The Fabrication and Mechanism of a Crystalline Organic Fluorescent Probe Based on Photoinduced Electron Transfer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystalline Structure of H4TCPB·4DMF
2.2. Characterization of H4TCPB·4DMF
2.3. Fluorescence Properties of H4TCPB·4DMF
2.4. Sensing of TC in Water
2.5. Sensing Mechanism Exploration
3. Materials and Methods
3.1. Materials
3.2. Analytical Conditions
3.3. Preparation of H4TCPB·4DMF
3.4. Fluorescence Measurements
3.5. Theoretical Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kim, K.S.; Noh, S.B.; Katsuda, T.; Ito, S.; Osuka, A.; Kim, D. Charge transfer induced enhancement of near-IR two-photon absorption of 5,15-bis(azulenylethynyl) zinc(II) porphyrins. Chem. Commun. 2007, 24, 2479–2481. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhuang, J.; Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. [Google Scholar] [CrossRef]
- Ooyama, Y.; Matsugasako, A.; Oka, K.; Nagano, T.; Sumomogi, M.; Komaguchi, K.; Imae, I.; Harima, Y. Fluorescence PET (photo-induced electron transfer) sensors for water based on anthracene-boronic acid ester. Chem. Commun. 2011, 47, 4448–4850. [Google Scholar] [CrossRef] [PubMed]
- Griesbeck, S.; Michail, E.; Rauch, F.; Ogasawara, H.; Wang, C.; Sato, Y.; Edkins, R.M.; Zhang, Z.; Taki, M.; Lambert, C.; et al. The Effect of Branching on the One- and Two-Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging. Chem. Eur. J. 2019, 25, 13164–13175. [Google Scholar] [CrossRef] [PubMed]
- Strobl, M.; Walcher, A.; Mayr, T.; Klimant, I.; Borisov, S.M. Trace Ammonia Sensors Based on Fluorescent Near-Infrared-Emitting aza-BODIPY Dyes. Anal. Chem. 2017, 89, 2859–2865. [Google Scholar] [CrossRef]
- Hu, F.; Li, J.; Zhang, Z.; Li, M.; Zhao, S.; Li, Z.; Peng, N. Smartphone-Based Droplet Digital LAMP Device with Rapid Nucleic Acid Isolation for Highly Sensitive Point-of-Care Detection. Anal. Chem. 2020, 92, 2258–2265. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B. Zinc (II) and AIEgens: The “Clip Approach” for a Novel Fluorophore Family. A Review. Molecules 2021, 26, 4176. [Google Scholar] [CrossRef]
- Diana, R.; Caruso, U.; Costanzo, L.d.; Gentile, F.S.; Panunzi, B. Colorimetric recognition of multiple first-row transition metals: A single water-soluble chemosensor in acidic and basic conditions. Dyes Pigments 2021, 184, 108832. [Google Scholar] [CrossRef]
- Erstling, J.A.; Hinckley, J.A.; Bag, N.; Hersh, J.; Feuer, G.B.; Lee, R.; Malarkey, H.F.; Yu, F.; Ma, K.; Baird, B.A.; et al. Ultrasmall, Bright, and Photostable Fluorescent Core-Shell Aluminosilicate Nanoparticles for Live-Cell Optical Super-Resolution Microscopy. Adv. Mater. 2021, 33, e2006829. [Google Scholar] [CrossRef]
- Tian, X.; Murfin, L.C.; Wu, L.; Lewis, S.E.; James, T.D. Fluorescent small organic probes for biosensing. Chem. Sci. 2021, 12, 3406–3426. [Google Scholar] [CrossRef]
- Fang, Y.; Meng, Y.; Yuan, C.; Du, C.; Wang, K.P.; Chen, S.; Hu, Z.Q. Efficient deep blue emission by 4-styrylbenzonitrile derivatives in solid state: Synthesis, aggregation induced emission characteristics and crystal structures. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 267, 120575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, Y.; Han, H.H.; Zang, Y.; Li, J.; He, X.P.; Feringa, B.L.; Tian, H. Remote light-controlled intracellular target recognition by photochromic fluorescent glycoprobes. Nat. Commun. 2017, 8, 987. [Google Scholar] [CrossRef] [PubMed]
- Ascherl, L.; Evans, E.W.; Gorman, J.; Orsborne, S.; Bessinger, D.; Bein, T.; Friend, R.H.; Auras, F. Perylene-Based Covalent Organic Frameworks for Acid Vapor Sensing. J. Am. Chem. Soc. 2019, 141, 15693–15699. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Kong, Y.; You, J.; Zhang, C.; Xian, Y. Rational Synthesis of Imine-Linked Fluorescent Covalent Organic Frameworks with Different pK(a) for pH Sensing In Vitro and In Vivo. ACS Appl. Mater. Interfaces 2021, 13, 51351–51361. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, C.; Wang, S.; Wu, L.; Zhang, X. Light-harvesting metal-organic framework nanoprobes for ratiometric fluorescence energy transfer-based determination of pH values and temperature. Mikrochim. Acta 2019, 186, 476. [Google Scholar] [CrossRef]
