Insight into the Metal–Support Interaction of Pt and β-MnO2 in CO Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Phase Characterization
2.2. Catalytic Activity
2.3. Surface Chemical Structures
2.4. Reduction, Oxygen-Vacancy, and Electron-Transfer Analyses
2.5. Surface Reactions Using Operando DRIFTS-MS
2.5.1. Surface Reactions in CO Atmosphere
2.5.2. Surface Reactions in CO/O2 Atmosphere
2.5.3. Surface Reactions in O2 Atmosphere
3. Interaction of Pt and β-MnO2 in CO Oxidation
4. Materials and Methods
4.1. Catalyst Preparation
4.2. Evaluation of Catalytic Activity
4.3. Catalyst Characterization
5. Conclusions
- (1)
- After loading Pt on β-MnO2, it was found that Pt NPs (1–2 nm) were anchored on β-MnO2 and formed Pt-O-Mn interfaces. CO oxidation was inhibited at a temperature below 210 °C and promoted above 210 °C;
- (2)
- The ratio of Pt+2 dominates CO oxidation. The ratios of Pt+2 before the reaction and after the reaction at 150, 200, and 250 °C were Pt/β-MnO2-fresh (0.32) < Pt/β-MnO2-used-150 °C (0.48) < Pt/β-MnO2-used-200 °C (0.51) < Pt/β-MnO2-used-250 °C (0.64). Pt4+ can convert to Pt+2 by heating;
- (3)
- The Operando DRIFTS-MS results show that Mn=O plays an important role in CO oxidation. Below 210 °C, more Mn=O was consumed on β-MnO2 than on Pt/β-MnO2. When the temperature is higher than 210 °C, more Mn=O was consumed on Pt/β-MnO2 than on β-MnO2. It is speculated that the inhibition of activity below 200 °C after Pt loading is due to Pt+4, which causes less Mn=O consumption for CO oxidation;
- (4)
- The mechanism of Pt and β-MnO2 interaction is proposed, where the Pt+4 and Pt+2 functions are clearly illustrated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dey, S.; Mehta, N.S. Selection of Manganese oxide catalysts for catalytic oxidation of Carbon monoxide at ambient conditions. Resour. Environ. Sustain. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; Li, J.; Zhang, W.; Shi, X.; Huang, Y.; Hojamberdiev, M.; Zhu, G. Metal support interaction of defective-rich CuO and Au with enhanced CO low-temperature catalytic oxidation and moisture resistance. Adv. Powder Mater. 2023, 2, 100119. [Google Scholar] [CrossRef]
- Wu, X.; Lang, J.; Sun, Z.; Jin, F.; Hu, Y.H. Photocatalytic conversion of carbon monoxide: From pollutant removal to fuel production. Appl. Catal. B Environ. 2021, 295, 120312. [Google Scholar] [CrossRef]
- Dey, S.; Dhal, G.C. Highly active palladium nanocatalysts for low-temperature carbon monoxide oxidation. Polytechnica 2020, 3, 1–25. [Google Scholar] [CrossRef]
- Guo, Y.; Wen, M.; Li, G.; An, T. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: A critical review. Appl. Catal. B Environ. 2021, 281, 119447. [Google Scholar] [CrossRef]
- Guo, N.; Zhang, J.; Jiang, L.; Wang, D.; Wang, Z. Highly efficient and selective Ru and Ce modified ZSM-5 catalysts for catalytic oxidation of toluene. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129709. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Fang, X.; Cheng, Y. Simple strategy for the construction of oxygen vacancies on α-MnO2 catalyst to improve toluene catalytic oxidation. J. Hazard. Mater. 2021, 409, 125020. [Google Scholar] [CrossRef]
- Shi, J.; Qi, T.; Sun, B.-C.; Chu, G.-W.; Chen, J.-F. Catalytic oxidation of benzyl alcohol over MnO2: Structure-activity description and reaction mechanism. Chem. Eng. J. 2022, 440, 135802. [Google Scholar] [CrossRef]
