-(Benzyl(methyl)amino)ethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-4): Intermediate 1 was treated with N-benzylmethylamine according to the general procedure to give the desired product PS-4 as yellow, solid, yield 55%, m.p.: 115–117 °C; IR(KBr, cm−1): 1655 cm−1 (C=O, s); 1590 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 8.01–7.99 (2H, d, J = 7.35, 1.35 Hz, ArH), 7.79–7.76 (1H, d, J = 15.5 Hz, -CH), 7.62–7.55 (3H, m, ArH), 7.52–7.45 (2H, m, ArH), 7.44–7.39 (1H, d, J = 15.45 Hz, -CH), 7.34–7.30 (3H, m, ArH), 7.27–7.25 (2H, d, J = 8.15 Hz, ArH), 6.92–6.90 (2H, d, J = 8.15 Hz, ArH), 4.14–4.12 (2H, t, J = 6.25 Hz, -CH2), 3.63 (2H, s, -CH2), 2.87–2.84 (2H, t, J = 5.75 Hz, -CH2), 2.36 (3H, s, -CH3); 13C NMR (500 MHz, CDCl3, δ ppm): 190.55, 160.94, 144.74, 138.54, 138.34, 130.37, 130.24, 129.12, 128.58, 128.44, 128.33, 127.22, 119.81, 117.13, 115.01, 66.48, 62.68, 55.56, 42.95; MS (ESI) m/z = 372.19 (M + H)+; Rf value: 0.51 (CHCl3:MeOH, 9:1).
- 1-Phenyl-3-(4-(2-(piperidin-1-yl)ethoxy)phenyl)prop-2-en-1-one (PS-5): Intermediate 1 was treated with N-benzylmethyl amine according to the general procedure to give the desired product PS-5 as light brown, solid, yield 63%, m.p.: 89–91 °C; IR(KBr, cm−1): 1655 cm−1 (C=O, s); 1590 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 8.02–7.99 (2H, m, ArH), 7.79–7.76 (1H, d, J = 15.65 Hz, -CH), 7.63–7.55 (3H, m, ArH), 7.51–7.48 (2H, m, ArH), 7.42–7.39 (1H, d, J = 15.65 Hz, -CH), 6.94–6.93 (2H, d, J = 8.75, ArH), 4.18–4.15 (2H, t, J = 6 Hz, -CH2), 2.83–2.81 (2H, t, J = 5.9 Hz, -CH2), 2.55 (4H, s, 2(CH2)), 1.65–1.46 (6H, m, 3(CH2)); 13C NMR (500 MHz, CDCl3, δ ppm): 190.61, 160.90, 144.71, 138.54, 132.55, 130.22, 128.57, 128.43, 127.71, 119.85, 115.04, 66.04, 57.72, 55.05, 25.79, 24.06; MS (ESI) m/z = 336.20 (M + H)+; Rf value: 0.51 (CHCl3:MeOH, 9:1).
- 1-Phenyl-3-(4-(2-(piperazin-1-yl)ethoxy)phenyl)prop-2-en-1-one (PS-6): Intermediate 1 was treated with piperazine according to the general procedure to give the desired product PS-6 as light yellow, solid, yield 65%, m.p: 96–99 °C; IR(KBr, cm−1): 1655 cm−1 (C=O, s); 1596 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 8.01–7.99 (2H, m, ArH), 7.88–7.86 (1H, d, J = 11.95 Hz, -CH), 7.80–7.74 (2H, m, ArH), 7.52–7.47 (2H, m, ArH), 7.18–7.14 (1H, m, ArH), 7.00–6.98 (1H, d, J = 8.7 Hz, -CH), 6.94–6.92 (2H, d, J = 8.7, ArH), 4.16–4.14 (2H, t, J = 5.8 Hz, -CH2), 2.93–2.91 (4H, t, J = 4.7 Hz, 2(CH2)), 2.82–2.80 (2H, t, J = 5.8 Hz, -CH2), 2.77–2.75 (4H, t, J = 5.7 Hz, 2(CH2)), 2.65 (1H, s, NH); 13C NMR (500 MHz, CDCl3, δ ppm): 190.60, 160.88, 144.68, 138.51, 132.57, 130.23, 128.54, 128.42, 127.74, 119.87, 115.04, 66.00, 57.68, 54.89, 45.97; MS (ESI) m/z= 337.19 (M + H)+; Rf value: 0.25 (CHCl3:MeOH, 9:1).
