Nonlinear Optical Properties from Engineered 2D Materials
Abstract
:1. Introduction to Nonlinear Optics in 2D Materials
1.1. Second Harmonic Generation (SHG)
1.1.1. Time and Spatial Inversion Symmetry
1.1.2. Phase-Matching Condition
1.2. Third-Order NLO Processes
2. Nonlinear Optics Characterization of 2D Materials
2.1. Determining the Layer Number
2.2. Crystal Orientation Identification and Mapping the Grain Boundary
2.3. Probing Excitonic State
3. Tuning Methods
3.1. Carrier Injection Tuning
3.2. Strain Tuning
3.3. Artificially Stacking
3.4. Plasmonic Enhancement
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lahiri, A. Chapter 9—Nonlinear Optics. In Basic Optics; Elsevier: Amsterdam, The Netherlands, 2016; pp. 901–968. [Google Scholar] [CrossRef]
- Suresh, S.; Ramanand, A.; Jayaraman, D.; Mani, P. Review on Theoretical Aspect of Nonlinear Optics. Rev. Adv. Mater. Sci. 2012, 30, 175–183. [Google Scholar]
- Stolen, R.H. The Early Years of Fiber Nonlinear Optics. J. Light. Technol. 2008, 26, 1021–1031. [Google Scholar] [CrossRef]
- Barh, A.; Rodrigo, P.J.; Meng, L.; Pedersen, C.; Tidemand-Lichtenberg, P. Parametric Upconversion Imaging and Its Applications. Adv. Opt. Photon. 2019, 11, 952–1019. [Google Scholar] [CrossRef]
- Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of Optical Harmonics. Phys. Rev. Lett. 1961, 7, 118–119. [Google Scholar] [CrossRef]
- Garmire, E. Nonlinear Optics in Daily Life. Opt. Express 2013, 21, 30532–30544. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.E.; Vuletić, V.; Lukin, M.D. Quantum Nonlinear Optics—Photon by Photon. Nat. Photonics 2014, 8, 685–694. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics: Its History and Recent Progress [Invited]. J. Opt. Soc. Am. B 2011, 28, A1–A10. [Google Scholar] [CrossRef]
- Wright, L.G.; Renninger, W.H.; Christodoulides, D.N.; Wise, F.W. Nonlinear Multimode Photonics: Nonlinear Optics with Many Degrees of Freedom. Optica 2022, 9, 824–841. [Google Scholar] [CrossRef]
- Corn, R.M.; Higgins, D.A. Optical Second Harmonic Generation as a Probe of Surface Chemistry. Chem. Rev. 1994, 94, 107–125. [Google Scholar] [CrossRef]
- Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in the Relativistic Regime. Rev. Mod. Phys. 2006, 78, 309–371. [Google Scholar] [CrossRef]
- Zuo, Y.; Yu, W.; Liu, C.; Cheng, X.; Qiao, R.; Liang, J.; Zhou, X.; Wang, J.; Wu, M.; Zhao, Y.; et al. Optical Fibres with embedded Two-Dimensional Materials for Ultrahigh Nonlinearity. Nat. Nanotechnol. 2020, 15, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, P.; Su, R.; Ma, P.; Tao, R.; Ma, Y.; Xu, X.; Liu, Z. Current Situation, Tendency and Challenge of Coherent Combining of High Power Fiber Lasers. Chin. J. Lasers 2017, 44, 0201001. [Google Scholar] [CrossRef]
- Zheng, Y.; Maev, R.; Solodov, I. Review/Sythèse Nonlinear Acoustic Applications for Material Characterization: A review. Can. J. Phys. 2011, 77, 927–967. [Google Scholar] [CrossRef]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-Compatible Platforms Based on Silicon Nitride and Hydex for Nonlinear Optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef]
