Highly Water-Stable Zinc Based Metal–Organic Framework: Antibacterial, Photocatalytic Degradation and Photoelectric Responses
Abstract
:1. Introduction
2. Results
2.1. Antibacterial Properties of Zn-MOF
2.2. Photocatalytic Properties of Zn-MOF
2.3. Cyclic Stability of Zn-MOF Photocatalysis
2.4. Analysis of Active Components in Photodegradation of Zn-MOF
2.5. Morphology Measurement and BET Surface Area Analysis
2.6. Possible Mechanism of Tetracycline Degradation
2.7. Analysis of Photoelectric Response
3. Experiment
3.1. Synthesis of [Zn(L)2(bpa)(H2O)2]·2H2O
3.2. Materials and Equipment
3.3. Antibacterial Performance Test
3.4. Determination of Photocatalytic Activity
3.5. Photoelectric Response Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Li, X.; Zheng, H.; Chen, J.; Xu, M.; Bai, Y.; Liu, T. MIL-101 (Fe) @Ag Rapid Synergistic Antimicrobial and Biosafety Evaluation of Nanomaterials. Molecules 2022, 27, 3497. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Buder, S.; Schöfer, H.; Meyer, T.; Bremer, V.; Kohl, P.K.; Skaletz-Rorowski, A.; Brockmeyer, N. Bacterial sexually transmitted infections. J. Dtsch. Dermatol. Ges. 2019, 17, 287–315. [Google Scholar] [CrossRef] [PubMed]
- Lázaro, I.; Forgan, R. Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 2019, 380, 230–259. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, G.; Liao, D.; Chen, X.; Lu, C.; Nezamzadeh-Ejhieh, A.; Shahnawaz Khan, M.; Liu, J.; Pan, Y.; Dai, Z. Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules 2022, 27, 7166. [Google Scholar] [CrossRef]
- Taheri-Ledari, R.; Tarinsun, N.; Qazi, F.; Heidari, L.; Saeidirad, M.; Ganjali, F.; Ansari, F.; Hassanzadeh-Afruzi, F.; Maleki, A. Vancomycin-Loaded Fe3O4/MOF-199 Core/Shell Cargo Encapsulated by Guanidylated−β-Cyclodextrine: An Effective Antimicrobial Nanotherapeutic. Inorg. Chem. 2023, 62, 2530–2547. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, T.; Hu, T.; Cheng, C.; Yu, S.; Li, H.; Liu, S.; Ma, L.; Zhao, M.; Liang, R.; et al. Facile Synthesis of 2D Al-TCPP MOF Nanosheets for Efficient Sonodynamic Cancer Therapy. Mater. Chem. Front. 2023, 7, 1684–1693. [Google Scholar] [CrossRef]
- Xue, B.; Geng, X.; Cui, H.; Chen, H.; Kang, Z.; Chen, H.; Li, H.; Zhou, Z.; Zhao, M.; Tan, C.; et al. Size Engineering of 2D MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Chin. Chem. Lett. 2023, 34, 108140. [Google Scholar] [CrossRef]
- Maleki, A.; Shahbazi, M.; Alinezhad, V.; Santos, H. The Progress and prospect of zeolitic imidazolate frameworks in cancer therapy, antibacterial activity, and biomineralization. Adv. Healthc. Mater. 2020, 9, 2000248. [Google Scholar] [CrossRef]
- Karimi, R.; Beheshti, S.; Akhbari, K.; Morsali, A. Investigation of reasons for metal–organic framework’s antibacterial activities. Polyhedron 2018, 156, 257–278. [Google Scholar] [CrossRef]
- Tan, G.; Jia, R.; Zhao, X.; Guo, Y.; Zhang, L.; Wang, X.; Wang, J.; Feng, X.; Li, B.; Wang, L. Fabrication of Two Isomorphic and Hyperstable Rare Earth-Based Metal–Organic Frameworks with Efficient Ratiometric Probe and Photocatalytic Performances. Inorg. Chem. 2022, 61, 11866–11878. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Chen, X.; Wang, L.; Cai, W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway. Chem. Eng. J. 2019, 369, 745–757. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, J.; Yuan, J.; Zhao, W.; Zhu, X.; Sun, C.; Xie, J. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem. Eng. J. 2018, 331, 242–254. [Google Scholar] [CrossRef]
- Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S. Morphology design of porous coordination polymer crystals by coordination modulation. J. Am. Chem. Soc. 2011, 133, 15506–15513. [Google Scholar] [CrossRef] [PubMed]
- Batten, S.; Champness, N.; Chen, X.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.; Reedijk, J. Coordination polymers, metal-organic frameworks and the need for terminology guidelines. CrystEngComm 2012, 14, 3001–3004. [Google Scholar] [CrossRef]
- Deng, H.; Grunder, S.; Cordova, K.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A.; Liu, Z.; Asahina, S.; et al. Large-Pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1024. [Google Scholar] [CrossRef]
- Long, J.; Yaghi, O. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1213–1214. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar] [CrossRef]
- Choi, K.; Park, J.; Kang, J. Nanocrystalline MOFs embedded in the crystals of other MOFs and their multifunctional performance for molecular encapsulation and energy-carrier storage. Chem. Mater. 2015, 27, 5088–5093. [Google Scholar] [CrossRef]