- Gu, W.; Li, C.; Qiu, J.; Yao, J. Facile fabrication of flower-like MnO2 hollow microspheres as high-performance catalysts for toluene oxidation. J. Hazard. Mater. 2021, 408, 124458. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, T.; Fang, S.; Li, J.; Wu, Z.; Wang, W.; Zhu, J.; Gao, E.; Yao, S. Exploring the roles of oxygen species in H2 oxidation at β-MnO2 surfaces using operando DRIFTS-MS. Commun. Chem. 2022, 5, 97. [Google Scholar] [CrossRef]
- Liu, D.; Hu, F.; Yan, Y.; Ye, R.; Chen, X.; Han, B.; Lu, Z.-H.; Zhou, L.; Feng, G.; Zhang, R. Promotion of oxygen vacancies and metal-support interaction over 3DOM Au/CeO2 catalyst for CO oxidation. Appl. Surf. Sci. 2023, 629, 157438. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, Q.; Peng, S.; She, J.; Teng, D.; Jin, C.; Che, Y. Influence of geological factors on coal permeability in the Sihe coal mine. Int. J. Coal Sci. Technol. 2022, 9, 6. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Z.; Tan, W.; Ji, J.; Cai, Y.; Tong, Q.; Xiong, Y.; Wan, H.; Dong, L. Thermal-Driven Optimization of the Strong Metal–Support Interaction of a Platinum–Manganese Oxide Octahedral Molecular Sieve to Promote Toluene Oxidation: Effect of the Interface Pt2+–Ov–Mnδ+. ACS Appl. Mater. Interfaces 2022, 14, 56790–56800. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, J.; Jiang, C.; Cheng, B. Catalytic decomposition and mechanism of formaldehyde over Pt–Al2O3 molecular sieves at room temperature. Phys. Chem. Chem. Phys. 2017, 19, 6957–6963. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Lin, L.; Yang, K.; Dai, W.; Chen, X.; Fu, X. Promotion effect of ultraviolet light on NO+ CO reaction over Pt/TiO2 and Pt/CeO2–TiO2 catalysts. Appl. Catal. B Environ. 2015, 179, 395–406. [Google Scholar] [CrossRef]
- Cui, W.; Xue, D.; Tan, N.; Zheng, B.; Jia, M.; Zhang, W. Pt supported on octahedral Fe3O4 microcrystals as a catalyst for removal of formaldehyde under ambient conditions. Chin. J. Catal. 2018, 39, 1534–1542. [Google Scholar] [CrossRef]
- Ru, X.; Li, W.; Wang, X.; Shi, Z.; Wen, X.; Mo, S.; Zhang, Q.; Mo, D. Regulating the surface local environment of MnO2 materials via metal-support interaction in Pt/MnO2 hetero-catalysts for boosting methanol oxidation. Chem. Eng. Sci. 2023, 281, 119079. [Google Scholar] [CrossRef]
- Williams, O.C.; Sievers, C. Active oxygen species in heterogeneously catalyzed oxidation reactions. Appl. Catal. A Gen. 2021, 614, 118057. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Z.; Gao, E.; Zhu, J.; Yao, S.; Li, J. Revealing the role of oxygen vacancies on α-MnO2 of different morphologies in CO oxidation using operando DRIFTS-MS. Appl. Surf. Sci. 2023, 618, 156643. [Google Scholar] [CrossRef]
- Xie, J.; Wang, S.; Zhao, K.; Wu, M.; Wang, F. Regulating the Pt–MnO2 Interaction and Interface for Room Temperature Formaldehyde Oxidation. Inorg. Chem. 2023, 62, 904–915. [Google Scholar] [CrossRef]
- Miao, S.; Deng, Y. Study on total cooxidation of H2 and CO over Au(Pt)/Co3O4 catalysts under oxygen-excessive condition. Chin. J. Catal. 2001, 22, 461–464. [Google Scholar]
- Li, G.; Wang, S.; Wu, Q.; Li, J.; You, X.; Shao, S.; Liu, K. Exploration of reaction mechanism between acid gases and elemental mercury on the CeO2–WO3/TiO2 catalyst via in situ DRIFTS. Fuel 2019, 239, 162–172. [Google Scholar] [CrossRef]
