Diabetes Management by Fourth-Generation Glucose Sensors Based on Lemon-Extract-Supported CuO Nanoporous Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD and EDX Analysis
2.2. SEM and TEM Analysis
3. Electrochemical Study
3.1. Electrode-Analyte Kinetic Parameters Evaluation
3.2. Mechanism of CuO@lemon-Extract GCE for Glucose Oxidation
3.3. Tests for Reproducibility, Reusability, and Stability
4. Experimental Section
4.1. Preparation of Modified CuO@lemon-Extract-GCE Sensing Platform
4.2. Instrumentation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- WHO. Diabetes, World Health Org. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 17 September 2023).
- Chakraborty, P.; Dhar, S.; Debnath, K.; Mondal, S.P. Glucose and hydrogen peroxide dual-mode electrochemical sensing using hydrothermally grown CuO nanorods. J. Electroanal. Chem. 2019, 833, 213–220. [Google Scholar] [CrossRef]
- Alam, M.W.; Al Qahtani, H.S.; Souayeh, B.; Ahmed, W.; Albalawi, H.; Farhan, M.; Abuzir, A.S. Novel Copper-Zinc-Manganese Ternary Metal Oxide Nanocomposite as Heterogeneous Catalyst for Glucose Antioxidants (Basel). Sens. Antibact. Act. 2022, 11, 1064. [Google Scholar] [CrossRef]
- Updike, S.J.; Hicks, G.P. The enzyme electrode. Nature 1967, 214, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Qlark, L.C. Monitor and Control of Blood and Tissue Oxygen Tensions. Trans. Am. Soc. Artif. Intern. Organs. 1956, 2, 41–48. [Google Scholar]
- Naikoo, G.A.; Bano, M.; Arshad, F.; Hassan, I.U.; BaOmar, F.; Alfagih, I.M.; Tambuwala, M.M. Non-enzymatic glucose sensors composed of trimetallic CuO/Ag/NiO based composite materials. Sci. Rep. 2023, 13, 6210. [Google Scholar] [CrossRef]
- Balkourani, G.; Damartzis, T.; Brouzgou, A.; Tsiakaras, P. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. Sensors 2022, 22, 355. [Google Scholar] [CrossRef] [PubMed]
- Naikoo, G.A.; Salim, H.; Hassan, I.U.; Awan, T.; Arshad, F.; Pedram, M.Z.; Ahmed, W.; Qurashi, A. Recent Advances in Non–Enzymatic Glucose Sensors Based on Metal and Metal Oxide Nanostructures for Diabetes Management—A Review. Front. Chem. 2021, 9, 786. [Google Scholar] [CrossRef]
- George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Microchim. Acta 2018, 185, 358–384. [Google Scholar] [CrossRef]
- Gao, W.; Zhou, X.; Heinig, N.F.; Thomas, J.P.; Zhang, L.; Leung, K.T. Nonenzymatic Saliva-Range Glucose Sensing Using Electrodeposited Cuprous Oxide Nanocubes on a Graphene Strip. ACS Appl. Nano. Mater. 2021, 4, 4790–4799. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, S.; Guo, Q.; Zhang, H.; Li, H.; Wang, Y.; Fu, J.; Wu, X.; Xu, L.; Wang, M. One-step hydrothermal synthesis of Cu2O/CuO hollow microspheres/reduced graphene oxide hybrid with enhanced sensitivity for non-enzymatic glucose sensing, Colloid. Surface A 2020, 602, 125076. [Google Scholar] [CrossRef]
- Lv, J.; Kong, C.; Xu, Y.; Yang, Z.; Zhang, X.; Yang, S.; Meng, G.; Bi, J.; Li, J.; Yang, S. Facile synthesis of novel CuO/Cu2O nanosheets on copper foil for high sensitive nonenzymatic glucose biosensor. Sens. Actuat. B Chem. 2017, 248, 630–638. [Google Scholar] [CrossRef]
- Lin, L.; Karakocak, B.B.; Kavadiy, S.; Soundappan, T.; Biswas, P. A highly sensitive non-enzymatic glucose sensor based on Cu/Cu2O/CuO ternary composite hollow spheres prepared in a furnace aerosol reactor. Sens. Actuat. B Chem. 2018, 259, 745–752. [Google Scholar] [CrossRef]