- 3-(4-(2-Morpholinoethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-7): Intermediate 1 was treated with morpholine according to the general procedure to give the desired product PS-7 as light pink, solid, yield 55%, m.p.: 104-106 °C; IR(KBr, cm−1): 1655 cm−1 (C=O, s); 1591 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 8.01–8.00 (2H, d, J = 6.45 Hz, ArH), 7.79–7.76 (1H, d, J = 15.65 Hz, -CH), 7.62–7.55 (3H, m, ArH), 7.51–7.48 (2H, t, J = 7.55, 7.35 Hz, ArH), 7.44–7.39 (1H, d, J = 15.65 Hz, -CH), 6.94–6.93 (2H, d, J = 8.55 Hz, ArH), 4.17–4.15 (2H, t, J = 5.55 Hz, -CH2), 3.75–3.73 (4H, t, J = 4.4 Hz, 2(CH2)), 2.84–2.82 (2H, t, J = 5.55 Hz, -CH2), 2.59 (4H, s, 2(CH2)); 13C NMR (500 MHz, CDCl3, δ ppm): 190.58, 160.78, 144.61, 138.51, 132.58, 130.23, 128.58, 128.43, 127.83, 119.93, 115.10, 66.88, 65.95, 57.51, 54.10; MS (ESI) m/z = 338.20 (M + H)+; Rf value: 0.36 (CHCl3:MeOH, 9:1).
- 1-Phenyl-3-(4-(2-(pyrrolidin-1-yl)ethoxy)phenyl)prop-2-en-1-one (PS-8): Intermediate 1 was treated with pyrrolidine according to the general procedure to give the desired product PS-8 as dark brown, solid crystalline, yield 50%, m.p: 105-107 °C; IR(KBr, cm–1): 1655 cm–1 (C=O, s); 1591 cm–1 (Ar C=C str, s), 1300–1100 cm–1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 7.65–7.50 (3H, m, ArH, -CH), 7.44–7.40 (2H, t, J = 7.8 Hz, ArH), 7.37–7.32 (1H, m, ArH), 7.21–7.19 (2H, d, J = 8.55 Hz, ArH), 6.99–6.97 (2H, d, J = 8.6 Hz, ArH) or 6.99–6.94 (2H, m, ArH), 6.71–6.68 (1H, d, J = 14.35 Hz, -CH), 4.17–4.14 (2H, t, J = 5.9 Hz, CH2), 2.95–2.92 (2H, t, J = 6 Hz, CH2), 2.80–2.56 (4H, m, 2(CH2)), 1.95–1.76 (4H, m, 2(CH2)); 13C NMR (500 MHz, CDCl3, δ ppm): 199.49, 158.32, 148.56, 142.73, 135.48, 130.16, 128.76, 127.41, 126.19, 125.14, 114.88, 67.00, 55.04, 54.66, 23.49; MS (ESI) m/z = 322.18 (M + H)+; Rf value: 0.51 (CHCl3:MeOH, 9:1).
- 3-(4-(2-(1H-Imidazol-1-yl)ethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-9): Intermediate 1 was treated with pyrrolidine according to the general procedure to give the desired product PS-9 as light yellow, solid, yield 70%, m.p.: 93–96 °C; IR(KBr, cm−1): 1655 cm−1 (C=O, s); 1591 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 8.02–7.99 (2H,m, ArH), 7.80–7.77 (1H, d, J = 15.55 Hz, CH), 7.62–7.61 (2H, d, J = 8.7 Hz, ArH), 7.59–7.56 (1H, t, J = 7.5 Hz, ArH), 7.51–7.48 (2H, t, J = 7.75, 7.3 Hz, ArH), 7.44–7.40 (1H, dd, J = 15.45, 7.3 Hz, -CH), 7.09–7.05 (1H, d, ArH), 7.05–7.03 (1H, m, ArH), 7.00–6.98 (2H, d, J = 8.7 Hz, ArH), 6.90–6.89 (1H, d, J = 8.7 Hz, ArH), 4.37–4.35 (2H, t, J = 4.95, 5.1 Hz, -CH2), 4.27–4.25 (2H, t, J = 5.1 Hz, -CH2); 13C NMR (500 MHz, CDCl3, δ ppm): 190.58, 160.59, 144.50, 138.48, 138.40, 132.72, 130.27, 128.60, 128.17, 128.07, 120.40, 120.14, 117.13, 115.10, 66.53, 46.45; MS (ESI) m/z = 319.14 (M + H)+; Rf value: 0.48 (CHCl3:MeOH, 9:1).
- 3-(4-(2-(p-Methylpiperazin-1-yl)ethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-10): Intermediate 1 was treated with N-methylpiperazine according to the general procedure to give the desired product PS-10 as white, solid, yield 60%, m.p.: 138-141 °C; IR(KBr, cm−1): 1655 cm−1 (C=O, s); 1590 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 8.02–7.99 (2H,m, ArH), 7.80–7.76 (1H, dd, J = 15.65, 6.15 Hz, -CH), 7.63–7.55 (3H, m, ArH), 7.51–7.48 (2H, m, ArH), 7.44–7.39 (1H, dd, J = 9.6, 6 Hz, -CH), 7.00–6.93 (2H, dd, J = 8.7 Hz, ArH), 6.90–6.89 (1H, d, J = 8.7 Hz, ArH), 4.16–4.14 (2H, t, J = 5.8 Hz, -CH2), 2.85–2.83 (2H, t, J = 5.8, 5.01 Hz, -CH2), 2.64 (4H, s, -2(CH2)), 2.51 (4H, s, -2(CH2)), 2.31 (3H, s, CH3); 13C NMR (500 MHz, CDCl3, δ ppm): 190.59, 160.87, 144.66, 138.53, 132.56, 130.26, 128.59, 128.43, 127.76, 119.88, 115.04, 66.15, 57.01, 55.00, 53.50, 45.94; MS (ESI) m/z = 351.21 (M + H)+; Rf value: 0.24 (CHCl3:MeOH, 9:1).