- Jang, E.J.; Lee, J.; Oh, D.G.; Kwak, J.H. CH4 oxidation activity in pd and Pt–Pd bimetallic catalysts: Correlation with surface PdO x quantified from the DRIFTS study. ACS Catal. 2021, 11, 5894–5905. [Google Scholar] [CrossRef]
- Zhang, J.; Asokan, C.; Zakem, G.; Christopher, P.; Medlin, J.W. Enhancing sintering resistance of atomically dispersed catalysts in reducing environments with organic monolayers. Green Energy Environ. 2022, 7, 1263–1269. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Chu, C.; Li, N.; Li, J.; Zhao, S. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts. Chem. Eng. J. 2017, 322, 525–537. [Google Scholar] [CrossRef]
- Sun, H.; Yu, X.; Guo, Y.; Deng, J.; Ge, M. Achieving efficient toluene oxidation over metal–organic framework-derived Pt/CeO2-Co3O4 catalyst. Appl. Surf. Sci. 2022, 591, 153225. [Google Scholar] [CrossRef]
- Zhang, Q.; Mo, S.; Li, J.; Sun, Y.; Zhang, M.; Chen, P.; Fu, M.; Wu, J.; Chen, L.; Ye, D. In situ DRIFT spectroscopy insights into the reaction mechanism of CO and toluene co-oxidation over Pt-based catalysts. Catal. Sci. Technol. 2019, 9, 4538–4551. [Google Scholar] [CrossRef]
- Shi, Y.; Wan, J.; Kong, F.; Wang, Y.; Zhou, R. Influence of Pt dispersibility and chemical states on catalytic performance of Pt/CeO2-TiO2 catalysts for VOCs low-temperature removal. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129932. [Google Scholar] [CrossRef]
- Fan, J.; Sun, Y.; Fu, M.; Li, J.; Ye, D. Modulate the metal support interactions to optimize the surface-interface features of Pt/CeO2 catalysts for enhancing the toluene oxidation. J. Hazard. Mater. 2022, 424, 127505. [Google Scholar] [CrossRef]
- Gao, E.; Jin, Q.; Zhang, T.; Han, L.; Li, N.; Xu, J.; Yao, S.; Wu, Z.; Li, J.; Zhu, J.; et al. Unraveling the promotional effects of K-doping on the mobility of surface oxygen species of CoCr2O4 for improved formaldehyde catalytic oxidation: The weakened metal-oxygen bond strength. Chem. Eng. J. 2023, 474, 145618. [Google Scholar] [CrossRef]
- Yang, W.; Su, Z.A.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B Environ. 2020, 260, 118150. [Google Scholar] [CrossRef]
- Lin, J.; Wang, X.; Zhang, T. Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures. Chin. J. Catal. 2016, 37, 1805–1813. [Google Scholar] [CrossRef]
- Ye, J.; Zhou, M.; Le, Y.; Cheng, B.; Yu, J. Three-dimensional carbon foam supported MnO2/Pt for rapid capture and catalytic oxidation of formaldehyde at room temperature. Appl. Catal. B Environ. 2020, 267, 118689. [Google Scholar] [CrossRef]
- Liang, S.; Teng, F.; Bulgan, G.; Zong, R.; Zhu, Y. Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation. J. Phys. Chem. C 2008, 112, 5307–5315. [Google Scholar] [CrossRef]
- Ede, S.R.; Ramadoss, A.; Anantharaj, S.; Nithiyanantham, U.; Kundu, S. Enhanced catalytic and supercapacitor activities of DNA encapsulated β-MnO2 nanomaterials. Phys. Chem. Chem. Phys. 2014, 16, 21846–21859. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Mo, S.; Li, Y.; Zhang, Y.; Wu, J.; Fu, M.; Niu, X.; Hu, Y.; Ye, D. Pt/MnOx for toluene mineralization via ozonation catalysis at low temperature: SMSI optimization of surface oxygen species. Chemosphere 2022, 286, 131754. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Li, J.; Liao, R.; Peng, P.; Li, J.; Wu, J.; Fu, M.; Liao, L.; Shen, T.; Xie, Q.; et al. Unraveling the decisive role of surface CeO2 nanoparticles in the Pt-CeO2/MnO2 hetero-catalysts for boosting toluene oxidation: Synergistic effect of surface decorated and intrinsic O-vacancies. Chem. Eng. J. 2021, 418, 129399. [Google Scholar] [CrossRef]