- Kong, C.; Tang, L.; Zhang, X.; Sun, S.; Yang, S.; Song, X.; Yang, Z. Templating synthesis of hollow CuO polyhedron and its application for nonenzymatic glucose detection. J. Mater. Chem. A 2014, 2, 7306–7312. [Google Scholar] [CrossRef]
- Liu, C.; Xue, K.; Sun, A.; Chen, D.; Zhang, P.; Cui, G. Cu2O ordered nanoarrays for non-enzymatic glucose detection. J. Appl. Sci. Eng. 2021, 24, 829–835. [Google Scholar] [CrossRef]
- Naikoo, G.A.; Awan, T.; Salim, H.; Arshad, F.; Hassan, I.U.; Pedram, M.Z.; Ahmed, W.; Faruck, H.L.; Aljabali, A.A.A.; Mishra, V.; et al. Fourth-generation glucose sensors composed of copper nanostructures for diabetes management: A critical review. Bioeng. Transl. Med. 2022, 7, 10248. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, L.; Tong, S.; Li, X.; Song, W. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosens. Bioelectron. 2009, 25, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Su, L.; Zhang, Z.; Huo, D.; Hou, C.; Lei, Y. CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators B Chem. 2014, 191, 86–93. [Google Scholar] [CrossRef]
- Wang, H.C.; Lee, A.R. Recent developments in blood glucose sensors. J. Food Drug Anal. 2015, 23, 191–200. [Google Scholar] [CrossRef]
- Ni, P.J.; Sun, Y.J.; Shi, Y.; Dai, H.C.; Hu, J.T.; Wang, Y.L.; Li, Z. Facile fabrication of CuO nanowire modified Cu electrode for non-enzymatic glucose detection with enhanced sensitivity. RSC Adv. 2014, 4, 28842–28847. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Kotb, H.M.; Mushtaq, S.; Waheed-Ur-Rehman, M.; Maghanga, C.M.; Alam, M.W. Green Synthesis of Mn + Cu Bimetallic Nanoparticles Using Vinca rosea Extract and Their Antioxidant, Antibacterial, and Catalytic Activities. Crystals 2022, 12, 72. [Google Scholar] [CrossRef]
- Alam, W.; Khatoon, M.; Qurashi, A. Synthesis and Characterization of Cu-SnO2 Nanoparticles Deposited on Glass Using Ultrasonic Spray Pyrolysis and their H2S Sensing Properties. Curr. Nanosci. 2012, 8, 919–924. [Google Scholar] [CrossRef]
- Bano, M.; Khan, I.; Ahirwar, D.; Khan, F. Synthesis of Ag monoliths for multifunctional applications. Mater. Sci. Eng. B 2021, 264, 114956. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, X.; Sun, Y.; Zhang, J.; Yang, S.; Song, X.; Yang, Z. A facile strategy for the synthesis of hierarchical CuO nanourchins and their application as non-enzymatic glucose sensors. RSC Adv. 2013, 3, 13712–13719. [Google Scholar] [CrossRef]
- Soejima, T.; Yagyu, H.; Kimizuka, N.; Ito, S. One-pot alkaline vapor oxidation synthesis and electrocatalytic activity towards glucose oxidation of CuO nanobelt arrays. RSC Adv. 2011, 1, 187. [Google Scholar] [CrossRef]
- Reitz, E.; Jia, W.Z.; Gentile, M.; Wang, Y.; Lei, Y. CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 2008, 20, 2482. [Google Scholar] [CrossRef]
- Liu, S.; Tian, J.Q.; Wang, L.; Qin, X.Y.; Zhang, Y.W.; Luo, Y.L.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X.P. A simple route for preparation of highly stable CuO nanoparticles for nonenzymatic glucose detection. Catal. Sci. Technol. 2012, 2, 813. [Google Scholar] [CrossRef]
- Cherevko, S.; Chung, C.H. The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Talanta 2010, 80, 1371. [Google Scholar] [CrossRef]
- Muqaddas, S.; Javed, M.; Nadeem, S.; Asghar, M.A.; Haider, A.; Ahmad, M.; Ashraf, A.R.; Nazir, A.; Iqbal, M.; Alwadai, N.; et al. Carbon Nanotube Fiber-Based Flexible Microelectrode for Electrochemical Glucose Sensors. ACS Omega 2023, 8, 2272–2280. [Google Scholar] [CrossRef]
