Determination of Calcium in Meat Products by Automatic Titration with 1,2-Diaminocyclohexane-N,N,N’,N’-tetraacetic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the CDTA Titration Method
2.1.1. Selection of Optimal Wavelength and Indicator Concentration
2.1.2. Reduction in Interference Caused by Phosphate Ions
2.1.3. Validation of the CDTA Titration Method
2.2. Calcium Content in Commercial Bologna-Type Sausages
2.3. Compliance with the Principles of Green Analytical Chemistry
3. Materials and Methods
3.1. Reagents and Meat Samples
3.2. Procedures and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Paglarini, C.S.; Vidal, V.A.S.; Neri-Numa, I.A.; Pastore, G.M.; Pollonio, M.A.R. Effect of commercial plant extracts on the oxidative stability of mechanically deboned poultry meat during chilled storage. Food Res. Int. 2023, 164, 112358. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shand, P.J. Combined effect of beet powder and lentil flour as a partial nitrite substitute on physicochemical, texture and sensory characteristics, color, and oxidative stability of pork bologna. J. Food Sci. 2022, 87, 4379–4393. [Google Scholar] [CrossRef] [PubMed]
- Thames, H.T.; Fancher, C.A.; Colvin, M.G.; McAnally, M.; Tucker, E.; Zhang, L.; Kiess, A.S.; Dinh, T.T.N.; Sukumaran, A.T. The Prevalence of Salmonella and Campylobacter on Broiler Meat at Different Stages of Commercial Poultry Processing. Animals 2022, 12, 2460. [Google Scholar] [CrossRef] [PubMed]
- Cegiełka, A.; Chmiel, M.; Hać-Szymańczuk, E.; Pietrzak, D. Evaluation of the Effect of Sage (Salvia officinalis L.) Preparations on Selected Quality Characteristics of Vacuum-Packed Chicken Meatballs Containing Mechanically Separated Meat. Appl. Sci. 2022, 12, 12890. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on the public health risks related to mechanically separated meat (MSM) derived from poultry and swine. EFSA J. 2013, 11, 3137. [Google Scholar]
- Iammarino, M.; Miedico, O.; Petrella, A.; Mangiacotti, M.; Chiaravalle, A.E. Innovative approaches for identifying a mechanically separated meat: Evaluation of radiostrontium levels and development of a new tool of investigation. J. Food Sci. Tech. 2020, 57, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Nagdalian, A.A.; Rzhepakovsky, I.V.; Siddiqui, S.A.; Piskov, S.I.; Oboturova, N.P.; Timchenko, L.D.; Lodygin, A.D.; Blinov, A.V.; Ibrahim, S.A. Analysis of the content of mechanically separated poultry meat in sausage using computing microtomography. J. Food Compos. Anal. 2021, 100, 103918. [Google Scholar] [CrossRef]
- Tomaiuolo, M.; Chiaravalle, A.E.; Mangiacotti, M.; Petrella, A.; di Taranto, A.; Iammarino, M. Innovative techniques for identifying a mechanically separated meat: Sample irradiation coupled to electronic spin resonance. Eur. Food Res. Technol. 2019, 245, 2331–2341. [Google Scholar] [CrossRef]
- Branscheid, W.; Judas, M.; Höreth, R. The morphological detection of bone and cartilage particles in mechanically separated meat. Meat Sci. 2009, 81, 46–50. [Google Scholar] [CrossRef]
- Pospiech, M.; Zikmund, T.; Javůrková, Z.; Kaiser, J.; Tremlová, B. An Innovative Detection of Mechanically Separated Meat in Meat Products. Food Anal. Method 2019, 12, 652–657. [Google Scholar] [CrossRef]