3.5. Biological Activity
3.5.1. In Vitro Studies
In Vitro AChE Inhibition
AGE Inhibitory Activity
Free Radical Scavenging Activity
3.5.2. In Vivo Studies
Animals
Dementia Induction
Experimental Groups
Behavioral Studies Using MWM (Morris Water Maze)
Brain Biochemical Estimations
3.6. Molecular Dynamic Simulation Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhou, B.; Chengguo, X. Diverse molecular targets for chalcones with varied bioactivities. Med. Chem. 2015, 5, 388–404. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.; Andrade, C.H.; Neeves, B.J. Chalcone derivatives: Promising starting points for drug design. Molecules 2017, 22, 1210. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Sharma, P.; Joshi, P.; Saini, K.; Sharma, A.; Puri, V.; Chander, J.; Singh, T.G.; Arora, S. Chalcones: A privileged scaffold with diverse biological activities. Plant Arch. 2020, 20, 3812–3819. [Google Scholar]
- Batovska, D.I.; Todorova, I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol. 2010, 5, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, P.M.; Prabhakar, P.K.; Doble, M. Synthesis, antioxidant evaluation, and quantitative structure–activity relationship studies of chalcones. Med. Chem. Res. 2011, 20, 482–492. [Google Scholar] [CrossRef]
- Go, M.L.; Wu, X.; Liu, X.L. Chalcones: An update on cytotoxic and chemoprotective properties. Curr. Med. Chem. 2005, 12, 483–499. [Google Scholar] [CrossRef]
- Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cara, C.L.; Cruz-Lopez, O.; Preti, D.; Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Zonta, N.; et al. Design, synthesis, and biological evaluation of thiophene analogues of chalcones. Bioorg. Med. Chem. 2008, 16, 5367–5376. [Google Scholar] [CrossRef]
- Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 2011, 6, 125–147. [Google Scholar] [CrossRef]
- Lee, J.S.; Kang, Y.; Kim, J.T.; Thapa, D.; Lee, E.S.; Kim, J.A. The anti-angiogenic and anti-tumor activity of synthetic phenylpropenone derivatives is mediated through the inhibition of receptor tyrosine kinases. Eur. J. Pharmacol. 2012, 677, 22–30. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Moorthy, N.S.H.N.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Recent Pat. Anti-Cancer Drug Discov. 2015, 10, 97–115. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, P.; Singh, P.K.; Singh, T.G.; Saini, B. Medicinal potential of heterocyclic compounds from diverse natural sources for the management of cancer. Mini Rev. Med. Chem. 2020, 20, 942–957. [Google Scholar] [CrossRef] [PubMed]
- Hayat, F.; Moseley, E.; Salahuddin, A.; Van Zyl, R.L.; Azam, A. Antiprotozoal activity of chloroquinoline based chalcones. Eur. J. Med. Chem. 2011, 46, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Batovska, D.I.; Medhi, B.; Radotra, B.D.; Bhalla, A.; Markova, N.; Sehgal, R. In vitro anti-malarial efficacy of chalcones: Cytotoxicity profile, mechanism of action and their effect on erythrocytes. Malar. J. 2019, 18, 421. [Google Scholar] [CrossRef] [PubMed]
- Bak, E.J.; Park, H.G.; Lee, C.H.; Lee, T.I.; Woo, G.H.; Na, Y.H.; Yoo, Y.J.; Cha, J.H. Effects of novel chalcone derivatives on α-glucosidase, dipeptidyl peptidase-4, and adipocyte differentiation in vitro. BMB Rep. 2011, 44, 410–414. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Asati, V.; Bharti, S.K. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur. J. Med. Chem. 2015, 92, 839–865. [Google Scholar] [CrossRef]
- Shukla, P.; Satyanarayana, M.; Verma, P.C.; Tiwari, J.; Dwivedi, A.P.; Srivastava, R.; Rehuja, N.; Srivastava, S.P.; Gautam, S.; Tamrakar, A.K.; et al. Chalcone-based aryloxypropanolamine as a potential antidiabetic and antidyslipidaemic agent. Curr. Sci. 2017, 25, 1675–1689. [Google Scholar] [CrossRef]
- Kontogiorgis, C.; Mantzanidou, M.; Hadjipavlou-Litina, D. Chalcones and their potential role in inflammation. Mini Rev. Med. Chem. 2008, 8, 1224–1242. [Google Scholar] [CrossRef]