- Zubyuk, V.V.; Shafirin, P.A.; Shcherbakov, M.R.; Shvets, G.; Fedyanin, A.A. Externally Driven Nonlinear Time-Variant Metasurfaces. ACS Photonics 2022, 9, 493–502. [Google Scholar] [CrossRef]
- Gan, X.-T.; Zhao, C.-Y.; Hu, S.-Q.; Wang, T.; Song, Y.; Li, J.; Zhao, Q.-H.; Jie, W.-Q.; Zhao, J.-L. Microwatts Continuous-Wave Pumped Second Harmonic Generation in Few- and Mono-layer GaSe. Light. Sci. Appl. 2018, 7, 17126. [Google Scholar] [CrossRef]
- Sirleto, L.; Righini, G.C. An Introduction to Nonlinear Integrated Photonics: Structures and Devices. Micromachines 2023, 14, 614. [Google Scholar] [CrossRef]
- Bogdanov, S.; Shalaginov, M.Y.; Boltasseva, A.; Shalaev, V.M. Material Platforms for Integrated Quantum Photonics. Opt. Mater. Express 2017, 7, 111–132. [Google Scholar] [CrossRef]
- Tian, T.; Fang, Y.; Wang, W.; Yang, M.; Tan, Y.; Xu, C.; Zhang, S.; Chen, Y.; Xu, M.; Cai, B.; et al. Durable Organic Nonlinear Optical Membranes for Thermotolerant Lightings and In Vivo Bioimaging. Nat. Commun. 2023, 14, 4429. [Google Scholar] [CrossRef]
- Liu, J.; Ouyang, C.; Huo, F.; He, W.; Cao, A. Progress in the Enhancement of Electro-Optic Coefficients and Orientation Stability for Organic Second-Order Nonlinear Optical Materials. Dyes Pigm. 2020, 181, 108509. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Achelle, S.; Bureš, F.; le Poul, P.; Barsella, A.; Kvashnin, Y.A.; Rusinov, G.L.; Guen, F.R.-l.; Chupakhin, O.N.; Charushin, V.N. Synthesis, Photophysical and Nonlinear Optical Properties of [1,2,5]Oxadiazolo[3,4-b]Pyrazine-based Linear Push-Pull Systems. J. Photochem. Photobiol. A 2021, 404, 112900. [Google Scholar] [CrossRef]
- Fecková, M.; le Poul, P.; Bureš, F.; Robin-le Guen, F.; Achelle, S. Nonlinear Optical Properties of Pyrimidine Chromophores. Dyes Pigm. 2020, 182, 108659. [Google Scholar] [CrossRef]
- Fuyang, H.; Zhuo, C.; Shuhui, B. Advances in Organic Second-Order Nonlinear Optical Polymers. J. Funct. Polym. 2020, 33, 108. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, L.A.; Di Liberto, G.; Tosoni, S.; Pacchioni, G. Quantum Confinement in Group III–V Semiconductor 2D Nanostructures. Nanoscale 2020, 12, 17494–17501. [Google Scholar] [CrossRef]
- Tareen, A.K.; Khan, K.; Aslam, M.; Liu, X.; Zhang, H. Confinement in Two-Dimensional Materials: Major Advances and Challenges in the Emerging Renewable Energy Conversion and Other Applications. Prog. Solid State Chem. 2021, 61, 100294. [Google Scholar] [CrossRef]
- Gupta, A.; Sakthivel, T.; Seal, S. Recent Development in 2D materials Beyond Graphene. Prog. Mater. Sci. 2015, 73, 44–126. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D Materials and Van Der Waals Heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, Y.; Novoselov, K.; Hong, B.H. Engineering Electrical Properties of Graphene: Chemical Approaches. 2D Mater. 2015, 2, 042001. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Glavin, N.R.; Rao, R.; Varshney, V.; Bianco, E.; Apte, A.; Roy, A.; Ringe, E.; Ajayan, P.M. Emerging Applications of Elemental 2D Materials. Adv. Mater. 2020, 32, 1904302. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Luo, Y.; Yang, J.; Zhang, J.; Yin, K.; Wei, K.; Zheng, X.; Jiang, T. Hybrid/Integrated Silicon Photonics Based on 2D Materials in Optical Communication Nanosystems. Laser Photonics Rev. 2020, 14, 2000239. [Google Scholar] [CrossRef]