- Kiełczyński, P.; Szymański, P.; Szalewski, M.; Wieja, K.; Balcerzak, A.; Ptasznik, S. Application of Density Measurements for Discrimination and Evaluation of Chemical Composition of Different Types of Mechanically Separated Meat (MSM). Molecules 2022, 27, 7600. [Google Scholar] [CrossRef] [PubMed]
- Wieja, K.; Kiełczyński, P.; Szymański, P.; Szalewski, M.; Balcerzak, A.; Ptasznik, S. Identification and investigation of mechanically separated meat (MSM) with an innovative ultrasonic method. Food Chem. 2021, 348, 128907. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.; Kassem, G.M.; Zahran, D.A.; Emara, M.T.; Mansour, N.K. Impact of mechanically recovered poultry meat (MRPM) on proximate analysis and mineral profile of traditional Egyptian luncheon. J. Radiat. Res. Appl. Sci. 2023, 16, 100521. [Google Scholar] [CrossRef]
- Iammarino, M.; Miedico, O.; Sangiorgi, E.; D’Amore, T.; Berardi, G.; Accettulli, R.; Dalipi, R.; Marchesani, G.; Chiaravalle, A.E. Identification of mechanically separated meat in meat products: A simplified analytical approach by ion chromatography with conductivity detection. Int. J. Food Sci. Technol. 2021, 56, 5305–5314. [Google Scholar] [CrossRef]
- Wubshet, S.G.; Wold, J.P.; Böcker, U.; Sanden, K.W.; Afseth, N.K. Raman spectroscopy for quantification of residual calcium and total ash in mechanically deboned chicken meat. Food Control 2019, 95, 267–273. [Google Scholar] [CrossRef]
- Dalipi, R.; Berneri, R.; Curatolo, M.; Borgese, L.; Depero, L.E.; Sangiorgi, E. Total reflection X-ray fluorescence used to distinguish mechanically separated from non-mechanically separated meat. Spectrochim. Acta Part B At. Spectrosc. 2018, 148, 16–22. [Google Scholar] [CrossRef]
- Wilhelm, C.; Hofsommer, M.; Wittke, S. Detection of Mechanically Separated Meat from Chicken in Sausages and Cold Meat by Targeted LC–MS/MS Analysis. Food Anal. Method 2022, 15, 1899–1908. [Google Scholar] [CrossRef]
- Monago-Maraña, O.; Wold, J.P.; Rødbotten, R.; Dankel, K.R.; Afseth, N.K. Raman, near-infrared and fluorescence spectroscopy for determination of collagen content in ground meat and poultry by-products. LWT 2021, 140, 110592. [Google Scholar] [CrossRef]
- Meat and Poultry Labeling Terms. Food Safety and Inspection Service; USDA: Washington, DC, USA, 2015.
- Corrao, P.A.; Malanoski, A.J.; Curry, K.A.; Glover, A. Titrimetric Determination of Calcium in Mechanically Separated Poultry and Beef: Collaborative Study. J. AOAC Int. 1983, 66, 989–992. [Google Scholar] [CrossRef]
- Tasić, A.; Kureljušić, J.; Nešić, K.; Rokvić, N.; Vićentijević, M.; Radović, M.; Pisinov, B. Determination of calcium content in mechanically separated meat. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012056. [Google Scholar] [CrossRef]
- Poitevin, E. Determination of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Phosphorus, Sodium, and Zinc in Fortified Food Products by Microwave Digestion and Inductively Coupled Plasma-Optical Emission Spectrometry: Single-Laboratory Validation and Ring Trial. J. AOAC Int. 2012, 95, 177–185. [Google Scholar] [PubMed]