- Bukhari, S.N.; Zhang, X.; Jantan, I.; Zhu, H.L.; Amjad, M.W.; Masand, V.H. Synthesis, molecular modeling, and biological evaluation of novel 1, 3-diphenyl-2-propen-1-one based pyrazolines as anti-inflammatory agents. Chem. Biol. Drug Des. 2015, 85, 729–742. [Google Scholar] [CrossRef]
- Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem. 2014, 85, 758–777. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef]
- Mathew, B.; Haridas, A.; Uçar, G.; Baysal, I.; Joy, M.; Mathew, G.E.; Lakshmanan, B.; Jayaprakash, V. Synthesis, biochemistry, and computational studies of brominated thienyl chalcones: A new class of reversible MAO-B inhibitors. ChemMedChem 2016, 11, 1161–1171. [Google Scholar] [CrossRef]
- Zhang, X.; Rakesh, K.P.; Bukhari, S.N.; Balakrishna, M.; Manukumar, H.M.; Qin, H.L. Multi-targetable chalcone analogs to treat deadly Alzheimer’s disease: Current view and upcoming advice. Bioorg. Chem. 2018, 80, 86–93. [Google Scholar] [CrossRef]
- Mathew, B.; Parambi, D.G.; Sivasankarapillai, V.S.; Uddin, M.S.; Suresh, J.; Mathew, G.E.; Joy, M.; Marathakam, A.; Gupta, S.V. Perspective design of chalcones for the management of CNS disorders: A mini-review. CNS Neurol. Disord Drug Targets 2019, 18, 432–445. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, M.; Mathew, B. An Update of Synthetic Approaches and Structure-Activity Relationships of Various Classes of Human MAO-B Inhibitors. ChemistrySelect 2021, 6, 1404–1429. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer’s disease: A review with structural aspects. Life Sci. 2023, 320, 121568. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Rawal, R.; Sharma, P.; Singh, T.; Singh, M.; Singh, V. Mitochondrial dysfunction in Alzheimer’s disease: Opportunities for drug development. Curr. Neuropharmacol. 2022, 20, 675–692. [Google Scholar] [CrossRef] [PubMed]
- Craig, L.A.; Hong, N.S.; McDonald, R.J. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci. Biobehav. Rev. 2011, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yao, P.F.; Chen, S.B.; Huang, Z.H.; Huang, S.L.; Tan, J.H.; Li, D.; Gu, L.Q.; Huang, Z.S. Synthesis and evaluation of 7,8-dehydrorutaecarpine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2013, 63, 299–312. [Google Scholar] [CrossRef]
- Münch, G.; Thome, J.; Foley, P.; Schinzel, R.; Riederer, P. Advanced glycation end products in ageing and Alzheimer’s disease. Brain Res. Rev. 1997, 23, 134–143. [Google Scholar] [CrossRef]
- Grutzendler, J.; Morris, J.C. Cholinesterase inhibitors for Alzheimer’s disease. Drugs 2001, 61, 41–52. [Google Scholar] [CrossRef]
- Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res. 2013, 36, 375–399. [Google Scholar] [CrossRef] [PubMed]
- Nistico, R.; Borg, J.J. Aducanumab for Alzheimer’s disease: A regulatory perspective. Pharmacol. Res. 2021, 171, 105754. [Google Scholar] [CrossRef] [PubMed]
- Tanoli, S.T.; Ramzan, M.; Hassan, A.; Sadiq, A.; Jan, M.S.; Khan, F.A.; Ullah, F.; Ahmad, H.; Bibi, M.; Mahmood, T.; et al. Design, synthesis and bioevaluation of tricyclic fused ring system as dual binding site acetylcholinesterase inhibitors. Bioorg. Chem. 2019, 83, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Sanad, S.M.; Mekky, A.E. Novel nicotinonitrile-coumarin hybrids as potential acetylcholinesterase inhibitors: Design, synthesis, in vitro and in silico studies. J. Iran. Chem. Soc. 2021, 18, 213–224. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, G.; Sehgal, A.; Bhardwaj, S.; Singh, S.; Buhas, C.; Judea-Pusta, C.; Uivarosan, D.; Munteanu, M.A.; Bungau, S. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives. Int. J. Mol. Sci. 2021, 22, 1413. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, D.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Andronie-Cioara, F.L.; Toma, M.M.; Bungau, S.; Bumbu, A.G. Role of monoamine oxidase activity in Alzheimer’s disease: An insight into the therapeutic potential of inhibitors. Molecules 2021, 26, 3724. [Google Scholar] [CrossRef]