- Yoshikawa, N.; Tamaya, T.; Tanaka, K. High-Harmonic Generation in Graphene Enhanced by Elliptically Polarized Light Excitation. Science 2017, 356, 736–738. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, Y.; You, Y.S.; Ghimire, S.; Heinz, T.F.; Reis, D.A. High-Harmonic Generation from An Atomically Thin Semiconductor. Nat. Phys. 2017, 13, 262–265. [Google Scholar] [CrossRef]
- Dmowski, W.; Iwashita, T.; Chuang, C.P.; Almer, J.; Egami, T. Elastic Heterogeneity in Metallic Glasses. Phys. Rev. Lett. 2010, 105, 205502. [Google Scholar] [CrossRef]
- Malard, L.M.; Alencar, T.V.; Barboza, A.P.M.; Mak, K.F.; de Paula, A.M. Observation of Intense Second Harmonic Generation from MoS2 Atomic Crystals. Phys. Rev. B 2013, 87, 201401. [Google Scholar] [CrossRef]
- Klein, J.; Wierzbowski, J.; Steinhoff, A.; Florian, M.; Rösner, M.; Heimbach, F.; Müller, K.; Jahnke, F.; Wehling, T.O.; Finley, J.J.; et al. Electric-Field Switchable Second-Harmonic Generation in Bilayer MoS2 by Inversion Symmetry Breaking. Nano Lett. 2017, 17, 392–398. [Google Scholar] [CrossRef]
- Seyler, K.L.; Schaibley, J.R.; Gong, P.; Rivera, P.; Jones, A.M.; Wu, S.; Yan, J.; Mandrus, D.G.; Yao, W.; Xu, X. Electrical Control of Second-Harmonic Generation in a WSe2 Monolayer Transistor. Nat. Nanotechnol. 2015, 10, 407–411. [Google Scholar] [CrossRef]
- Yu, S.; Wu, X.; Wang, Y.; Guo, X.; Tong, L. 2D Materials for Optical Modulation: Challenges and Opportunities. Adv. Mater. 2017, 29, 1606128. [Google Scholar] [CrossRef]
- Xia, H.; Li, H.; Lan, C.; Li, C.; Zhang, X.; Zhang, S.; Liu, Y. Ultrafast Erbium-Doped Fiber Laser Mode-Locked by a CVD-Grown Molybdenum Disulfide (MoS2) Saturable Absorber. Opt. Express 2014, 22, 17341–17348. [Google Scholar] [CrossRef]
- Guo, B.; Yao, Y.; Yan, P.G.; Xu, K.; Liu, J.J.; Wang, S.G.; Li, Y. Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper. IEEE Photonics Technol. Lett. 2016, 28, 323–326. [Google Scholar] [CrossRef]
- Sun, Z.; Martinez, A.; Wang, F. Optical Modulators with 2D Layered Materials. Nat. Photonics 2016, 10, 227–238. [Google Scholar] [CrossRef]
- Welford, W.T. The Principles of Nonlinear Optics. Phys. Bull. 1985, 36, 178. [Google Scholar] [CrossRef]
- Boyd, R.W. (Ed.) Preface to the First Edition. In Nonlinear Optics, 2nd ed.; Academic Press: San Diego, CA, USA, 2003; pp. xv–xvii. [Google Scholar] [CrossRef]
- Del Coso, R.; Solis, J. Relation Between Nonlinear Refractive Index and Third-Order Susceptibility in Absorbing Media. J. Opt. Soc. Am. B 2004, 21, 640–644. [Google Scholar] [CrossRef]
- Zhou, L.; Fu, H.; Lv, T.; Wang, C.; Gao, H.; Li, D.; Deng, L.; Xiong, W. Nonlinear Optical Characterization of 2D Materials. Nanomaterials 2020, 10, 2263. [Google Scholar] [CrossRef]
- Volosov, V.D.; Karpenko, S.G.; Kornienko, N.E.; Strizhevskii, V.L. Method for Compensating the Phase-Matching Dispersion in Nonlinear Optics. Sov. J. Quantum Electron. 1975, 4, 1090. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, H.; Wu, H.; Halasyamani, P.S. Phase-Matching in Nonlinear Optical Compounds: A Materials Perspective. Chem. Mater. 2017, 29, 2655–2668. [Google Scholar] [CrossRef]