- Andersen, M.-B.S.; Frydenvang, J.; Henckel, P.; Rinnan, Å. The potential of laser-induced breakdown spectroscopy for industrial at-line monitoring of calcium content in comminuted poultry meat. Food Control 2016, 64, 226–233. [Google Scholar] [CrossRef]
- Leme, F.O.; Silvestre, D.M.; Nascimento, A.N.; Nomura, C.S. Feasibility of using laser induced breakdown spectroscopy for quantitative measurement of calcium, magnesium, potassium and sodium in meat. J. Anal. Atom. Spectrom. 2018, 33, 1322–1329. [Google Scholar] [CrossRef]
- Miedico, O.; Nardelli, V.; D’Amore, T.; Casale, M.; Oliveri, P.; Malegori, C.; Paglia, G.; Iammarino, M. Identification of mechanically separated meat using multivariate analysis of 43 trace elements detected by inductively coupled mass spectrometry: A validated approach. Food Chem. 2022, 397, 133842. [Google Scholar] [CrossRef] [PubMed]
- de Silva, S.M.; Deraniyagala, S.; Walpita, J.K.; Jayaweera, I.; Diyabalanage, S.; Cooray, A.T. Masking Ability of Various Metal Complexing Ligands at 1.0 mM Concentrations on the Potentiometric Determination of Fluoride in Aqueous Samples. J. Anal. Methods Chem. 2020, 2020, 6683309. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Shi, Y.; Yan, H.; Wang, H.; Wu, D.; Grierson, D.; Chen, K. The calcium-mediated homogalacturonan pectin complexation in cell walls contributes the firmness increase in loquat fruit during postharvest storage. J. Adv. Res. 2023, 49, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Liu, J.; Tang, N.; Deng, J.; Liu, C.; Kan, H.; Zhao, P.; Zhang, X.; Shi, Z.; Liu, Y. Sequential extraction, structural characterization, and antioxidant activity of polysaccharides from Dendrocalamus brandisii bamboo shoot shell. Food Chem. X 2023, 17, 100621. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Shen, X.; Chen, F.; Zhang, L. Changes of Ca forms and chelate-soluble pectin in cherry tomatoes treated with ultrasound and calcium lactate. LWT 2023, 173, 114393. [Google Scholar] [CrossRef]
- Isager Ahl, L.; Pedersen, H.L.; Jørgensen, B.; Willats, W.G.T.; Grace, O.M.; Barnes, C.J.; Rønsted, N. Exploring the polysaccharide composition of plant cell walls in succulent aloes. Plants People Planet 2023, 5, 335–353. [Google Scholar] [CrossRef]
- Bellinger, B.J.; McKenney, E.L.; Gretz, M.R. Identifying plant cell wall remnants in detritus of a subtropical wetland with fluorescence labeling. Geoderma 2023, 432, 116402. [Google Scholar] [CrossRef]
- Pan, X.; Zhao, W.; Wang, Y.; Xu, Y.; Zhang, W.; Lao, F.; Liao, X.; Wu, J. Physicochemical and structural properties of three pectin fractions from muskmelon (Cucumis melo) and their correlation with juice cloud stability. Food Hydrocoll. 2022, 124, 107313. [Google Scholar] [CrossRef]
- Yu, C.; Ahmadi, S.; Shen, S.; Wu, D.; Xiao, H.; Ding, T.; Liu, D.; Ye, X.; Chen, S. Structure and fermentation characteristics of five polysaccharides sequentially extracted from sugar beet pulp by different methods. Food Hydrocoll. 2022, 126, 107462. [Google Scholar] [CrossRef]