- Mathew, B.; Suresh, J.; Anbazghagan, S.; Paulraj, J.; Krishnan, G.K. Heteroaryl chalcones: Mini review about their therapeutic voyage. Biomed. Prev. Nutr. 2014, 4, 451–458. [Google Scholar] [CrossRef]
- Mathew, B.; Uçar, G.; Mathew, G.E.; Mathew, S.; Kalatharakkal, P.P.; Moolayil, F.; Mohan, S.; Varghese Gupta, S. Monoamine Oxidase Inhibitory Activity: Methyl-versus Chlorochalcone Derivatives. ChemMedChem 2016, 11, 2649–2655. [Google Scholar] [CrossRef]
- Sang, Z.; Wang, K.; Zhang, P.; Shi, J.; Liu, W.; Tan, Z. Design, synthesis, in-silico and biological evaluation of novel chalcone derivatives as multi-function agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2019, 180, 238–252. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; Iborra, S.; Primo, J. Base catalysis for fine chemicals production: Claisen-Schmidt condensation on zeolites and hydrotalcites for the production of chalcones and flavanones of pharmaceutical interest. J. Catal. 1995, 151, 60–66. [Google Scholar] [CrossRef]
- Polo, E.; Ibarra-Arellano, N.; Prent-Peñaloza, L.; Morales-Bayuelo, A.; Henao, J.; Galdámez, A.; Gutierrez, M. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bis-chalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors. Bioorg. Chem. 2019, 90, 103034. [Google Scholar] [CrossRef] [PubMed]
- Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.; Sussman, J. Acetylcholinesterase: From 3D structure to function. Chem.-Biol. Interact. 2010, 187, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr. Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Bagga, S.; Kumar, M. Current status of Alzheimer’s disease and pathological mechanisms investigating the therapeutic molecular targets. Curr. Mol. Med. 2023, 23, 492–508. [Google Scholar] [CrossRef]
- Wan Chik, M.; Ramli, N.A.; Mohamad Nor Hazalin, N.A.; Surindar Singh, G.K. Streptozotocin mechanisms and its role in rodent models for Alzheimer’s disease. Toxin Rev. 2023, 42, 491–502. [Google Scholar] [CrossRef]
- Silva, S.S.; Tureck, L.V.; Souza, L.C.; Mello-Hortega, J.V.; Piumbini, A.L.; Teixeira, M.D.; Furtado-Alle, L.; Vital, M.A.; Souza, R.L. Animal model of Alzheimer’s disease induced by streptozotocin: New insights about cholinergic pathway. Brain Res. 2023, 1799, 148175. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, N. Calcineurin Inhibition and Protein Kinase A Activation Limits Cognitive Dysfunction and Histopathological Damage in a Model of Dementia of the Alzheimer’s Type. Curr. Neurovasc. Res. 2018, 15, 234–245. [Google Scholar] [CrossRef]
- Salkovic-Petrisic, M.; Knezovic, A.; Hoyer, S.; Riederer, P. What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research? J. Neural Transm. 2013, 120, 233–252. [Google Scholar] [CrossRef]
- Rani, R.; Kumar, A.; Jaggi, A.S.; Singh, N. Pharmacological investigations on efficacy of Phlorizin a sodium-glucose co-transporter (SGLT) inhibitor in mouse model of intracerebroventricular streptozotocin induced dementia of AD type. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 1057–1064. [Google Scholar] [CrossRef]
- Hoyer, S. The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. J. Neural Transm. 2002, 109, 991–1002. [Google Scholar] [CrossRef]
- Akhtar, A.; Dhaliwal, J.; Sah, S.P. 7, 8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance. Psychopharmacology 2021, 238, 1991–2009. [Google Scholar] [CrossRef]
- Wierońska, J.M.; Cieślik, P.; Burnat, G.; Kalinowski, L. Activation of Metabotropic Glutamate Receptor (mGlu2) and Muscarinic Receptors (M1, M4, and M5), Alone or in Combination, and Its Impact on the Acquisition and Retention of Learning in the Morris Water Maze, NMDA Expression and cGMP Synthesis. Biomolecules 2023, 13, 1064. [Google Scholar] [CrossRef]