- Bass, M. Handbook of Optics: Volume IV—Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Tsang, T.Y.F. Optical Third-Harmonic Generation at Interfaces. Phys. Rev. A 1995, 52, 4116–4125. [Google Scholar] [CrossRef]
- Säynätjoki, A.; Karvonen, L.; Rostami, H.; Autere, A.; Mehravar, S.; Lombardo, A.; Norwood, R.A.; Hasan, T.; Peyghambarian, N.; Lipsanen, H.; et al. Ultra-Strong Nonlinear Optical Processes and Trigonal Warping in MoS2 Layers. Nat. Commun. 2017, 8, 893. [Google Scholar] [CrossRef]
- Rumi, M.; Perry, J.W. Two-Photon Absorption: An Overview of Measurements and Principles. Adv. Opt. Photon. 2010, 2, 451–518. [Google Scholar] [CrossRef]
- Li, Y.; Dong, N.; Zhang, S.; Zhang, X.; Feng, Y.; Wang, K.; Zhang, L.; Wang, J. Giant Two-Photon Absorption in Monolayer MoS2. Laser Photonics Rev. 2015, 9, 427–434. [Google Scholar] [CrossRef]
- Feng, Y.; Shao, F.; Meng, L.; Sun, M. Tip-Enhanced Two-Photon-Excited Fluorescence of Interfacial Charge Transfer Excitons in MoS2/WS2 Heterostructures: Implications for Spectral Measurement of 2D Materials. ACS Appl. Nano Mater. 2023, 6, 14343–14352. [Google Scholar] [CrossRef]
- Jie, W.; Yang, Z.; Bai, G.; Hao, J. Luminescence in 2D Materials and Van Der Waals Heterostructures. Adv. Opt. Mater. 2018, 6, 1701296. [Google Scholar] [CrossRef]
- Biswas, S.; Tiwary, C.S.; Vinod, S.; Kole, A.K.; Chatterjee, U.; Kumbhakar, P.; Ajayan, P.M. Nonlinear Optical Properties and Temperature Dependent Photoluminescence in hBN-GO Heterostructure 2D Material. J. Phys. Chem. C 2017, 121, 8060–8069. [Google Scholar] [CrossRef]
- Shi, W.; Lin, M.-L.; Tan, Q.-H.; Qiao, X.-F.; Zhang, J.; Tan, P.-H. Raman and Photoluminescence Spectra of Two-Dimensional Nanocrystallites of Monolayer WS2 and WSe2. 2D Mater. 2016, 3, 025016. [Google Scholar] [CrossRef]
- Hao, Q.; Li, P.; Liu, J.; Huang, J.; Zhang, W. Bandgap Engineering of High Mobility Two-Dimensional Semiconductors Toward Optoelectronic Devices. J. Mater. 2023, 9, 527–540. [Google Scholar] [CrossRef]
- Kumar, N.; Najmaei, S.; Cui, Q.; Ceballos, F.; Ajayan, P.M.; Lou, J.; Zhao, H. Second Harmonic Microscopy of Monolayer MoS2. Phys. Rev. B 2013, 87, 161403. [Google Scholar] [CrossRef]
- Sun, L.; Hwang, G.; Choi, W.; Han, G.; Zhang, Y.; Jiang, J.; Zheng, S.; Watanabe, K.; Taniguchi, T.; Zhao, M.; et al. Ultralow Switching Voltage Slope Based on Two-Dimensional Materials for Integrated Memory and Neuromorphic Applications. Nano Energy 2020, 69, 104472. [Google Scholar] [CrossRef]
- Chang, K.; Hai, X.; Pang, H.; Zhang, H.; Shi, L.; Liu, G.; Liu, H.; Zhao, G.; Li, M.; Ye, J. Targeted Synthesis of 2H- and 1T-Phase MoS2 Monolayers for Catalytic Hydrogen Evolution. Adv. Mater. 2016, 28, 10033–10041. [Google Scholar] [CrossRef]
- Toh, R.J.; Sofer, Z.; Luxa, J.; Sedmidubský, D.; Pumera, M. 3R Phase of MoS2 and WS2 Outperforms the Corresponding 2H Phase for Hydrogen Evolution. Chem. Commun. 2017, 53, 3054–3057. [Google Scholar] [CrossRef]