- Yu, C.; Hu, X.; Ahmadi, S.; Wu, D.; Xiao, H.; Zhang, H.; Ding, T.; Liu, D.; Ye, X.; Chen, S.; et al. Structure and In Vitro Fermentation Characteristics of Polysaccharides Sequentially Extracted from Goji Berry (Lycium barbarum) Leaves. J. Agric. Food Chem. 2022, 70, 7535–7546. [Google Scholar] [CrossRef] [PubMed]
- Wehr, J.B.; Dalzell, S.A.; Menzies, N.W. Predicting and modelling availability of fluoride in soil from sorption properties. Soil Use Manag. 2023, 39, 521–534. [Google Scholar] [CrossRef]
- Jordan, D.E.; Monn, D.E. Rapid determination of magnesium in the presence of calcium and phosphate by titration with cdta. Anal. Chim. Acta 1967, 37, 42–48. [Google Scholar] [CrossRef]
- Tuckerman, M.M.; Sanchez de Ramos, M.E. Direct Complexometric Titration of Calcium Phosphates. J. Pharm. Sci. 1977, 66, 1341–1344. [Google Scholar] [CrossRef] [PubMed]
- Kapeluszna, E.; Chrabąszcz, K. Mutual compatibility of superplasticizers (PC, SNF), grinding aids (TEA, glycol) and C3A in Portland cement systems—Hydration, rheology, physical properties and air void characteristics. Constr. Build. Mater. 2023, 373, 130877. [Google Scholar] [CrossRef]
- Kirchberger, I.; Goetz-Neunhoeffer, F.; Neubauer, J. Enhancing the aluminate reaction during OPC hydration by combining increased sulfate content, triethanolamine and tartaric acid. Cem. Concr. Res. 2023, 170, 107188. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, B.; Shi, J.; Gencel, O.; An, X.; Gao, J. Synergistic effect of glycine and triethanolamine on mechanical properties and permeability of cement mortar. J. Build. Eng. 2022, 51, 104283. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Y.; Yang, Y.; Chen, Y. Impaired intracellular calcium homeostasis enhances protein O-GlcNAcylation and promotes vascular calcification and stiffness in diabetes. Redox Biol. 2023, 63, 102720. [Google Scholar] [CrossRef]
- Karavasiloglou, N.; Hughes, D.J.; Murphy, N.; Schomburg, L.; Sun, Q.; Seher, V.; Rohrmann, S.; Weiderpass, E.; Tjønneland, A.; Olsen, A. Prediagnostic serum calcium concentrations and risk of colorectal cancer development in 2 large European prospective cohorts. Am. J. Clin. Nutr. 2023, 117, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Kalavathy, N.; Anantharaj, N.; Sharma, A.; Chauhan, T. Effect of serum vitamin D, calcium, and phosphorus on mandibular residual ridge resorption in completely edentulous participants: A clinical study. J. Prosthet. Dent. 2022, 127, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Orkusz, A. Edible Insects versusMeat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef] [PubMed]
- Dehelean, A.; Cristea, G.; Puscas, R.; Hategan, A.R.; Magdas, D.A. Assigning the Geographical Origin of Meat and Animal Rearing System Using Isotopic and Elemental Fingerprints. Appl. Sci. 2022, 12, 12391. [Google Scholar] [CrossRef]
- Islam, M.A.; Jeong, J.Y.; Kim, E.J.; Khan, N.; Jamila, N.; Kim, K.S. Multielemental Characterization of Chicken Breasts from Conventional and Sustainable Farms by Inductively Coupled Plasma—Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma—Mass Spectrometry (ICP-MS). Anal. Lett. 2023, 56, 744–757. [Google Scholar] [CrossRef]