- Singh, V.; Kaur, K.; Kaur, S.; Shri, R.; Singh, T.G.; Singh, M. Trimethoxyflavones from Ocimum basilicum L. leaves improve long term memory in mice by modulating multiple pathways. J. Ethnopharmacol. 2022, 295, 115438. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.Z.; Hassan, Z.; Has, A.T.C. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Exp. Anim. 2022, 71, 264–280. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.K.; Souza, L.C.; Azevedo, E.M.; Bail, E.L.; Zanata, S.M.; Andreatini, R.; Vital, M.A. Melatonin reduces β-amyloid accumulation and improves short-term memory in streptozotocin-induced sporadic Alzheimer’s disease model. IBRO Neurosci. Rep. 2023, 14, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Raheja, S.; Girdhar, A.; Kamboj, A.; Lather, V.; Pandita, D. Aegle marmelos leaf extract ameliorates the cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin in male rats. Life Sci. 2019, 221, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Silakari, O. Design, synthesis and biological evaluation of novel 2-phenyl-1-benzopyran-4-one derivatives as potential poly-functional anti-Alzheimer’s agents. RSC Adv. 2016, 6, 108411–108422. [Google Scholar] [CrossRef]
- Sukumaran, S.D.; Chee, C.F.; Viswanathan, G.; Buckle, M.J.; Othman, R.; Abd. Rahman, N.; Chung, L.Y. Synthesis, biological evaluation and molecular modelling of 2′-hydroxychalcones as acetylcholinesterase inhibitors. Molecules 2016, 21, 955. [Google Scholar] [CrossRef]
- Aggarwal, H.; Gupta, S.; Sharma, P.; Sharma, B.M.; Sharma, B. Neurobehavioral and neurobiochemical effect of atomoxetine and N-acetylcysteine in streptozotocin diabetes induced endothelial dysfunction and related dementia. Physiol. Behav. 2022, 249, 113767. [Google Scholar] [CrossRef]
- Plascencia-Villa, G.; Perry, G. Neuropathological changes provide insights into key mechanisms related to Alzheimer’s disease and related dementia. Am. J. Pathol. 2022, 192, 1340–1346. [Google Scholar] [CrossRef]
- Kara, B.; Gordon, M.N.; Gifani, M.; Dorrance, A.M.; Counts, S.E. Vascular and Nonvascular Mechanisms of Cognitive Impairment and Dementia. Clin. Geriatr. Med. 2023, 39, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Krishan, P.; Shri, R. Antioxidant-mediated neuroprotection by Allium schoenoprasum L. leaf extract against ischemia reperfusion-induced cerebral injury in mice. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar] [PubMed]
- Singh, M.; Kaur, M.; Singh, N.; Silakari, O. Exploration of multi-target potential of chromen-4-one based compounds in Alzheimer’s disease: Design, synthesis and biological evaluations. Bioorg. Med. Chem. 2017, 25, 6273–6285. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Meymand, A.Z.; Khodagholi, F.; Kamsorkh, H.M.; Asadi, E.; Noori, M.; Rahimian, K.; Shahrbabaki, A.S.; Talebi, A.; Parsaiyan, H.; et al. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: A review of preclinical and clinical studies. Nutr. Neurosci. 2023, 26, 156–172. [Google Scholar] [CrossRef]
- Langdon, S.R.; Ertl, P.; Brown, N. Bioisosteric replacement and scaffold hopping in lead generation and optimization. Mol. Inform. 2010, 29, 366–385. [Google Scholar] [CrossRef]
- Dick, A.; Cocklin, S. Bioisosteric replacement as a tool in anti-HIV drug design. Pharmaceuticals 2020, 13, 36. [Google Scholar] [CrossRef]
- Shandil, R.; Panda, M.; Sadler, C.; Ambady, A.; Panduga, V.; Kumar, N.; Mahadevaswamy, J.; Sreenivasaiah, M.; Narayan, A.; Guptha, S.; et al. Scaffold morphing to identify novel DprE1 inhibitors with antimycobacterial activity. ACS Med. Chem. Lett. 2019, 10, 1480. [Google Scholar] [CrossRef]