- Strachan, J.; Masters, A.F.; Maschmeyer, T. 3R-MoS2 in Review: History, Status, and Outlook. ACS Appl. Energy Mater. 2021, 4, 7405–7418. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, J.; Yang, S.; Wang, Y.; Zhang, X. Second Harmonic Generation Spectroscopy on Two-Dimensional Materials [Invited]. Opt. Mater. Express 2019, 9, 1136–1149. [Google Scholar] [CrossRef]
- Zhao, M.; Ye, Z.; Suzuki, R.; Ye, Y.; Zhu, H.; Xiao, J.; Wang, Y.; Iwasa, Y.; Zhang, X. Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal. Light Sci. Appl. 2016, 5, e16131. [Google Scholar] [CrossRef] [PubMed]
- Mishina, E.; Sherstyuk, N.; Lavrov, S.; Sigov, A.; Mitioglu, A.; Anghel, S.; Kulyuk, L. Observation of Two Polytypes of MoS2 Ultrathin Layers Studied by Second Harmonic Generation Microscopy and Photoluminescence. Appl. Phys. Lett. 2015, 106, 131901. [Google Scholar] [CrossRef]
- Shi, J.; Yu, P.; Liu, F.; He, P.; Wang, R.; Qin, L.; Zhou, J.; Li, X.; Zhou, J.; Sui, X.; et al. 3R MoS2 with Broken Inversion Symmetry: A Promising Ultrathin Nonlinear Optical Device. Adv. Mater. 2017, 29, 1701486. [Google Scholar] [CrossRef]
- Rosa, H.G.; Ho, Y.W.; Verzhbitskiy, I.; Rodrigues, M.J.F.L.; Taniguchi, T.; Watanabe, K.; Eda, G.; Pereira, V.M.; Gomes, J.C.V. Characterization of The Second- and Third-Harmonic Optical Susceptibilities of Atomically Thin Tungsten Diselenide. Sci. Rep. 2018, 8, 10035. [Google Scholar] [CrossRef]
- Popkova, A.A.; Antropov, I.M.; Fröch, J.E.; Kim, S.; Aharonovich, I.; Bessonov, V.O.; Solntsev, A.S.; Fedyanin, A.A. Optical Third-Harmonic Generation in Hexagonal Boron Nitride Thin Films. ACS Photonics 2021, 8, 824–831. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Resende, G.C.; Ribeiro, H.B.; Carvalho, B.R. Polarized Raman Spectroscopy in Low-Symmetry 2D materials: Angle-Resolved Experiments and Complex Number Tensor Elements. Phys. Chem. Chem. Phys. 2021, 23, 27103–27123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Mao, N.; Zhang, N.; Wu, J.; Tong, L.; Zhang, J. Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS2. ACS Nano 2017, 11, 10366–10372. [Google Scholar] [CrossRef]
- Lin, H.; Xu, Z.-Q.; Cao, G.; Zhang, Y.; Zhou, J.; Wang, Z.; Wan, Z.; Liu, Z.; Loh, K.P.; Qiu, C.-W.; et al. Diffraction-Limited Imaging with Monolayer 2D Material-Based Ultrathin Flat Lenses. Light Sci. Appl. 2020, 9, 137. [Google Scholar] [CrossRef]
- Chubarov, M.; Choudhury, T.H.; Zhang, X.; Redwing, J.M. In-Plane X-ray Diffraction for Characterization of Monolayer and Few-Layer Transition Metal Dichalcogenide films. Nanotechnology 2018, 29, 055706. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ni, Z. Spectroscopic Investigation of Defects in Two-Dimensional Materials. Nanophotonics 2017, 6, 1219–1237. [Google Scholar] [CrossRef]
- Lin, Z.; Carvalho, B.R.; Kahn, E.; Lv, R.; Rao, R.; Terrones, H.; Pimenta, M.A.; Terrones, M. Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides. 2D Mater. 2016, 3, 022002. [Google Scholar] [CrossRef]
- Li, Y.; Rao, Y.; Mak, K.F.; You, Y.; Wang, S.; Dean, C.R.; Heinz, T.F. Probing Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic Generation. Nano Lett. 2013, 13, 3329–3333. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wang, J.; Zhang, Z.; Su, Y.; Guo, Y.; Qiao, R.; Song, P.; Gao, P.; Zhao, Y.; Jiao, Q.; et al. Universal Imaging of Full Strain Tensor in 2D Crystals with Third-Harmonic Generation. Adv. Mater. 2019, 31, 1808160. [Google Scholar] [CrossRef] [PubMed]