- Wang, B.; He, R.; Xie, L.-H.; Lin, Z.-J.; Zhang, X.; Wang, J.; Huang, H.; Zhang, Z.; Schanze, K.S.; Zhang, J.; et al. Microporous Hydrogen-Bonded Organic Framework for Highly Efficient Turn-Up Fluorescent Sensing of Aniline. J. Am. Chem. Soc. 2020, 142, 12478–12485. [Google Scholar] [CrossRef]
- Yadav, S.; Choudhary, N.; Ranjan Dash, M.; Ranjan Paital, A. High surface area dendritic silica pairing with anthraquinone derivative: A promising single platform for dual applications of detection and remediation of nitroaromatics and copper ion. Chem. Eng. J. 2022, 450, 138042. [Google Scholar] [CrossRef]
- Qin, J.; Xie, L.; Ying, Y. Feasibility of terahertz time-domain spectroscopy to detect tetracyclines hydrochloride in infant milk powder. Anal. Chem. 2014, 86, 11750–11757. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y.; Ke, Y.; Chen, C.; Xie, S. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. Sci. Total Environ. 2022, 814, 152852. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Q.; Zhang, D.; Gan, N.; Li, Q.; Cuan, J. Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sensor. Actuat. B-Chem. 2018, 262, 137–143. [Google Scholar] [CrossRef]
- Li, W.-T.; Wang, J.-S.; Pang, M.; Li, Y.; Ruan, W.-J. Fluorescent sensor array for tetracyclines discrimination using a single Dye@MOF composite sensor. Sensor. Actuat. B-Chem. 2023, 381, 133375. [Google Scholar] [CrossRef]
- Bu, D.; Song, H.; Li, Z.; Wei, L.; Zhang, H.; Yu, M. Carbon-dot-based ratiometric fluorescent probe of intracellular zinc ion and persulfate ion with low dark toxicity. Luminescence 2020, 35, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Guidi, L.R.; Santos, F.A.; Ribeiro, A.; Fernandes, C.; Silva, L.H.M.; Gloria, M.B.A. Quinolones and tetracyclines in aquaculture fish by a simple and rapid LC-MS/MS method. Food. Chem. 2018, 245, 1232–1238. [Google Scholar] [CrossRef]
- Han, S.; Yang, L.; Wen, Z.; Chu, S.; Wang, M.; Wang, Z.; Jiang, C. A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline. J. Hazard. Mater. 2020, 398, 122894. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, D.; Hamed, A.M.; Gilbert-Lopez, B.; Gamiz-Gracia, L.; Garcia-Campana, A.M. Evaluation of a multiresidue capillary electrophoresis-quadrupole-time-of-flight mass spectrometry method for the determination of antibiotics in milk samples. J. Chromatogr. A 2017, 1510, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.; Yan, B.; Yao, G.; Chao, K.; Zhu, C.; Huang, Q. Surface-Enhanced Raman Spectroscopy for Trace Detection of Tetracycline and Dicyandiamide in Milk Using Transparent Substrate of Ag Nanoparticle Arrays. ACS Appl. Nano Mater. 2020, 3, 7066–7075. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Jiang, L.; Wang, Y.; Liu, W.; Li, Z. Temperature-Dependent Preparation of Hydrogen-Bond Organic Frameworks: Ultrathin and Stable Nanosheets for Fluorescent Sensing toward Uranyl. Cryst. Grow. Des. 2023, 23, 1840–1847. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, Y.; Liu, J.; Cheng, X.; Sun, J.Z.; Qin, A.; Tang, B.Z. A novel pyridinium modified tetraphenylethene: AIE-activity, mechanochromism, DNA detection and mitochondrial imaging. J. Mater. Chem. B 2018, 6, 1279–1285. [Google Scholar] [CrossRef]
- Hoshino, A.; Omata, K.; Takami, S.; Adschiri, T.; Terada, N.; Funatsu, T.; Yasuhara, M.; Yamamoto, K. Fluorescence millisecond oscillation in polar solvents regulates fluorescence intensity of colloidal quantum dots’ solution. J. Nanophotonics 2007, 1, 013516. [Google Scholar] [CrossRef]
- Lei, M.; Jia, Y.; Zhang, W.; Xie, J.; Xu, Z.; Wang, Y.; Du, W.; Liu, W. Ultrasensitive and Selective Detection of Uranium by a Luminescent Terbium−Organic Framework Ultrasensitive and Selective Detection of Uranium by a Luminescent Terbium−Organic Framework. ACS Appl. Mater. Interfaces 2021, 13, 51086–51094. [Google Scholar] [CrossRef] [PubMed]