- Araujo-Chapa, A.P.; Urías-Orona, V.; Niño-Medina, G.; Muy-Rangel, D.; de la Garza, A.L.; Castro, H. Dietary Fiber from Soybean (Glycine max) Husk as Fat and Phosphate Replacer in Frankfurter Sausage: Effect on the Nutritional, Physicochemical and Nutraceutical Quality. Molecules 2023, 28, 4997. [Google Scholar] [CrossRef] [PubMed]
- Powell, M.J.; Sebranek, J.G.G.; Prusa, K.J.; Tartéa, R. Evaluation of citrus fiber as a natural replacer of sodium phosphate in alternatively-cured all-pork Bologna sausage. Meat Sci. 2019, 157, 107883. [Google Scholar] [CrossRef]
- Magalhães, I.M.C.; Paglarini, C.S.; Vidal, V.A.S.; Pollonio, M.A.R. Bamboo fiber improves the functional properties of reduced salt and phosphate-free Bologna sausage. J. Food Process Preserv. 2020, 44, e14929. [Google Scholar] [CrossRef]
- Jonauske, V.; Stanionyte, S.; Chen, S.-W.; Zarkov, A.; Juskenas, R.; Selskis, A.; Matijosius, T.; Yang, T.C.K.; Ishikawa, K.; Ramanauskas, R.; et al. Characterization of Sol-Gel Derived Calcium Hydroxyapatite Coatings Fabricated on Patterned Rough Stainless Steel Surface. Coatings 2019, 9, 334. [Google Scholar] [CrossRef]
- Gaafar, M.S.; Yakout, S.M.; Barakat, Y.F.; Sharmoukh, W. Electrophoretic deposition of hydroxyapatite/chitosan nanocomposites: The effect of dispersing agents on the coating properties. RSC Adv. 2022, 12, 27564. [Google Scholar] [CrossRef]
- Peña-Saldarriaga, L.M.; Pérez-Alvarez, J.A.; Fernández-López, J. Quality Properties of Chicken Emulsion-Type Sausages Formulated with Chicken Fatty Byproducts. Foods 2020, 9, 507. [Google Scholar] [CrossRef] [PubMed]
- Peña-Saldarriaga, L.M.; Fernández-López, J.; Pérez-Alvarez, J.A. Quality of Chicken Fat by-Products: Lipid Profile and Colour Properties. Foods 2020, 9, 1046. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.L.; Assis, B.B.T.; Olegario, L.S.; Galvão, M.S.; Soares, Á.J.; Arcanjo, N.M.O.; González-Mohino, A.; Bezerra, T.K.A.; Madruga, M.S. Effect of adding byproducts of chicken slaughter on the quality of sausage over storage. Poult. Sci. 2021, 100, 101178. [Google Scholar] [CrossRef]
- Baéza, E. Characteristics of processed poultry products. Worlds Poult. Sci. J. 2020, 76, 719–741. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Ziółkowska, D.; Syrotynska, I.; Shyichuk, A.; Lamkiewicz, J. Determination of SLES in Personal Care Products by Colloid Titration with Light Reflection Measurements. Molecules 2021, 26, 2716. [Google Scholar] [CrossRef] [PubMed]
- Ziółkowska, D.; Lamkiewicz, J.; Shyichuk, A. Structure and Flocculation of Ion Associates of Carrageenan and Poly(diallyldimethylammonium chloride) Depending on the Component Ratio. Molecules 2022, 27, 8075. [Google Scholar] [CrossRef]
- EN 13804:2013: E; Foodstuffs—Determination of Elements and Their Chemical Species—General Considerations and Specific Requirements. iTeh, Inc.: Newark, DE, USA, 2013.
- EN 14082:2003: E; Foodstuffs—Determination of Lead, Cadmium, Zinc, Copper, Iron and Chromium by Atomic Absorption Spectrometry (AAS) after Dry Ashing. iTeh, Inc.: Newark, DE, USA, 2003.
- PN-EN ISO 7980:2002; Water Quality—Determination of Calcium and Magnesium—Atomic Absorption Spectrometric Method. International Organization for Standardization: Geneva, Switzerland, 2002.
