Novel 1,2,3-Triazole-Containing Quinoline–Benzimidazole Hybrids: Synthesis, Antiproliferative Activity, In Silico ADME Predictions, and Docking
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
2.2.1. Evaluation of Antiproliferative Activity of the Novel Compounds
2.2.2. Cell Cycle Perturbation
2.3. Absorption, Distribution, Metabolism, Excretion (ADME), and Toxicity Properties
2.4. Molecular Docking Study
3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedure for the Synthesis of Compounds 6, 7, 12 and 13
4-((1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde (6)
3-bromo-4-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methoxy}benzaldehyde (7)
4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]benzaldehyde (12)
3-bromo-4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]benzaldehyde (13)
3.1.2. General Procedure for the Synthesis of Compounds 9a–10e and 14a–15e
4-(4-{[4-(1H-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)-7-chloroquinoline (9a)
7-chloro-4-(4-{[4-(5-chloro-1H-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)quinoline (9b)
7-chloro-4-(4-{[4-(5-methoxy-1H--benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)quinoline (9c)
2-(4-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methoxy}phenyl)-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride (9d)
2-(4-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methoxy}phenyl)-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride (9e)
4-(4-{[4-(1H-benzo[d]imidazol-2-yl)-2-bromophenoxy]methyl}-1H-1,2,3-triazol-1-yl)-7-chloroquinoline (10a)
4-(4-{[2-bromo-4-(5-chloro-1H-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)-7-chloroquinoline (10b)
4-(4-{[2-bromo-4-(5-methoxy-1H-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)-7-chloroquinoline (10c)
2-(3-bromo-4-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methoxy}phenyl)-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride (10d)
2-(3-bromo-4-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methoxy}phenyl)-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride (10e)
N-[2-(4-{[4-(1H-benzo[d]midazole-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)ethyl]-7-chloroquinolin-4-amine (14a)
7-chloro-N-[2-(4-{[4-(5-chloro-1H-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)ethyl]quinolin-4-amine (14b)
7-chloro-N-[2-(4-{[4-(5-methoxy-1H-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)ethyl]quinolin-4-amine (14c)
2-{4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride (14d)
2-{4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride (14e)
N-[2-(4-{[4-(1H-benzo[d]imidazol-2-yl)-2-bromophenoxy]methyl}-1H-1,2,3-triazol-1-yl)ethyl]-7-chloroquinolin-4-amine (15a)
N-[2-(4-{[2-bromo-4-(5-chloro-1H-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)ethyl]-7-chloroquinolin-4-amine (15b)
N-[2-(4-{[2-bromo-4-(5-methoxy-1H-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)ethyl]-7-chloroquinolin-4-amine (15c)
2-{3-bromo-4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride (15d)
2-{3-bromo-4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride (15e)
3.2. Biological Activity
3.2.1. Cell Lines and Cell Culturing
3.2.2. Proliferation Assay
3.2.3. Cell Cycle Analysis
3.3. Computational Methods
3.3.1. Calculation of ADME Properties
3.3.2. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2018. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2019, 24, 809. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2019. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2020, 25, 745. [Google Scholar] [CrossRef]