- Shan, J.; Ji, C. MolOpt: A web server for drug design using bioisosteric transformation. Curr. Comput. Aided Drug Des. 2020, 16, 460–466. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead-and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.-S.; Le, M.-T.; Tran, T.-D.; Tran, T.-H.; Thai, K.-M. Design of Curcumin and Flavonoid Derivatives with Acetylcholinesterase and Beta-Secretase Inhibitory Activities Using in Silico Approaches. Molecules 2020, 25, 3644. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.-Q.; Baecker, D.; Mai Dung, D.T.; Phuong Nhung, N.; Thi Thuan, N.; Nguyen, P.L.; Phuong Dung, P.T.; Huong, T.T.L.; Rasulev, B.; Casanola-Martin, G.M.; et al. Development of Activity Rules and Chemical Fragment Design for In Silico Discovery of AChE and BACE1 Dual Inhibitors against Alzheimer’s Disease. Molecules 2023, 28, 3588. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, N.; Aradate, T.; Sasaki, C.; Kojima, H.; Ohara, M.; Hasegawa, J.; Ubukata, M. Screening system for the Maillard reaction inhibitor from natural product extracts. J. Health Sci. 2002, 48, 520–526. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Alexandre-Silva, V.; Pereira, G.C.; Ribeiro, A.M. Therapeutic approaches using natural substances on the streptozotocin-induced animal model of sporadic Alzheimer’s disease: A systematic review. Adv. Trad. Med. 2023, 1–25. [Google Scholar] [CrossRef]
- Knezovic, A.; Osmanovic-Barilar, J.; Curlin, M.; Hof, P.R.; Simic, G.; Riederer, P.; Salkovic-Petrisic, M. Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. J. Neural Transm. 2015, 122, 577–592. [Google Scholar] [CrossRef]
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef]
- Singh, V.; Krishan, P.; Shri, R. Amelioration of ischaemia reperfusion-induced cerebral injury in mice by liposomes containing Allium cepa fraction administered intranasally. Artif. Cells Nanomed. Biotechnol. 2018, 46, 982–992. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Ohkawa, H. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; Volume 11, p. 84. [Google Scholar] [CrossRef]
S. No. | Compound | Mol.Wt. | HB Acc | HB Don | TPSA | Consensus Log P | Ali Log S | Rule of Five | Brain Permeant | GI Absorption |
---|---|---|---|---|---|---|---|---|---|---|
1 | PS-2 | 295.38 | 3 | 0 | 29.54 | 3.37 | −3.38 | 0 | Yes | High |
2 | PS-3 | 323.43 | 3 | 0 | 29.54 | 4.02 | −4.14 | 0 | Yes | High |
3 | PS-4 | 371.47 | 3 | 0 | 29.54 | 4.7 | −5.56 | 0 | Yes | High |
4 | PS-5 | 335.44 | 3 | 0 | 29.54 | 4.1 | −4.88 | 0 | Yes | High |
5 | PS-6 | 336.43 | 4 | 1 | 41.57 | 2.9 | −3.58 | 0 | Yes | High |
6 | PS-7 | 337.41 | 4 | 0 | 38.77 | 3.19 | −3.82 | 0 | Yes | High |
7 | PS-8 | 321.41 | 3 | 0 | 29.54 | 3.79 | −4.52 | 0 | Yes | High |
8 | PS-9 | 318.37 | 3 | 0 | 44.12 | 3.22 | −4.24 | 0 | Yes | High |
9 | PS-10 | 350.45 | 4 | 0 | 32.78 | 3.15 | −3.88 | 0 | Yes | High |
10 | PS-11 | 364.48 | 4 | 0 | 32.78 | 3.48 | −4.26 | 0 | Yes | High |
11 | PS-12 | 349.47 | 3 | 0 | 29.54 | 4.39 | −5.26 | 0 | Yes | High |
12 | PS-13 | 378.51 | 4 | 0 | 32.78 | 3.8 | −4.62 | 0 | Yes | High |
13 | PS-14 | 363.49 | 3 | 0 | 29.54 | 4.72 | −5.63 | 0 | Yes | High |
14 | PS-15 | 392.53 | 4 | 0 | 32.78 | 4.13 | −4.99 | 0 | Yes | High |
15 | PS-16 | 377.52 | 3 | 0 | 29.54 | 5.03 | −6 | 0 | Yes | High |
16 | PS-17 | 406.56 | 4 | 0 | 32.78 | 4.45 | −5.37 | 0 | Yes | High |
17 | PS-18 | 391.55 | 3 | 0 | 29.54 | 5.35 | −6.37 | 0 | Yes | High |
18 | PS-19 | 380.48 | 5 | 0 | 42.01 | 3.18 | −4.04 | 0 | Yes | High |
19 | PS-20 | 410.51 | 6 | 0 | 51.24 | 3.14 | −4.21 | 0 | Yes | High |
20 | PS-21 | 440.53 | 7 | 0 | 60.47 | 3.13 | −4.37 | 0 | Yes | High |
21 | PS-22 | 325.4 | 4 | 0 | 38.77 | 3.48 | −4.17 | 0 | Yes | High |
22 | PS-23 | 351.44 | 4 | 0 | 38.77 | 3.77 | −4.68 | 0 | Yes | High |
23 | PS-24 | 365.47 | 4 | 0 | 38.77 | 4.06 | −5.06 | 0 | Yes | High |
24 | PS-25 | 366.45 | 5 | 1 | 50.8 | 2.86 | −3.74 | 0 | Yes | High |
25 | PS-26 | 380.48 | 5 | 0 | 42.01 | 3.18 | −4.04 | 0 | Yes | High |
26 | PS-27 | 295.38 | 3 | 0 | 29.54 | 3.37 | −3.38 | 0 | Yes | High |
27 | PS-28 | 353.45 | 4 | 0 | 38.77 | 4.1 | −4.91 | 0 | Yes | High |
28 | PS-29 | 379.49 | 4 | 0 | 38.77 | 4.37 | −5.42 | 0 | Yes | High |