- Corma, A.; García, H.; Llabrés, F.; Xamena, I. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655. [Google Scholar] [CrossRef]
- Li, J.; Kuppler, R.; Zhou, H. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Kreno, L.; Leong, K.; Farha, O.; Allendorf, M.; Van Duyne, R.; Hupp, J. Metal–organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef]
- Santo, C.E.; Quaranta, D.; Grass, G. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen 2012, 1, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.; Adams, D.; Karpanen, T.; Lambert, P.; Cookson, B.; Nightingale, P.; Miruszenko, L.; Shillam, R.; Christian, P.; Elliott, T. Role of copper in reducing hospital environment. J. Hosp. Infect. 2010, 74, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Jaros, S.W.; Król, J.; Bażanów, B.; Poradowski, D.; Chrószcz, A.; Nesterov, D.S.; Kirillov, A.M.; Smoleński, P. Antiviral, antibacterial, antifungal, and cytotoxic silver (I) BioMOF assembled from 1, 3, 5-triaza-7-phoshaadamantane and pyromellitic acid. Molecules 2020, 25, 2119. [Google Scholar] [CrossRef] [PubMed]
- Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653. [Google Scholar] [CrossRef]
- Seyedpour, S.; Dadashi Firouzjaei, M.; Rahimpour, A.; Zolghadr, E.; Shamsabadi, A.; Das, P.; Afkhami, F.; Sadrzadeh, M.; Tiraferri, A.; Elliott, M. Toward sustainable tackling of biofouling implications and improved performance of TFC FO membranes modified by Ag-MOF nanorods. ACS Appl. Mater. Interfaces 2020, 12, 38285–38298. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Q.; Zhang, D.; Gan, N.; Li, Q.; Cuan, J. Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sens. Actuators B 2018, 262, 137–143. [Google Scholar] [CrossRef]
- Yang, H.; Wang, C.; Liu, C.; Chen, H.; Wu, Y.; Han, J.; Jia, Z.; Lin, W.; Zhang, D.; Li, W.; et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 2017, 145, 92–105. [Google Scholar] [CrossRef]
- Chai, Y.; Liu, X.; Cui, Z.; Zhao, Y.; Ma, L.; Zhao, B. Design and syntheses of two luminescent metal-organic frameworks for detecting nitro-antibiotic, Fe3+ and Cr2O72−. J. Solid State Chem. 2022, 312, 123211. [Google Scholar] [CrossRef]
- Ding, S.; Mao, D.; Yang, S.; Wang, F.; Meng, L.; Han, M.; He, H.; Sun, C.; Xu, B. Graphene-analogue h-BN coupled Bi-rich Bi4O5Br2 layered microspheres for enhanced visible-light photo-catalytic activity and mechanism insight. Appl. Catal. B 2017, 210, 386–399. [Google Scholar] [CrossRef]
- Wang, F.; Xue, R.; Ma, Y.; Ge, Y.; Wang, Z.; Qiao, X.; Zhou, P. Study on the performance of a MOF-808-based photocatalyst prepared by a microwave-assisted method for the degradation of antibiotics. RSC Adv. 2021, 11, 32955–32964. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Wu, W.; Liang, R.; Lin, R.; Wu, L. Highly Dispersed Palladium Nanoparticles Anchored on UiO-66(NH2) Metal-Organic Framework as a Reusable and Dual Functional Visible-Light-Driven Photocatalyst. Nanoscale 2013, 5, 9374. [Google Scholar] [CrossRef]
- Zhou, E.; Li, B.; Chen, W.; Luo, Z.; Liu, J.; Singh, A.; Kumar, A.; Jin, J. Photocatalytic degradation of organic dyes by a stable and biocompatible Zn(II) MOF having ferulic acid: Experimental findings and theoretical correlation. J. Mol. Struct. 2017, 1149, 352–356. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Dong, X.; Lv, Y. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere 2020, 242, 125144. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Miao, Y.; Chai, Y.; Zhang, X.; Dong, X.; Zhao, Y. Highly Water-Stable Zinc Based Metal–Organic Framework: Antibacterial, Photocatalytic Degradation and Photoelectric Responses. Molecules 2023, 28, 6662. https://doi.org/10.3390/molecules28186662
Yuan C, Miao Y, Chai Y, Zhang X, Dong X, Zhao Y. Highly Water-Stable Zinc Based Metal–Organic Framework: Antibacterial, Photocatalytic Degradation and Photoelectric Responses. Molecules. 2023; 28(18):6662. https://doi.org/10.3390/molecules28186662
Chicago/Turabian StyleYuan, Congying, Yadi Miao, Yinhang Chai, Xiaojun Zhang, Xiaojing Dong, and Ying Zhao. 2023. "Highly Water-Stable Zinc Based Metal–Organic Framework: Antibacterial, Photocatalytic Degradation and Photoelectric Responses" Molecules 28, no. 18: 6662. https://doi.org/10.3390/molecules28186662
APA StyleYuan, C., Miao, Y., Chai, Y., Zhang, X., Dong, X., & Zhao, Y. (2023). Highly Water-Stable Zinc Based Metal–Organic Framework: Antibacterial, Photocatalytic Degradation and Photoelectric Responses. Molecules, 28(18), 6662. https://doi.org/10.3390/molecules28186662