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2020. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2021, 26, 627. [Google Scholar] [CrossRef]
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2021. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2022, 27, 1075. [Google Scholar] [CrossRef]
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2022. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2023, 28, 1038. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, A.K.; Singh, H.; Vijayan, V.; Kumar, D.; Naik, J.; Thareja, S.; Yadav, J.P.; Pathak, P.; Grishina, M.; et al. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals 2023, 16, 299. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Nussinov, R.; Tsai, C.J.; Jang, H. Anticancer Drug Resistance: An Update and Perspective. Drug Resist. Updat. 2021, 59, 100796. [Google Scholar] [CrossRef]
- Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.; Ahmed, H.; Rahman, N.; Nainu, F.; Wahyudin, E.; et al. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front. Oncol. 2022, 12, 891652. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert. Opin. Drug Discov. 2021, 16, 335–363. [Google Scholar] [CrossRef]
- Soltan, O.M.; Shoman, M.E.; Abdel-Aziz, S.A.; Narumi, A.; Konno, H.; Abdel-Aziz, M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur. J. Med. Chem. 2021, 225, 113768. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Paliwal, H.; Thareja, S.; Pathak, P.; Grishina, M.; Jaremko, M.; Emwas, A.H.; et al. Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids. Pharmaceuticals 2022, 15, 1071. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation“ of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Jiang, X.; Hao, X.; Jing, L.; Wu, G.; Kang, K.; Liu, X.; Zhan, P. Recent applications of click chemistry in drug discovery. Expert Opin. Drug Discov. 2019, 14, 779–789. [Google Scholar] [CrossRef]
- Lengerli, D.; Ibis, K.; Nural, Y.; Banoglu, E. The 1,2,3-triazole ‘all-in-one’ ring system in drug discovery: A good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opin. Drug Discov. 2022, 17, 1209–1236. [Google Scholar] [CrossRef]
- Serafini, M.; Pirali, T.; Tron, G.C. Click 1,2,3-triazoles in drug discovery and development: From the flask to the clinic? In Advances in Heterocyclic Chemistry; Meanwall, N.A., Lolli, M.L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Volume 134, ISBN 9780128201824. [Google Scholar] [CrossRef]
- Alam, M.M. 1,2,3-Triazole hybrids as anticancer agents. Arch. Pharm. 2022, 355, 2100158. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Sun, X.; Li, W.; Hou, G.; Gao, F. 1,2,3-Triazole-Containing Compounds as Anti–Lung Cancer Agents: Current Developments, Mechanisms of Action, and Structure–Activity Relationship. Front. Pharmacol. 2021, 12, 661173. [Google Scholar] [CrossRef]
- Mishra, K.N.; Upadhyay, H.C. Coumarin-1,2,3-triazole hybrids as leading-edge anticancer agents. Front. Drug. Discov. 2022, 2, 1072448. [Google Scholar] [CrossRef]
- Si, X.; Wang, J.; Cheng, Y.; Shi, J.; Cui, L.; Zhang, H.; Huang, Y.; Liu, W.; Chen, L.; Zhu, J.; et al. A phase III, randomized, double-blind, controlled trial of carboxyamidotriazole plus chemotherapy for the treatment of advanced non-small cell lung cancer. Ther. Adv. Med. Oncol. 2020, 12, 1–9. [Google Scholar] [CrossRef]