29 | PS-30 | 339.43 | 4 | 0 | 38.77 | 3.78 | −4.55 | 0 | Yes | High |
30 | PS-31 | 379.49 | 4 | 0 | 38.77 | 4.43 | −5.42 | 0 | Yes | High |
31 | PS-32 | 353.45 | 4 | 0 | 38.77 | 4.14 | −4.93 | 0 | Yes | High |
32 | PS-33 | 367.44 | 5 | 0 | 48 | 3.2 | −3.98 | 0 | Yes | High |
33 | PS-34 | 339.43 | 4 | 0 | 38.77 | 3.8 | −4.56 | 0 | Yes | High |
34 | PS-35 | 387.47 | 3 | 0 | 38.77 | 4.68 | −6.02 | 0 | Yes | High |
35 | PS-36 | 367.48 | 4 | 0 | 38.77 | 4.42 | −5.3 | 0 | Yes | High |
36 | PS-37 | 379.49 | 4 | 0 | 38.77 | 4.3 | −5.5 | 0 | Yes | High |
37 | PS-38 | 381.46 | 5 | 0 | 48 | 3.52 | −4.35 | 0 | Yes | High |
38 | PS-39 | 353.45 | 4 | 0 | 38.77 | 4.1 | −4.92 | 0 | Yes | High |
39 | PS-40 | 337.41 | 4 | 0 | 38.77 | 3.71 | −4.79 | 0 | Yes | High |
40 | PS-41 | 353.45 | 4 | 0 | 38.77 | 4.16 | −5.1 | 0 | Yes | High |
Compound ID | Structure | Docking Score (Kcal/mol) | Interactions |
---|---|---|---|
PS1 | −31.90 | His440, Ser200, Tyr121, Trp279 | |
PS2 | −49.39 | His440, Trp84, Trp279, Ser200, Tyr121, Arg289, Gly119 | |
PS3 | −51.43 | His440, Ser200, Trp84, Trp279, Tyr121, Arg289, Gly119 | |
PS4 | −56.92 | Trp84, Phe330, Trp279, Arg289, Tyr130, His440, Ser200, Gly119 | |
PS5 | −52.28 | His440, Phe330, Trp84, Trp279, Arg289, Ser200, Tyr121, Gly119, Asp72 | |
PS6 | −51.08 | His440, Trp84, Phe330, Arg289, Ser200, Tyr121, Trp279, Gly119 | |
PS7 | −51.01 | Trp84, Ph330, Trp279, His440, Ser 200, Tyr121, Gly119, Arg289 | |
PS8 | −52.83 | His440, Trp84, Phe330, Ser200, Tyr121, Trp279, Arg289 | |
PS9 | −53.45 | His440, Trp279, Trp84, Ser200, Tyr121, Phe330 | |
PS10 | −63.75 | His440, Asp72, Trp279, Trp84, Ser200, Tyr121, Arg289, Phe330 | |
Donepezil | −51.89 | Trp84, Tyr121, His440, Ser200, Trp279, Phe330 |
PS1 | PS (2–10) | |||
---|---|---|---|---|
C. No. | -NR1R2 | AChE Inhibitory Activity (Mean n ± SD, nM) | AGE Inhibitory Activity (Mean n ± SD, µM) | Radical Scavenging Activity (Mean n ± SD, nM) |
PS1 | - | 36.47 ± 0.42 | 43.6 ± 0.08 | 22.41 ± 0.4 |
PS2 | Dimethylamino | 52.51 ± 0.20 | 68.6 ± 0.23 | 49.85 ± 0.11 |
PS3 | Diethylamino | 47.5 ± 0.21 | 67.3 ± 0.33 | 49.41 ± 0.22 |
PS4 | N-benzyl(methyl)amino | 48.8 ± 0.04 | 69.39 ± 0.2 | 49.48 ± 0.21 |
PS5 | Piperidine | 19.71 ± 0.3 | 55.3 ± 0.2 | 34.38 ± 0.4 |
PS6 | Piperazine | 21.4 ± 0.8 | 64.51 ± 0.2 | 46.7 ± 0.24 |
PS7 | Morpholine | 22.72 ± 0.13 | 51.2 ± 0.8 | 37.65 ± 0.24 |
PS8 | Pyrrolidine | 32.72 ± 0.12 | 65.41 ± 0.36 | 48.64 ± 0.18 |
PS9 | Imidazole | 26.3 ± 0.3 | 65.7 ± 0.17 | 48.58 ± 0.42 |
PS10 | 4-Methylpiperazine | 15.3 ± 0.72 | 49.85 ± 0.13 | 22.83 ± 0.2 |
Std. | Donepezil | 15.68 ± 0.26 | -- | -- |
Std. | Ascorbic acid | -- | -- | 21.7 ± 0.08 |
Std. | Aminoguanidine (AG) | -- | 44.3 ± 0.12 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.; Singh, M.; Singh, V.; Singh, T.G.; Singh, T.; Ahmad, S.F. Recent Development of Novel Aminoethyl-Substituted Chalcones as Potential Drug Candidates for the Treatment of Alzheimer’s Disease. Molecules 2023, 28, 6579. https://doi.org/10.3390/molecules28186579
Sharma P, Singh M, Singh V, Singh TG, Singh T, Ahmad SF. Recent Development of Novel Aminoethyl-Substituted Chalcones as Potential Drug Candidates for the Treatment of Alzheimer’s Disease. Molecules. 2023; 28(18):6579. https://doi.org/10.3390/molecules28186579
Chicago/Turabian StyleSharma, Pratibha, Manjinder Singh, Varinder Singh, Thakur Gurjeet Singh, Tanveer Singh, and Sheikh F. Ahmad. 2023. "Recent Development of Novel Aminoethyl-Substituted Chalcones as Potential Drug Candidates for the Treatment of Alzheimer’s Disease" Molecules 28, no. 18: 6579. https://doi.org/10.3390/molecules28186579
APA StyleSharma, P., Singh, M., Singh, V., Singh, T. G., Singh, T., & Ahmad, S. F. (2023). Recent Development of Novel Aminoethyl-Substituted Chalcones as Potential Drug Candidates for the Treatment of Alzheimer’s Disease. Molecules, 28(18), 6579. https://doi.org/10.3390/molecules28186579