Syntheses, Crystal Structures, and Catalytic Properties of Three Cu(II) and Cobalt(II) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrothermal Synthesis of Coordination Polymers
2.2. Crystal Structure of 1
2.3. Crystal Structur of 2
2.4. Crystal Structure of 3
2.5. TGA and PXRD Data
2.6. Crystal Surface Morphology Analysis
2.7. Catalytic Cyanosilylation of Aldehydes with TMSCN
3. Experimental
3.1. Materials and Measurements
3.2. Synthesis of [Cu2(μ3-dppa)(2,2′-bipy)2(H2O)]n·2nH2O (1)
3.3. Synthesis of [Co4(μ4-dppa)2(phen)4(H2O)4]·2H2O (2)
3.4. Synthesis of [Co2(μ6-dppa)(μ-4,4΄-bipy)(H2O)2]n·3nH2O (3)
3.5. Single-Crystal X-ray Diffraction and Topological Analysis
3.6. Catalytic Activity in Cyanosilylation of Benzaldehydes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chakraborty, G.; Park, I.H.; Medffishetty, R.; Vittal, J.J. Two−Dimensional Metal−Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751–3891. [Google Scholar] [CrossRef]
- Zheng, X.D.; Lu, T.B. Constructions of helical coordination compounds. CrystEngComm 2010, 12, 324–336. [Google Scholar] [CrossRef]
- Gong, W.; Chen, Z.J.; Dong, J.Q.; Liu, Y.; Cui, Y. Chiral Metal-Organic Frameworks. Chem. Rev. 2022, 122, 9078–9144. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.P.; Verma, P.; Butcher, R.J. Synthesis of tricarboxylic acid based metal organic frameworks: Structural and gas adsorption studies. J. Mol. Struct. 2021, 1224, 129161. [Google Scholar] [CrossRef]
- Ji, X.X.; Wu, S.Y.; Song, D.X.; Chen, S.Y.; Chen, Q.; Gao, E.J.; Xu, J.; Zhu, X.P.; Zhu, M.C. A water-stable luminescent sensor based on Cd2+ coordination polymer for detecting nitroimidazole antibiotics in water. Appl. Organomet. Chem. 2021, 35, e6359. [Google Scholar] [CrossRef]
- Alsharabasy, A.M.; Pandit, A.; Farras, P. Recent Advances in the Design and Sensing Applications of Hemin/Coordination Polymer−Based Nanocomposites. Adv. Mater. 2021, 33, 2003883. [Google Scholar] [CrossRef]
- Gu, Y.F.; Zheng, J.J.; Otake, K.I.; Shivanna, M.; Sakaki, S.; Yoshino, H.; Ohba, M.; Kawaguchi, S.; Wang, Y.; Li, F.T.; et al. Host−Guest Interaction Modulation in Porous Coordination Polymers for Inverse Selective CO2/C2H2 Separation. Angew. Chem. Int. Ed. 2021, 60, 11688–11689. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.X.; Li, D.S.; Bu, X.H.; Feng, P.Y. Metal-Organic Frameworks for Separation. Adv. Mater. 2018, 30, 1705189. [Google Scholar] [CrossRef]
- Wei, Y.S.; Zhang, M.; Zou, R.Q.; Xu, Q. Metal−Organic Framework−Based Catalysts with Single Metal Sites. Chem. Rev. 2020, 120, 12089–12174. [Google Scholar] [CrossRef]
- Ghosh, I.; Chakraborty, B.; Bera, A.; Paulb, S.; Paine, T.K. Selective oxygenation of C–H and C=C bondswith H2O2 by high-spin cobalt(II)-carboxylatecomplexes. Dalton Trans. 2022, 51, 2480–2492. [Google Scholar] [CrossRef]
- Shukla, V.; Ahmad, M.; LaDuca, R.L.; Siddiqui, K.A. 6−connected Zn(II)−MOF: Efficient photocatalytic dye degradation and remarkable luminescent detection of biomolecules and hazardous ions. J. Mol. Struct. 2023, 1294, 136371. [Google Scholar] [CrossRef]
- Somnath; Ahmad, M.; Siddiqui, K.A. Ratiometric luminescent sensing of a biomarkerfor sugar consumption in an aqueous mediumusing a Cu(II) coordination polymer. Dalton Trans. 2023, 52, 3643–3660. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Wang, S.Y.; Zhang, Y.; Xia, B.; Li, Q.W.; Wang, Q.L.; Ma, Y. Two zinc coordination polymers with photochromic behaviors and photo−controlled luminescence properties. CrystEngComm 2020, 22, 5162–5169. [Google Scholar] [CrossRef]