- Karvonen, L.; Säynätjoki, A.; Huttunen, M.J.; Autere, A.; Amirsolaimani, B.; Li, S.; Norwood, R.A.; Peyghambarian, N.; Lipsanen, H.; Eda, G.; et al. Rapid Visualization of Grain Boundaries in Monolayer MoS2 by Multiphoton Microscopy. Nat. Commun. 2017, 8, 15714. [Google Scholar] [CrossRef]
- Yin, X.; Ye, Z.; Chenet, D.A.; Ye, Y.; O’Brien, K.; Hone, J.C.; Zhang, X. Edge Nonlinear Optics on a MoS2 Atomic Monolayer. Science 2014, 344, 488–490. [Google Scholar] [CrossRef]
- Cheng, J.; Jiang, T.; Ji, Q.; Zhang, Y.; Li, Z.; Shan, Y.; Zhang, Y.; Gong, X.; Liu, W.; Wu, S. Kinetic Nature of Grain Boundary Formation in As-Grown MoS2 Monolayers. Adv. Mater. 2015, 27, 4069–4074. [Google Scholar] [CrossRef]
- Chernikov, A.; Berkelbach, T.C.; Hill, H.M.; Rigosi, A.; Li, Y.; Aslan, B.; Reichman, D.R.; Hybertsen, M.S.; Heinz, T.F. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802. [Google Scholar] [CrossRef]
- Raja, A.; Chaves, A.; Yu, J.; Arefe, G.; Hill, H.M.; Rigosi, A.F.; Berkelbach, T.C.; Nagler, P.; Schüller, C.; Korn, T.; et al. Coulomb Engineering of the Bandgap and Excitons in Two-Dimensional Materials. Nat. Commun. 2017, 8, 15251. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X. Excitons in Two-Dimensional Materials. In Advances in Condensed-Matter and Materials Physics; Thirumalai, J., Pokutnyi, S.I., Eds.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar] [CrossRef]
- Ye, Z.; Cao, T.; O’Brien, K.; Zhu, H.; Yin, X.; Wang, Y.; Louie, S.G.; Zhang, X. Probing Excitonic Dark States in Single-Layer Tungsten Disulphide. Nature 2014, 513, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Ramasubramaniam, A. Large Excitonic Effects in Monolayers of Molybdenum and Tungsten Dichalcogenides. Phys. Rev. B 2012, 86, 115409. [Google Scholar] [CrossRef]
- Mueller, T.; Malic, E. Exciton Physics and Device Application of Two-Dimensional Transition Metal Dichalcogenide Semiconductors. npj 2D Mater. Appl. 2018, 2, 29. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Horng, J.; Martin, E.W.; Chou, Y.-H.; Courtade, E.; Chang, T.-C.; Hsu, C.-Y.; Wentzel, M.-H.; Ruth, H.G.; Lu, T.-C.; Cundiff, S.T.; et al. Perfect Absorption by an Atomically Thin Crystal. Phys. Rev. Appl. 2020, 14, 024009. [Google Scholar] [CrossRef]
- Hill, H.M.; Rigosi, A.F.; Roquelet, C.; Chernikov, A.; Berkelbach, T.C.; Reichman, D.R.; Hybertsen, M.S.; Brus, L.E.; Heinz, T.F. Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy. Nano Lett. 2015, 15, 2992–2997. [Google Scholar] [CrossRef]
- Wang, G.; Marie, X.; Gerber, I.; Amand, T.; Lagarde, D.; Bouet, L.; Vidal, M.; Balocchi, A.; Urbaszek, B. Giant Enhancement of the Optical Second-Harmonic Emission of WSe2 Monolayers by Laser Excitation at Exciton Resonances. Phys. Rev. Lett. 2015, 114, 097403. [Google Scholar] [CrossRef]
- Wang, Y.; Iyikanat, F.; Rostami, H.; Bai, X.; Hu, X.; Das, S.; Dai, Y.; Du, L.; Zhang, Y.; Li, S.; et al. Probing Electronic States in Monolayer Semiconductors through Static and Transient Third-Harmonic Spectroscopies. Adv. Mater. 2022, 34, 2107104. [Google Scholar] [CrossRef]