- Omuro, A.; Beal, K.; McNeill, K.; Young, R.J.; Thomas, A.; Lin, X.; Terziev, R.; Kaley, T.J.; De Angelis, L.M.; Daras, M.; et al. Multicenter Phase IB Trial of Carboxyamidotriazole Orotate and Temozolomide for Recurrent and Newly Diagnosed Glioblastoma and Other Anaplastic Gliomas. J. Clin. Oncol. 2018, 36, 1702–1709. [Google Scholar] [CrossRef]
- Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem. 2021, 109, 104639. [Google Scholar] [CrossRef]
- Senerovic, L.; Opsenica, D.; Moric, I.; Aleksic, I.; Spasić, M.; Vasiljevic, B. Quinolines and Quinolones as Antibacterial, Antifungal, Anti-virulence, Antiviral and Anti-parasitic Agents. In Advances in Microbiology, Infectious Diseases and Public Health; Donelli, G., Ed.; Springer: Cham, Switzerland, 2019; Volume 1282, ISBN 978-3-030-53646-6. [Google Scholar] [CrossRef]
- Basavarajaiah, S.M. The Versatile Quinoline and Its Derivatives as anti-Cancer Agents: An Overview. Polycycl. Aromat. Compd. 2022, 43, 4333–4345. [Google Scholar] [CrossRef]
- Ilakiyalakshmi, M.; Napoleon, A.A. Review on recent development of quinoline for anticancer activities. Arab. J. Chem. 2022, 15, 104168. [Google Scholar] [CrossRef]
- Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol. Res. 2021, 168, 105582. [CrossRef]
- Holmes, F.A.; Moy, B.; Delaloge, S.; Chia, S.K.L.; Ejlertsen, B.; Mansi, J.; Iwata, H.; Gnant, M.; Buyse, M.; Barrios, C.H.; et al. Overall survival with neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): A randomised, double-blind, placebo-controlled, phase 3 trial. Eur. J. Cancer 2023, 184, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, N.; Shepherd, S.; Mohammed, K.; Lee, K.A.; Allen, M.; Johnston, S.; Kipps, E.; McGrath, S.; Noble, J.; Parton, M.; et al. Neratinib in advanced HER2-positive breast cancer: Experience from the royal Marsden hospital. Breast Cancer Res. Treat. 2022, 195, 333–340. [Google Scholar] [CrossRef]
- Harding, J.J.; Piha-Paul, S.A.; Shah, R.H.; Murphy, J.J.; Cleary, J.M.; Shapiro, G.I.; Quinn, D.I.; Brana, I.; Moreno, V.; Borad, M.; et al. Antitumour activity of neratinib in patients with HER2-mutant advanced biliary tract Cancers. Nat. Comm. 2023, 14, 630. [Google Scholar] [CrossRef]
- Alzhrani, Z.M.M.; Alam, M.M.; Nazreen, S. Recent Advancements on Benzimidazole: A Versatile Scaffold in Medicinal Chemistry. Mini Rev. Med. Chem. 2022, 22, 365–386. [Google Scholar] [CrossRef] [PubMed]
- Ebenezer, O.; Jordaan, M.A.; Carena, G.; Bono, T.; Shapi, M.; Tuszynski, J.A. An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int. J. Mol. Sci. 2022, 23, 8117. [Google Scholar] [CrossRef]
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm. Sin. B. 2022, 13, 478–497. [Google Scholar] [CrossRef]
- Law, C.S.W.; Yeong, K.Y. Benzimidazole in Drug Discovery: A patent review. ChemMedChem 2021, 17, 1861–1877. [Google Scholar] [CrossRef]
- Tarlock, K.; Meshinchi, S.; Rubnitz, J.E.; Karol, S.E.; Spitzer, B.; Sabnitz, A.J.; Pathan, A.; Messahel, B. Clinical Benefit and Tolerability of Crenolanib in Children with Relapsed Acute Myeloid Leukemia Harboring Treatment Resistant FLT3 ITD and Variant FLT3 TKD Mutations Treated on Compassionate Access. Blood 2020, 136, 23–24. [Google Scholar] [CrossRef]