- Jeong, A.R.; Shin, J.W.; Jeong, J.H.; Jeoung, S.; Moon, H.R.; Kang, S.; Min, K.S. Porous and Nonporous Coordination Polymers Induced by Pseudohalide Ions for Luminescence and Gas Sorption. Inorg. Chem. 2020, 59, 15987–15999. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Xiong, Y.; Liu, J.Q.; Zhang, T.T.; Liu, L.; Huang, Y.W. Porous coordination/covalent hybridized polymers synthesized from pyridine−zinc coordination compound and their CO2 capture ability, fluorescence and selective response properties. Chem. Commun. 2018, 54, 12025–12028. [Google Scholar] [CrossRef]
- Brunel, J.M.; Holmes, I.P. Chemically catalyzed asymmetric cyanohydrin syntheses. Angew. Chem. Int. Ed. 2004, 43, 2752–2778. [Google Scholar] [CrossRef]
- Lacour, M.-A.; Rahier, N.J.; Taillefer, M. Mild and Efficient Trimethylsilylcyanation of Ketones Catalysed by PNP Chloride. Chem. Eur. J. 2011, 17, 12276–12279. [Google Scholar] [CrossRef]
- Wang, W.; Luo, M.; Yao, W.; Ma, M.; Pullarkat, S.A.; Xu, L.; Leung, P.H. Catalyst-free and Solvent-free Cyanosilylation and Knoevenagel Condensation of Aldehydes. ACS Sustain. Chem. Eng. 2019, 7, 1718–1722. [Google Scholar] [CrossRef]
- North, M.; Usanov, D.L.; Young, C. Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis. Chem. Rev. 2008, 108, 5146–5226. [Google Scholar] [CrossRef]
- Du, J.J.; Zhang, X.; Zhou, X.P.; Li, D. Robust heterometallic MOF catalysts for the cyanosilylation of aldehydes. Inorg. Chem. Front. 2018, 5, 2772–2776. [Google Scholar] [CrossRef]
- Xi, Y.-M.; Ma, Z.Z.; Wang, L.-N.; Li, M.; Li, Z.J. Three-Dimensional Ni(II)-MOF Containing an Asymmetric Pyridyl-Carboxylate Ligand: Catalytic Cyanosilylation of Aldehydes and Inhibits Human Promyelocytic Leukemia Cancer Cells. J. Clust. Sci. 2019, 30, 1455–1464. [Google Scholar] [CrossRef]
- Maria Aguirre-Diaz, L.; Iglesias, M.; Snejko, N.; Gutierrez-Puebla, E.; Angeles Monge, M. Indium metal-organic frameworks as catalysts in solvent-free cyanosilylation reaction. CrystEngComm 2013, 15, 9562–9571. [Google Scholar] [CrossRef]
- Amaro-Gahete, J.; Esquivel, D.; Ruiz, J.R.; Jimenez-Sanchidrian, C.; Romero-Salguero, F.J. Zirconium coordination polymers based on tartaric and malic acids as catalysts for cyanosilylation reactions. Appl. Catal. A 2019, 585, 117190. [Google Scholar] [CrossRef]
- Karmakar, A.; Paul, A.; Rubio, G.M.D.M.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Zinc(II) and Copper(II) Metal-Organic Frameworks Constructed from a Terphenyl-4,4″-dicarboxylic Acid Derivative: Synthesis, Structure, and Catalytic Application in the Cyanosilylation of Aldehydes. Eur. J. Inorg. Chem. 2016, 2016, 5557–5567. [Google Scholar] [CrossRef]
- Pal, A.; Chand, S.; Senthilkumar, S.; Neogi, S.; Das, M.C. Structural variation of transition metal coordinationpolymers based on bent carboxylate and flexiblespacer ligand: Polymorphism, gas adsorption andSC-SC transmetallation. CrystEngComm 2016, 18, 4323. [Google Scholar] [CrossRef]