- Wen, X.; Xu, W.; Zhao, W.; Khurgin, J.B.; Xiong, Q. Plasmonic Hot Carriers-Controlled Second Harmonic Generation in WSe2 Bilayers. Nano Lett. 2018, 18, 1686–1692. [Google Scholar] [CrossRef]
- Yu, H.; Talukdar, D.; Xu, W.; Khurgin, J.B.; Xiong, Q. Charge-Induced Second-Harmonic Generation in Bilayer WSe2. Nano Lett. 2015, 15, 5653–5657. [Google Scholar] [CrossRef] [PubMed]
- Mennel, L.; Furchi, M.M.; Wachter, S.; Paur, M.; Polyushkin, D.K.; Mueller, T. Optical Imaging of Strain in Two-Dimensional Crystals. Nat. Commun. 2018, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wei, C.; Song, J.; Huang, X.; Wang, F.; Liu, K.; Xiong, W.; Hong, X.; Cui, B.; Feng, A.; et al. Anisotropic Enhancement of Second-Harmonic Generation in Monolayer and Bilayer MoS2 by Integrating with TiO2 Nanowires. Nano Lett. 2019, 19, 4195–4204. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Liu, Y.; Wang, K.; Wei, C.; Zhang, W.; Yan, Y.; Li, Y.J.; Yao, J.; Zhao, Y.S. Two-Dimensional Pyramid-like WS2 Layered Structures for Highly Efficient Edge Second-Harmonic Generation. ACS Nano 2018, 12, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Jiang, Y.; Zhuang, X.; Liu, H.; Xu, T.; Zheng, W.; Fan, P.; Li, H.; Wu, X.; Zhu, X.; et al. Broken Symmetry Induced Strong Nonlinear Optical Effects in Spiral WS2 Nanosheets. ACS Nano 2017, 11, 4892–4898. [Google Scholar] [CrossRef]
- Hsu, W.-T.; Zhao, Z.-A.; Li, L.-J.; Chen, C.-H.; Chiu, M.-H.; Chang, P.-S.; Chou, Y.-C.; Chang, W.-H. Second Harmonic Generation from Artificially Stacked Transition Metal Dichalcogenide Twisted Bilayers. ACS Nano 2014, 8, 2951–2958. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Lin, C.-H.; Tseng, Y.-W.; Huang, K.-H.; Lee, Y.-H. Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Lett. 2015, 15, 410–415. [Google Scholar] [CrossRef]
- Shi, J.; Liang, W.-Y.; Raja, S.S.; Sang, Y.; Zhang, X.-Q.; Chen, C.-A.; Wang, Y.; Yang, X.; Lee, Y.-H.; Ahn, H.; et al. Plasmonic Enhancement and Manipulation of Optical Nonlinearity in Monolayer Tungsten Disulfide. Laser Photonics Rev. 2018, 12, 1800188. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, Z.; Zhu, H.; Jin, L.; Chiu, M.-H.; Li, L.-J.; Xu, Q.-H.; Eda, G.; Maier, S.A.; Wee, A.T.S.; et al. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. ACS Nano 2018, 12, 1859–1867. [Google Scholar] [CrossRef]
- Shi, J.; Lin, Z.; Zhu, Z.; Zhou, J.; Xu, G.Q.; Xu, Q.-H. Probing Excitonic Rydberg States by Plasmon Enhanced Nonlinear Optical Spectroscopy in Monolayer WS2 at Room Temperature. ACS Nano 2022, 16, 15862–15872. [Google Scholar] [CrossRef]
- Liu, W.; Xing, J.; Zhao, J.; Wen, X.; Wang, K.; Lu, P.; Xiong, Q. Giant Two-Photon Absorption and Its Saturation in 2D Organic–Inorganic Perovskite. Adv. Opt. Mater. 2017, 5, 1601045. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Z.; Su, Y.; Chen, P.; Jiang, Y.; Zhang, C.; Wang, C. Metal–Organic Layers with an Enhanced Two-Photon Absorption Cross-Section and Up-Converted Emission. Chem. Mater. 2021, 33, 1618–1624. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Jia, M.; He, Y.; Hu, W.; Liu, Q.; Li, J.; Xu, X.; Wang, C.; Carlsson, A.; et al. Covalent Organic Framework for Efficient Two-Photon Absorption. Matter 2020, 2, 1049–1063. [Google Scholar] [CrossRef]