- Liu, W.; Sheng, H.; Zhu, L.; Zhang, Y.; Liu, W.; Zhao, Y.; Li, Q.; Peng, Y.; Wang, Z. The preparation of ultrastable Al3+ doped CeO2 supported Au catalysts: Strong metal-support interaction for superior catalytic activity towards CO oxidation. J. Colloid Interface Sci. 2022, 627, 53–63. [Google Scholar] [CrossRef]
- He, K. In situ DRIFTS and TPD studies on surface properties affecting SO2-resistance of Pt/TiO2 catalyst in low-temperature CO oxidation. Surf. Sci. 2023, 734, 122315. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X.-C.; Ouyang, L.; Yang, X.-J.; Mao, W.; Su, J.; Han, Y.-F. Mechanistic study of preferential CO oxidation on a Pt/NaY zeolite catalyst. J. Catal. 2012, 287, 114–123. [Google Scholar] [CrossRef]
- Meunier, F.C.; Tibiletti, D.; Goguet, A.; Reid, D.; Burch, R. On the reactivity of carbonate species on a Pt/CeO2 catalyst under various reaction atmospheres: Application of the isotopic exchange technique. Appl. Catal. A Gen. 2005, 289, 104–112. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, J.; Sun, Y.; Fang, S.; Wu, Z.; Gao, E.; Zhu, J.; Wang, W.; Dai, L.; Liu, W.; et al. Exploring the key components of Au catalyst during CO oxidation using TG-MS and operando DRIFTS-MS. Mol. Catal. 2023, 547, 113361. [Google Scholar] [CrossRef]
- Koo, K.Y.; Jung, U.H.; Yoon, W.L. A highly dispersed Pt/γ-Al2O3 catalyst prepared via deposition–precipitation method for preferential CO oxidation. Int. J. Hydrogen Energy 2014, 39, 5696–5703. [Google Scholar] [CrossRef]
Catalyst | β-MnO2 | Pt/β-MnO2 |
---|---|---|
BET surface (m2 g−1) | 1.29 | 1.29 |
Pore volume (cm3 g−1) | 0.00354 | 0.00174 |
Pore diameter (nm) | 5.83 | 32.74 |
T10 (°C) | 140 | 182 |
T50 (°C) | 235 | 212 |
T90 (°C) | 310 | 222 |
Catalyst | XPS | Raman | |||
---|---|---|---|---|---|
(Mn2+ + Mn3+)/Mn4+ | Oads/Ototal | Pt2+/Pttotal | Pt4+/Pttotal | Mn=O Ratio * | |
β-MnO2 | 3.55 | 0.30 | 0.45 | ||
Pt/β-MnO2-fersh | 4.00 | 0.33 | 0.32 | 0.68 | 0.66 |
Pt/β-MnO2-used-150 °C ** | 0.48 | 0.52 | |||
Pt/β-MnO2-used-200 °C ** | 0.51 | 0.49 | |||
Pt/β-MnO2-used-250 °C ** | 0.64 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Xu, J.; Sun, Y.; Fang, S.; Wu, Z.; Gao, E.; Zhu, J.; Wang, W.; Yao, S.; Li, J. Insight into the Metal–Support Interaction of Pt and β-MnO2 in CO Oxidation. Molecules 2023, 28, 6879. https://doi.org/10.3390/molecules28196879
Zhang T, Xu J, Sun Y, Fang S, Wu Z, Gao E, Zhu J, Wang W, Yao S, Li J. Insight into the Metal–Support Interaction of Pt and β-MnO2 in CO Oxidation. Molecules. 2023; 28(19):6879. https://doi.org/10.3390/molecules28196879
Chicago/Turabian StyleZhang, Tiantian, Jiacheng Xu, Yan Sun, Shiyu Fang, Zuliang Wu, Erhao Gao, Jiali Zhu, Wei Wang, Shuiliang Yao, and Jing Li. 2023. "Insight into the Metal–Support Interaction of Pt and β-MnO2 in CO Oxidation" Molecules 28, no. 19: 6879. https://doi.org/10.3390/molecules28196879
APA StyleZhang, T., Xu, J., Sun, Y., Fang, S., Wu, Z., Gao, E., Zhu, J., Wang, W., Yao, S., & Li, J. (2023). Insight into the Metal–Support Interaction of Pt and β-MnO2 in CO Oxidation. Molecules, 28(19), 6879. https://doi.org/10.3390/molecules28196879