- Feng, S.S.; Xie, L.; Lu, L.P.; Zhu, M.L.; Su, F. The diversity of five metal–organic complexes based on an unsymmetricalbiphenyl tetracarboxylate: Synthesis, structures, magnetismand luminescence. J. Solid State Chem. 2018, 258, 335–345. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Gu, J.Z.; Qiu, W.D.; Feng, A.S. Temperature−dependent Syntheses of Two Manganese(Ⅱ) Coordination Compounds Based on an Ether−bridged Tetracarbolylic Acid. Chin. J. Struct. Chem. 2020, 39, 727–736. [Google Scholar]
- Li, Y.; Zhao, Z.Y.; Zou, X.Z.; Feng, A.S.; Qiu, W.D. Synthesed, Crystal Structures, and Luminescent Property of Two 1D Cadmium(II) Coordination Polymers Assembled from an Ether−Bridged Tetracarboxylic Acid. Chin. J. Inorg. Chem. 2020, 36, 1728–1734. [Google Scholar]
- Inomata, Y.; Ando, M.; Howell, F.S. Characterization and crystal structures of copper(II), cobalt(II), andnickel(II) complexes with two kinds of piperidine carboxylic acids. J. Mol. Struct. 2002, 616, 201–212. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Gu, J.Z. Synthesis, structures and catalytic activity in Knoevenagel condensation reaction of two diphenyl ether tetracarboxylic acid−Co(II) coordination polymers. Chin. J. Inorg. Chem. 2022, 38, 161–170. [Google Scholar]
- Loukopoulos, E.; Kostakis, G.E. Review: Recent advances of one−dimensional coordination polymers as catalysts. J. Coord. Chem. 2018, 71, 371–410. [Google Scholar] [CrossRef]
- Xue, L.P.; Li, Z.H.; Zhang, T.; Cui, J.J.; Gao, Y.; Yao, J.X. Construction of two Zn(II)/Cd(II) multifunctional coordination polymers with mixed ligands for catalytic and sensing properties. New J. Chem. 2018, 42, 14203–14209. [Google Scholar] [CrossRef]
- Yadav, A.; Kumari, S.; Yadav, P.; Hazra, A.; Chakraborty, A.; Kanoo, P. Open metal site (OMS)—inspired investigation of adsorption and catalytic functions in a porous metal−organic framework (MOF). Dalton Trans. 2022, 51, 15496–15506. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, J.; Liu, Y.Y.; Song, S.Y.; Ma, J.F. A Stable Porphyrin−Based Porous mog Metal−Organic Framework as an Efficient Solvent−Free Catalyst for C−C Bond Formation. Inorg. Chem. 2017, 56, 3036–3043. [Google Scholar] [CrossRef]
- Li, F.; Ma, R.; Xia, Z.; Wei, Q.; Chen, S.; Gao, S. A LADH−like Zn−MOF as an efficient bifunctional catalyst for cyanosilylation of aldehydes and photocatalytic oxidative carbon−carbon coupling reaction. J. Solid. State. Chem. 2021, 301, 122337. [Google Scholar] [CrossRef]
- Gu, J.M.; Kim, W.S.; Huh, S. Size−dependent catalysis by DABCO−functionalized Zn−MOF with one−dimensional channels. Dalton Trans. 2011, 40, 10826–10829. [Google Scholar] [CrossRef]
- Jin, F.Z.; Zhao, C.C.; Ma, H.C.; Chen, G.J.; Dong, Y.B. Homochiral BINAPDA−Zr−MOF for Heterogeneous Asymmetric Cyanosilylation of Aldehydes. Inorg. Chem. 2019, 58, 9253–9259. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Li, Y.; He, C.; Xie, Z.; Duan, C. Luminescent Sensing and Catalytic Performances of a Multifunctional Lanthanide−Organic Framework Comprising a Triphenylamine Moiety. Adv. Funct. Mater. 2011, 21, 2788–2794. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, Z.; Xu, J.; Wang, L.; Sun, J.; Chen, X.; Fan, Y. Sc2(pydc)2 unit based 1D, 2D and 3D metal−organic frameworks as heterogeneous Lewis acid catalysts for cyanosilylation. Dalton Trans. 2015, 44, 1942–1947. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXS-97. In Program for X-ray Crystal Structure Determination; University of Gottingen: Göttingen, Germany, 1997. [Google Scholar]