Technique | Sample Preparation | Advantage | Disadvantage | Performance * [Ref.] |
---|---|---|---|---|
EDTA titration | acid digestion | simple instrumentation | interference from phosphates | RSD = 3.4% [21] |
AAS | acid digestion | no interference from phosphates | cost of gases | RSD = 9% [13] |
ICP-OES | acid digestion | multi-element determination | complicated instrumentation | RSD = 3.5–4.4% [24] |
ICP-MS | acid digestion | multi-element determination | complicated instrumentation | RSD = 3.7% [25] |
ion chromatography | acid digestion | simultaneous determination of Mg | no information | LOQ = 1.4 ppm [14] |
LIBS | drying, pelletizing | multi-element determination | drying for 72 h | RSD = 8.5–8.9% [24] |
LIBS | no | operates at a distance of 5 cm | uneven surface affects | RMSECV = 170 ppm [23] |
Raman spectroscopy | no | operates at a distance of 25 cm | indirect determination | RMSECV = 3330 ppm [15] |
TXRF | homogenization | multi-element determination | sample inhomogeneity affects | LOD = 0.93 ppm [16] |
Sample | Ca Content, ppm | RSD, % |
---|---|---|
chicken drumstick meat, brand W | 125 | 3.1 |
chicken drumstick skin, brand W | 149 | 12.6 |
chicken sausage, brand T | 662 | 2.6 |
chicken sausage, brand KH | 465 | 9.7 |
chicken sausage, brand D | 791 | 7.4 |
chicken sausage, brand B | 685 | 3.8 |
turkey MSM, brand G | 60 | 5.7 |
chicken MSM, brand K | 450 | 8.9 |
chicken MSM, brand D | 2008 | 4.5 |
Element | Wavelength, nm | Content, ppm |
---|---|---|
K | 769.896 | 2300 |
Ca | 317.933 | 1560 |
Na | 589.592 | 825 |
S | 182.034 | 194.5 |
Mg | 280.27 | 183.5 |
Temperature, °C | Ca Content, ppm |
---|---|
650 | 690 |
600 | 685 |
550 | 520 |
No. | Principle | Weight | Score | Overall Diagram |
---|---|---|---|---|
1 | Direct analytical techniques should be applied to avoid sample treatment | 2 | 0.3 | |
2 | Minimal sample size and minimal number of samples are goals | 1 | 0.32 | |
3 | In situ measurements should be performed | 3 | 0 | |
4 | Integration of analytical operations saves energy and reduces the use of reagents | 4 | 1 | |
5 | Automated and miniaturized methods should be selected | 3 | 0.75 | |
6 | Derivatization should be avoided | 2 | 1 | |
7 | Generation of a large volume of analytical waste should be avoided | 1 | 0.39 | |
8 | Multianalyte or multiparameter methods are preferred | 2 | 0.29 | |
9 | The use of energy should be minimized | 2 | 0.5 | |
10 | Reagents obtained from renewable source should be preferred | 1 | 0 | |
11 | Toxic reagents should be eliminated or replaced | 3 | 1 | |
12 | The safety of the operator should be increased | 2 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shyichuk, A.; Kowalska, M.; Shyychuk, I.; Lamkiewicz, J.; Ziółkowska, D. Determination of Calcium in Meat Products by Automatic Titration with 1,2-Diaminocyclohexane-N,N,N’,N’-tetraacetic Acid. Molecules 2023, 28, 6592. https://doi.org/10.3390/molecules28186592
Shyichuk A, Kowalska M, Shyychuk I, Lamkiewicz J, Ziółkowska D. Determination of Calcium in Meat Products by Automatic Titration with 1,2-Diaminocyclohexane-N,N,N’,N’-tetraacetic Acid. Molecules. 2023; 28(18):6592. https://doi.org/10.3390/molecules28186592
Chicago/Turabian StyleShyichuk, Alexander, Maria Kowalska, Iryna Shyychuk, Jan Lamkiewicz, and Dorota Ziółkowska. 2023. "Determination of Calcium in Meat Products by Automatic Titration with 1,2-Diaminocyclohexane-N,N,N’,N’-tetraacetic Acid" Molecules 28, no. 18: 6592. https://doi.org/10.3390/molecules28186592
APA StyleShyichuk, A., Kowalska, M., Shyychuk, I., Lamkiewicz, J., & Ziółkowska, D. (2023). Determination of Calcium in Meat Products by Automatic Titration with 1,2-Diaminocyclohexane-N,N,N’,N’-tetraacetic Acid. Molecules, 28(18), 6592. https://doi.org/10.3390/molecules28186592