- Uriarte, D.; Vidal, E.; Canals, A.; Domini, C.E.; Garrido, M. Simple-to-use and portable device for free chlorine determination based on microwave-assisted synthesized carbon dots and smartphone images. Talanta 2021, 229, 122298. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Qi, H.; Ma, R.; Sun, Z.; Xiao, L.; Wei, G.; Huang, Z.; Liu, S.; Li, J.; Dong, M.; et al. N,S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells. Mater. Sci. Eng. C 2019, 105, 110132. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Bu, T.; Sun, X.; Liu, Y.; Liu, J.; Wang, Q.; Shui, Y.; Guo, S.; Wang, L. A sensitive and selective approach for detection of tetracyclines using fluorescent molybdenum disulfide nanoplates. Food. Chem. 2019, 297, 124969. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhang, C.; Yu, X.; Li, J.; Wang, Z.; Zhang, Z.; Liu, B. Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection. J. Mater. Chem. C 2018, 6, 9636–9641. [Google Scholar] [CrossRef]
- Wang, T.; Mei, Q.; Tao, Z.; Wu, H.; Zhao, M.; Wang, S.; Liu, Y. A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline. Biosens. Bioelectron. 2020, 148, 111791. [Google Scholar] [CrossRef]
- Li, W.; Zhu, J.; Xie, G.; Ren, Y.; Zheng, Y.Q. Ratiometric system based on graphene quantum dots and Eu(3+) for selective detection of tetracyclines. Anal. Chim. Acta 2018, 1022, 131–137. [Google Scholar] [CrossRef]
- Tan, H.; Ma, C.; Song, Y.; Xu, F.; Chen, S.; Wang, L. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex. Biosens. Bioelectron. 2013, 50, 447–452. [Google Scholar] [CrossRef]
- Li, C.-P.; Long, W.-W.; Lei, Z.; Guo, L.; Xie, M.-J.; Lü, J.; Zhu, X.-D. Anionic metal–organic framework as a unique turn-on fluorescent chemical sensor for ultra-sensitive detection of antibiotics. Chem. Commun. 2020, 56, 12403–12406. [Google Scholar] [CrossRef]
- Nagarkar, S.S.; Joarder, B.; Chaudhari, A.K.; Mukherjee, S.; Ghosh, S.K. Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew. Chem. Int. Ed. Engl. 2013, 52, 2881–2885. [Google Scholar] [CrossRef]
- Xie, Y.; Gu, L.; Mao, S.; Wu, D.; Fan, J. The role of structural elements and its oxidative products on the surface of ferrous sulfide in reducing the electron-withdrawing groups of tetracycline. Chem. Eng. J. 2019, 378, 122195. [Google Scholar] [CrossRef]
- He, X.; Luo, Y.; Zheng, Z.; Wang, C.; Wang, J.; Hong, D.; Zhai, L.; Guo, L.; Sun, B. Porphyrin-Based Hydrogen-Bonded Organic Frameworks for the Photocatalytic Degradation of 9,10-Diphenylanthracene. ACS Appl. Nano Mater. 2019, 2, 7719–7727. [Google Scholar] [CrossRef]
- Kressee, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, J. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
Name | TC | PNC | BHA | Diuron | TETD | NFX | |
Ksv | 64,413 | 738 | −101 | 15 | 41 | −233 | |
Name | Na+ | K+ | Ca+ | Zn2+ | Fe3+ | Co3+ | Ti4+ |
Ksv | −17 | −27 | −45 | −86 | 1 | 30 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, W.; Yang, M.; Li, Z. The Fabrication and Mechanism of a Crystalline Organic Fluorescent Probe Based on Photoinduced Electron Transfer. Molecules 2023, 28, 6774. https://doi.org/10.3390/molecules28196774
Zhang X, Liu W, Yang M, Li Z. The Fabrication and Mechanism of a Crystalline Organic Fluorescent Probe Based on Photoinduced Electron Transfer. Molecules. 2023; 28(19):6774. https://doi.org/10.3390/molecules28196774
Chicago/Turabian StyleZhang, Xinxin, Wei Liu, Mei Yang, and Zhongyue Li. 2023. "The Fabrication and Mechanism of a Crystalline Organic Fluorescent Probe Based on Photoinduced Electron Transfer" Molecules 28, no. 19: 6774. https://doi.org/10.3390/molecules28196774
APA StyleZhang, X., Liu, W., Yang, M., & Li, Z. (2023). The Fabrication and Mechanism of a Crystalline Organic Fluorescent Probe Based on Photoinduced Electron Transfer. Molecules, 28(19), 6774. https://doi.org/10.3390/molecules28196774