- Blatov, V.A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCrCompComm Newsl. 2006, 7, 4–38. [Google Scholar]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
Entry | Catalyst | Time, h | Catalyst Loading, mol% | Solvent | Yield a, % |
---|---|---|---|---|---|
1 | 1 | 1 | 3.0 | CH2Cl2 | 38 |
2 | 1 | 2 | 3.0 | CH2Cl2 | 67 |
3 | 1 | 4 | 3.0 | CH2Cl2 | 81 |
4 | 1 | 6 | 3.0 | CH2Cl2 | 90 |
5 | 1 | 8 | 3.0 | CH2Cl2 | 97 |
6 | 1 | 10 | 3.0 | CH2Cl2 | 100 |
7 | 1 | 10 | 2.0 | CH2Cl2 | 94 |
8 | 1 | 10 | 3.0 | CH3CN | 87 |
9 | 1 | 10 | 3.0 | THF | 84 |
10 | 1 | 10 | 3.0 | CH3OH | 98 |
11 | 1 | 10 | 3.0 | CHCl3 | 96 |
12 | 2 | 10 | 3.0 | CH2Cl2 | 85 |
13 | 3 | 10 | 3.0 | CH2Cl2 | 78 |
14 | Blank | 10 | - | CH2Cl2 | 5 |
15 | CuCl2·2H2O | 10 | 3.0 | CH2Cl2 | 8 |
16 | H4dppa | 10 | 3.0 | CH2Cl2 | 6 |
Compound | 1 | 2 | 3 |
---|---|---|---|
Chemical formula | C36H28Cu2N4O12 | C40H28Co2N4O12 | C26H24Co2N2O14 |
Molecular weight | 835.70 | 874.52 | 706.33 |
Crystal system | Triclinic | Triclinic | Monoclinic |
Space group | P-1 | P-1 | P21/c |
a/Å | 10.2566(6) | 12.6141(11) | 11.1877(7) |
b/Å | 11.6991(8) | 13.0964(8) | 19.1989(13) |
c/Å | 15.1791(13) | 13.1405(10) | 13.5420(7) |
α/(°) | 84.044(7) | 64.646(7) | 90 |
β/(°) | 80.245(6) | 64.704(8) | 104.927(6) |
γ/(°) | 74.586(6) | 70.835(7) | 90 |
V/Å3 | 1727.2(2) | 1745.3(3) | 2810.6(3) |
Z | 2 | 2 | 4 |
F(000) | 852 | 892 | 1440 |
Crystal size/mm | 0.24 × 0.23 × 0.22 | 0.23 × 0.22 × 0.20 | 0.22 × 0.21 × 0.18 |
θ range for data collection | 3.295–25.050 | 3.795–69.942 | 4.089–69.951 |
Limiting indices | −12 ≤ h ≤ 12, −13 ≤ k ≤ 13, −17 ≤ l ≤ 18 | −15≤ h ≤ 15, −11 ≤ k ≤ 15, −13 ≤ l ≤ 15 | −9 ≤ h ≤ 13, −20 ≤ k ≤ 20, −16 ≤ l ≤ 16 |
Reflections collected/unique (Rint) | 6083/4871 (0.0294) | 6435/4618 (0.0505) | 5238/3248 (0.0738) |
Dc/(Mg·cm−3) | 1.607 | 1.664 | 1.669 |
μ/mm−1 | 1.304 | 8.108 | 9.928 |
Data/restraints/parameters | 6083/0/487 | 6435/0/523 | 5238/48/437 |
Goodness-of-fit on F2 | 1.029 | 1.025 | 1.031 |
Final R [(I ≥ 2σ(I))] R1, wR2 | 0.0402, 0.0865 | 0.0541, 0.1250 | 0.0634, 0.1301 |
R (all data) R1, wR2 | 0.0534, 0.0939 | 0.0833, 0.1446 | 0.1146, 0.1553 |
Largest diff. peak & hole/(e·Å−3) | 0.339 &−0.386 | 0.811 &−0.458 | 0.427&−0.505 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, X.; Wang, H.; Mei, Z.; Fan, X.; Gu, J. Syntheses, Crystal Structures, and Catalytic Properties of Three Cu(II) and Cobalt(II) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid. Molecules 2023, 28, 6911. https://doi.org/10.3390/molecules28196911
Kang X, Wang H, Mei Z, Fan X, Gu J. Syntheses, Crystal Structures, and Catalytic Properties of Three Cu(II) and Cobalt(II) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid. Molecules. 2023; 28(19):6911. https://doi.org/10.3390/molecules28196911
Chicago/Turabian StyleKang, Xiuqi, Hongyu Wang, Zhenzhong Mei, Xiaoxiang Fan, and Jinzhong Gu. 2023. "Syntheses, Crystal Structures, and Catalytic Properties of Three Cu(II) and Cobalt(II) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid" Molecules 28, no. 19: 6911. https://doi.org/10.3390/molecules28196911
APA StyleKang, X., Wang, H., Mei, Z., Fan, X., & Gu, J. (2023). Syntheses, Crystal Structures, and Catalytic Properties of Three Cu(II) and Cobalt(II) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid. Molecules, 28(19), 6911. https://doi.org/10.3390/molecules28196911