- Zhang, H.; Savage, S.; Reister Schultz, A.; Bottomly, D.; White, L.; Segerdell, E.; Wilmot, B.; McWeeney, S.K.; Eide, C.A.; Nechiporuk, T.; et al. Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nat. Commun. 2019, 10, 244. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.W.; Xie, H.; Fetterly, G.; Pitzonka, L.; Whitworth, A.; LeVea, C.; Wilton, J.; Mantione, K.; Schihl, S.; Dy, G.K.; et al. A phase Ib study of the FGFR/VEGFR inhibitor dovitinib with gemcitabine and capecitabine in advanced solid tumor and pancreatic cancer patients. Am. J. Clin. Oncol. 2019, 42, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Krstulović, L.; Stolić, I.; Jukić, M.; Opačak-Bernardi, T.; Starčević, K.; Bajić, M.; Glavaš-Obrovac, L. New quinoline-arylamidine hybrids: Synthesis, DNA/RNA binding and antitumor activity. Eur. J. Med. Chem. 2017, 137, 196–210. [Google Scholar] [CrossRef] [PubMed]
- Krstulović, L.; Leventić, M.; Rastija, V.; Starčević, K.; Jirouš, M.; Janić, I.; Karnaš, M.; Lasić, K.; Bajić, M.; Glavaš-Obrovac, L. Novel 7-Chloro-4-aminoquinoline-benzimidazole Hybrids as Inhibitors of Cancer Cells Growth: Synthesis, Antiproliferative Activity, In Silico ADME Predictions, and Docking. Molecules 2023, 28, 540. [Google Scholar] [CrossRef]
- Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem. 2010, 18, 8243–8256. [Google Scholar] [CrossRef]
- Starčević, K.; Pešić, D.; Toplak, A.; Landek, G.; Alihodžić, S.; Herreros, E.; Ferrer, S.; Spaventi, R.; Perić, M. Novel hybrid molecules based on 15-membered azalide as potential antimalarial agents. Eur. J. Med. Chem. 2012, 49, 365–378. [Google Scholar] [CrossRef]
- Czarny, A.; Wilson, W.D.; Boykin, D.W. Synthesis of mono-cationic and dicationic analogs of Hoechst 33258. J. Heterocycl. Chem. 1996, 33, 1393–1397. [Google Scholar] [CrossRef]
- Abou-Elkhair, R.A.I.; Hassan, A.E.A.; Boykin, D.W.; Wilson, W.D. Lithium Hexamethyldisilazane Transformation of Transiently Protected 4-Aza/Benzimidazole Nitriles to Amidines and their Dimethyl Sulfoxide Mediated Imidazole Ring Formation. Org. Lett. 2016, 18, 4714–4717. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, D.; Antoci, V.; Mangalagiu, V.; Amariucai-Mantu, D.; Mangalagiu, I.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep. 2022, 12, 1–17. [Google Scholar] [CrossRef]
- Feng, L.; Su, W.; Cheng, J.; Xiao, T.; Li, H.; Chen, D.; Zhang, Z. Benzimidazole Hybrids as Anticancer Drugs: An Updated Review on Anticancer Properties, Structure–Activity Relationship, and Mechanisms of Action (2019–2021). Arch. Pharm. 2022, 355, 2200051. [Google Scholar] [CrossRef]
- Zuo, D.; Jiang, X.; Han, M.; Shen, J.; Lang, B.; Guan, Q.; Bai, Z.; Han, C.; Li, Z.; Zhang, W.; et al. Methyl 5-[(1H-indol-3-yl)selanyl]-1H-benzoimidazol-2-ylcarbamate (M-24), a novel tubulin inhibitor, causes G2/M arrest and cell apoptosis by disrupting tubulin polymerization in human cervical and breast cancer cells. Toxicol. Vitr. 2017, 42, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bochkur Dratver, M.; Yazal, T.; Dong, K.; Nguyen, A.; Yu, G.; Dao, A.; Bochkur Dratver, M.; Duhacek-Muggy, S.; Bhat, K.; et al. Mebendazole Potentiates Radiation Therapy in Triple-Negative Breast Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 195–207. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Daina, O.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Zhou, T.-J.; Sun, L.-G.; Gao, Y.; Goldsmith, E.J. Crystal structure of the MAP3K TAO2 kinase domain bound by an inhibitor Staurosporine. Acta Biochim. Biophys. Sin. 2006, 38, 385–392. [Google Scholar] [CrossRef]
- Fang, C.-Y.; Lai, T.-C.; Hsiao, M.; Chang, Y.-C. The diverse roles of TAO kinases in health and diseases. Int. J. Mol. Sci. 2020, 21, 7463. [Google Scholar] [CrossRef]