- Solhi, M.; Rahsepar, M.; Asl, A.A.K.; Kim, H. Synthesis and characterization of a high-performance enzyme-free glucose sensor based on mesoporous copper oxide nanoparticles. Mater. Res. Bull. 2023, 164, 112240. [Google Scholar] [CrossRef]
- Alanazi, N.; Gopal, T.S.; Muthuramamoorthy, M.; Alobaidi, A.A.E.; Alsaigh, R.A.; Aldosary, M.H.; Pandiaraj, S.; Almutairi, M.; Grace, A.N.; Alodhayb, A. Cu2O/MXene/rGO Ternary Nanocomposites as Sensing Electrodes for Nonenzymatic Glucose Sensors. ACS Appl. Nano Mater. 2023, 6, 12271–12281. [Google Scholar] [CrossRef]
- Marioli, J.M.; Kuwana, T. Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim. Acta 1992, 37, 1187. [Google Scholar] [CrossRef]
- Zhuang, Z.; Su, X.; Yuan, H.; Sun, Q.; Xiao, D.; Choi, M.M.F. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 2008, 133, 126. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.Z.; Baldwin, R.P. Characterization of carbohydrate oxidation at copper electrodes. J. Electroanal. Chem. 1995, 387, 87. [Google Scholar] [CrossRef]
- Torto, N.; Ruzgas, T.; Gorton, L. Electrochemical oxidation of mono-and disaccharides at fresh as well as oxidized copper electrodes in alkaline media. J. Electroanal. Chem. 1999, 464, 252. [Google Scholar] [CrossRef]
- Wang, A.J.; Feng, J.J.; Li, Z.H.; Liao, Q.C.; Wang, Z.Z.; Chen, J.R. Solvothermal synthesis of Cu/Cu2O hollow microspheres for non-enzymatic amperometric glucose sensing. CrystEngComm 2012, 14, 1289. [Google Scholar] [CrossRef]
- Paixao, T.R.L.C.; Corbo, D.; Bertotti, M. Amperometric determination of ethanol in beverages at copper electrodes in alkaline medium. Anal. Chim. Acta 2002, 472, 123. [Google Scholar] [CrossRef]
Electrode | Potential (V) | Sensitivity (µA mM−1 cm−2) | Linear Range | LOD (µM) | Ref. |
---|---|---|---|---|---|
CuO nanourchins | 0.57 | 1634 | 5 mM | 1.97 | [23] |
CuO nanospheres (NS) | 0.57 | 730 | 6 mM | 2.11 | [24] |
CuO nanobelts (NBs) | 0.6 | 582 | None | 1.0 | [25] |
CuO NS | 0.6 | 404.5 | 2.6 mM | 1.0 | [26] |
CuO NPs | 0.55 | 1397 | 2.3 | 0.5 | [27] |
CuO NWs | 0.4 | 431 | 2.5 mM | 0.8 | [17] |
Porous CuO | 0.65 | 2900 | 2.5 | 0.14 | [28] |
CuO@CNTFs | 0.6 | ~3000 | 13 mM | 1.4 | [29] |
CuO/Ag/NiO | 0.65 | 2895.3 | 0.001–5.50 mM | 0.1 | [6] |
Mesoporous copper (I) oxide nanoparticles | - | 733 | 1 to 9 mM | 0.05 | [30] |
Cu2O/MXene graphene aerogel (3D) composite | - | 264.5 | 0.1 mM–40 mM | 1.1 | [31] |
CuO@lemon-extract GCE | 0.53 | 3293 | 0.01–0.20 µM | 0.01 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, I.U. Diabetes Management by Fourth-Generation Glucose Sensors Based on Lemon-Extract-Supported CuO Nanoporous Materials. Molecules 2023, 28, 6763. https://doi.org/10.3390/molecules28196763
Hassan IU. Diabetes Management by Fourth-Generation Glucose Sensors Based on Lemon-Extract-Supported CuO Nanoporous Materials. Molecules. 2023; 28(19):6763. https://doi.org/10.3390/molecules28196763
Chicago/Turabian StyleHassan, Israr U. 2023. "Diabetes Management by Fourth-Generation Glucose Sensors Based on Lemon-Extract-Supported CuO Nanoporous Materials" Molecules 28, no. 19: 6763. https://doi.org/10.3390/molecules28196763
APA StyleHassan, I. U. (2023). Diabetes Management by Fourth-Generation Glucose Sensors Based on Lemon-Extract-Supported CuO Nanoporous Materials. Molecules, 28(19), 6763. https://doi.org/10.3390/molecules28196763