- Jeon, S.; Haley, J.; Flikkema, J.; Nalla, V.; Wang, M.; Sfeir, M.; Tan, L.-S.; Cooper, T.; Ji, W.; Hamblin, M.R.; et al. Linear and Nonlinear Optical Properties of Photoresponsive [60]Fullerene Hybrid Triads and Tetrads with Dual NIR Two-Photon Absorption Characteristics. J. Phys. Chem. C 2013, 117, 17186–17195. [Google Scholar] [CrossRef]
- Wang, M.; Nalla, V.; Jeon, S.; Mamidala, V.; Ji, W.; Tan, L.S.; Cooper, T.; Chiang, L.Y. Large Femtosecond Two-Photon Absorption Cross-Sections of Fullerosome Vesicle Nanostructures Derived from Highly Photoresponsive Amphiphilic C60-Light-Harvesting Fluorene Dyad. ACS Appl. Nano Mater. 2011, 115, 18552–18559. [Google Scholar] [CrossRef]
- Deng, M.; Wang, X.; Chen, J.; Li, Z.; Xue, M.; Zhou, Z.; Lin, F.; Zhu, X.; Fang, Z. Plasmonic Modulation of Valleytronic Emission in Two-Dimensional Transition Metal Dichalcogenides. Adv. Funct. Mater. 2021, 31, 2010234. [Google Scholar] [CrossRef]
- Herrmann, P.; Klimmer, S.; Lettau, T.; Monfared, M.; Staude, I.; Paradisanos, I.; Peschel, U.; Soavi, G. Nonlinear All-Optical Coherent Generation and Read-Out of Valleys in Atomically Thin Semiconductors. Small 2023, 19, 2301126. [Google Scholar] [CrossRef]
- Liang, J.; Ma, H.; Wang, J.; Zhou, X.; Yu, W.; Ma, C.; Wu, M.; Gao, P.; Liu, K.; Yu, D. Giant Pattern Evolution in Third-Harmonic Generation of Strained Monolayer WS2 at Two-Photon Excitonic Resonance. Nano Res. 2020, 13, 3235–3240. [Google Scholar] [CrossRef]
Tuning Methods | Material | Regulatory Range | |
---|---|---|---|
Carrier injection | Plasmonic hot electron | 2LWSe2 | Zero to nonzero [94] |
Charge accumulation | 2L WSe2 | Zero to nonzero [95] | |
Electrical gating | 1L WSe2 | a factor of four [39] | |
strain tuning | uniaxial strain | MoS2 | 1.0% tensile strain [96] |
heterojunction strain | MoS2 | 10 times enhanced [97] | |
triangle stack | WS2 | 45 times enhanced [98] | |
Artificially | spiral stack | WS2 | hundreds of times 1 layer -M layer [99] |
stacking | homojunction stacking | MoS2 | 4 times enhanced stacking angle 0–60° [100] |
heterojunction stacking | MoX2-WX2 | 6-fold symmetry [101] | |
enhanced SHG | WS2 | 400 times enhanced [102] | |
Plasmonic | enhanced SHG | WSe2 | 7000 times enhanced [103] |
Enhancement | enhanced SHG and THG | WS2 | SHG 3000 times enhanced THG 3800 times enhanced [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Feng, S.; He, P.; Fu, Y.; Zhang, X. Nonlinear Optical Properties from Engineered 2D Materials. Molecules 2023, 28, 6737. https://doi.org/10.3390/molecules28186737
Shi J, Feng S, He P, Fu Y, Zhang X. Nonlinear Optical Properties from Engineered 2D Materials. Molecules. 2023; 28(18):6737. https://doi.org/10.3390/molecules28186737
Chicago/Turabian StyleShi, Jia, Shifeng Feng, Peng He, Yulan Fu, and Xinping Zhang. 2023. "Nonlinear Optical Properties from Engineered 2D Materials" Molecules 28, no. 18: 6737. https://doi.org/10.3390/molecules28186737
APA StyleShi, J., Feng, S., He, P., Fu, Y., & Zhang, X. (2023). Nonlinear Optical Properties from Engineered 2D Materials. Molecules, 28(18), 6737. https://doi.org/10.3390/molecules28186737