- Chen, Z.; Cobb, M.H. Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2. J. Biol. Chem. 2001, 276, 16070–16075. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.C.; Antoniades, W.; Okalova, J.; Roos, M.M.; Grimsey, N.J. Atypical p38 signaling, activation, and implications forDisease. Int. J. Mol. Sci. 2021, 22, 4183. [Google Scholar] [CrossRef] [PubMed]
- Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res. 1995, 34, 91–109. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Hocquet, A.; Langgård, M. An evaluation of the MM+ force field. J. Mol. Model. 1998, 4, 94–112. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1998, 10, 209–220. [Google Scholar] [CrossRef]
- Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinform. 2011, 12, S33. [Google Scholar] [CrossRef]
Comp. | R1 | R2 | MRC-5 | HeLa | CaCo-2 | THP-1 | Hut78 | HL-60 |
---|---|---|---|---|---|---|---|---|
9a | H | H | >100 | >100 | >100 | >100 | 100 | >100 |
9b | H | Cl | 100 | 94.1 | >100 | >100 | 92.9 ± 4.3 | >100 |
9c | H | OCH3 | 2.71 | 7.53 | 8.3 | 0.18 | 0.2 | 1.02 |
9d | H | >100 | >100 | >100 | >100 | 2.52 | >100 | |
9e | H | >100 | >100 | >100 | >100 | 10.2 | 98.3 | |
10a | Br | H | 52.1 | 10.0 | 63.8 | 9.6 | 5.88 | 76.1 |
10b | Br | Cl | >100 | 8.11 | 10.9 | 10.6 | 6.43 | 55.2 |
10c | Br | OCH3 | 8.54 | 9.86 | 9.92 | 6.23 | 3.89 | 18.2 |
10d | Br | >100 | >100 | >100 | >100 | >100 | >100 | |
10e | Br | >100 | >100 | >100 | >100 | 9.68 | 93.2 | |
14a | H | H | >100 | >100 | >100 | >100 | >100 | >100 |
14b | H | Cl | >100 | >100 | >100 | >100 | >100 | >100 |
14c | H | OCH3 | >100 | >100 | >100 | 7.31 | >100 | >100 |
14d | H | >100 | >100 | >100 | >100 | 10.51 | >100 | |
14e | H | >100 | >100 | >100 | >100 | 10.86 | >100 | |
15a | Br | H | >100 | >100 | >100 | 4.66 | 7.88 | 11.63 |
15b | Br | Cl | >100 | >100 | >100 | 2.06 | 4.91 | 1.24 |
15c | Br | OCH3 | >100 | >100 | >100 | 1.65 | 3.98 | 2.62 |
15d | Br | >100 | >100 | >100 | >100 | >100 | >100 | |
15e | Br | >100 | >100 | >100 | >100 | 7.83 | >100 | |
5-FU | 54.1 | 8.2 | 5.9 | 76.4 | >100 | >100 |
Comp. | MW * | Csp3 | RB | HBA | HBD | TPSA | XLOGP3 | MLOGP | ESOL Log S | Water Sol. | GIA | BBBP | PgpS | LR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9a | 452.9 | 0.04 | 5 | 5 | 1 | 81.51 | 4.97 | 3.49 | −6.12 | Poorly | High | No | Yes | 0 |
9b | 487.34 | 0.04 | 5 | 5 | 1 | 81.51 | 5.6 | 3.96 | −6.71 | Poorly | High | No | Yes | 0 |
9c | 482.92 | 0.08 | 6 | 6 | 1 | 90.74 | 4.94 | 3.17 | −6.18 | Poorly | High | No | Yes | 0 |
9d | 495.94 | 0.04 | 6 | 5 | 3 | 133.12 | 3.94 | 2.87 | −5.62 | Poorly | High | No | Yes | 0 |
9e | 538.02 | 0.14 | 9 | 5 | 3 | 119.13 | 5.23 | 3.45 | −6.45 | Poorly | High | No | Yes | 1 |
10a | 531.79 | 0.04 | 5 | 5 | 1 | 81.51 | 5.66 | 4.32 | −7.03 | Poorly | High | No | No | 2 |
10b | 566.24 | 0.04 | 5 | 5 | 1 | 81.51 | 6.29 | 4.79 | −7.62 | Poorly | Low | No | No | 2 |
10c | 561.82 | 0.08 | 6 | 6 | 1 | 90.74 | 5.63 | 3.73 | −7.09 | Poorly | Low | No | No | 1 |
10d | 574.84 | 0.04 | 6 | 5 | 3 | 133.12 | 4.63 | 3.43 | −6.52 | Poorly | Low | No | Yes | 1 |
10e | 616.92 | 0.14 | 9 | 5 | 3 | 119.13 | 5.92 | 4.01 | −7.36 | Poorly | Low | No | No | 1 |
14a | 495.96 | 0.11 | 8 | 5 | 2 | 93.54 | 4.93 | 3.1 | −6.11 | Poorly | High | No | Yes | 0 |
14b | 530.41 | 0.11 | 8 | 5 | 2 | 93.54 | 5.55 | 3.56 | −6.7 | Poorly | High | No | No | 1 |
14c | 525.99 | 0.14 | 9 | 6 | 2 | 102.77 | 4.9 | 2.78 | −6.18 | Poorly | High | No | Yes | 1 |
14d | 539.01 | 0.11 | 9 | 5 | 4 | 145.15 | 3.89 | 2.49 | −5.61 | Poorly | Low | No | Yes | 1 |
14e | 581.09 | 0.19 | 12 | 5 | 4 | 131.16 | 5.19 | 3.06 | −6.45 | Poorly | Low | No | No | 1 |
15a | 564.86 | 0.15 | 9 | 5 | 2 | 93.01 | 3.74 | 3.03 | −5.52 | Moderately | High | No | Yes | 1 |
15b | 599.31 | 0.15 | 9 | 5 | 2 | 93.01 | 4.37 | 3.49 | −6.11 | Poorly | High | No | No | 1 |
15c | 594.89 | 0.19 | 10 | 6 | 2 | 102.24 | 3.72 | 2.71 | −5.6 | Moderately | High | No | Yes | 1 |
15d | 607.91 | 0.15 | 10 | 5 | 4 | 144.62 | 2.71 | 2.69 | −5.04 | Moderately | Low | No | Yes | 1 |
15e | 649.99 | 0.23 | 13 | 5 | 4 | 130.63 | 2.71 | 2.69 | −5.04 | Moderately | Low | No | Yes | 1 |
Compound | Energy | VDW | HBond | Elec |
---|---|---|---|---|
14e | −140.44 | 79.20 | 20.80 | 0.00 |
STU | −137.99 | 89.85 | 10.15 | 0.00 |
9e | −131.00 | 79.16 | 20.84 | 0.00 |
14d | −127.85 | 80.96 | 19.04 | 0.00 |
9d | −127.67 | 72.83 | 24.98 | 2.19 |
10e | −124.68 | 86.23 | 13.77 | 0.00 |
9c | −123.88 | 84.30 | 15.70 | 0.00 |
10c | −123.41 | 78.59 | 21.41 | 0.00 |
9a | −122.31 | 79.50 | 20.50 | 0.00 |
14a | −120.23 | 83.55 | 16.45 | 0.00 |
10d | −119.16 | 81.20 | 16.97 | 1.83 |
10b | −118.41 | 74.77 | 25.23 | 0.00 |
14c | −116.35 | 83.43 | 16.57 | 0.00 |
9b | −115.47 | 85.73 | 14.27 | 0.00 |
15e | −114.44 | 84.73 | 15.27 | 0.00 |
15c | −111.56 | 87.59 | 12.41 | 0.00 |
14b | −110.44 | 81.86 | 18.14 | 0.00 |
10a | −106.61 | 83.64 | 16.36 | 0.00 |
15a | −105.91 | 88.73 | 11.27 | 0.00 |
15d | −105.48 | 88.01 | 11.99 | 0.00 |
15b | −101.95 | 72.16 | 27.84 | 0.00 |
H Bond | Energy | Van der Waals Interaction | Energy |
---|---|---|---|
M-Ile34 | −2.30 | M-Ile34 | −3.95 |
M-His36 | −3.50 | M-Gly35 | −7.69 |
S-Glu76 | −6.90 | M-His36 | −7.87 |
M-Leu80 | −1.60 | S-His36 | −1.21 |
M-Ile89 | −3.50 | S-Phe39 | −3.82 |
S-Asp114 | −3.50 | S-Val42 | −3.97 |
S-Glu117 | −5.41 | S-Lys57 | −6.50 |
M-Asp169 | −2.50 | M-Leu80 | −3.34 |
S-Leu80 | −11.43 | ||
M-Ile89 | −1.89 | ||
M-Gln90 | −7.64 | ||
S-Met105 | −8.39 | ||
S-Asp114 | −2.81 | ||
S-Glu117 | −3.38 | ||
M-Gly168 | −4.74 | ||
M-Asp169 | −3.88 | ||
S-Asp169 | −6.43 | ||
S-Phe170 | −3.39 | ||
S-Met312 | −2.46 | ||
S-Lys314 | −5.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krstulović, L.; Mišković Špoljarić, K.; Rastija, V.; Filipović, N.; Bajić, M.; Glavaš-Obrovac, L. Novel 1,2,3-Triazole-Containing Quinoline–Benzimidazole Hybrids: Synthesis, Antiproliferative Activity, In Silico ADME Predictions, and Docking. Molecules 2023, 28, 6950. https://doi.org/10.3390/molecules28196950
Krstulović L, Mišković Špoljarić K, Rastija V, Filipović N, Bajić M, Glavaš-Obrovac L. Novel 1,2,3-Triazole-Containing Quinoline–Benzimidazole Hybrids: Synthesis, Antiproliferative Activity, In Silico ADME Predictions, and Docking. Molecules. 2023; 28(19):6950. https://doi.org/10.3390/molecules28196950
Chicago/Turabian StyleKrstulović, Luka, Katarina Mišković Špoljarić, Vesna Rastija, Nikolina Filipović, Miroslav Bajić, and Ljubica Glavaš-Obrovac. 2023. "Novel 1,2,3-Triazole-Containing Quinoline–Benzimidazole Hybrids: Synthesis, Antiproliferative Activity, In Silico ADME Predictions, and Docking" Molecules 28, no. 19: 6950. https://doi.org/10.3390/molecules28196950
APA StyleKrstulović, L., Mišković Špoljarić, K., Rastija, V., Filipović, N., Bajić, M., & Glavaš-Obrovac, L. (2023). Novel 1,2,3-Triazole-Containing Quinoline–Benzimidazole Hybrids: Synthesis, Antiproliferative Activity, In Silico ADME Predictions, and Docking. Molecules, 28(19), 6950. https://doi.org/10.3390/molecules28196950