Exploring the Profile Contributions in Meyerozyma guilliermondii YB4 under Different NaCl Concentrations Using GC-MS Combined with GC-IMS and an Electronic Nose
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of YB4 Growth Curve and Total Esters with Different Salt Concentrations
2.2. E-Nose Analysis
2.3. GC-MS Analysis
2.4. GC-IMS Analysis
2.5. Differential Volatile Compounds
2.6. ROAV Calculations for Volatile Compounds in YB4
2.7. Contributing Volatiles in YB4 with Different NaCl Concentration
3. Materials and Methods
3.1. Bacterial Strains and Growth Conditions
3.2. Reagents and Standards
3.3. Determination of Growth Curves
3.4. Detection of Total Esters
3.5. Volatile Compound Analysis
3.5.1. E-Nose Analysis
3.5.2. Volatile Compounds Detected by GC-MS
3.5.3. Volatile Compounds Detected by GC-IMS
3.5.4. Calculation of ROAV
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chen, H.; Nie, X.; Peng, T.; Xiang, L.; Liu, D.; Luo, H.; Zhao, Z. Effects of Low-Temperature and Low-Salt Fermentation on the Physicochemical Properties and Volatile Flavor Substances of Chinese Kohlrabi Using Gas Chromatography–Ion Mobility Spectrometry. Fermentation 2023, 9, 146. [Google Scholar] [CrossRef]
- Paśko, P.; Galanty, A.; Żmudzki, P.; Gdula-Argasińska, J.; Zagrodzki, P. Influence of different light conditions and time of sprouting on harmful and beneficial aspects of rutabaga sprouts in comparison to their roots and seeds. J. Sci. Food Agric. 2019, 99, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Duan, F.; Tian, Q.; Zhong, D.; Wang, X.; Jia, L. Physiochemical, microbiological and flavor characteristics of traditional Chinese fermented food Kaili Red Sour Soup. LWT 2021, 142, 110933. [Google Scholar] [CrossRef]
- Tokitomo, Y.; Steinhaus, M.; Büttner, A.; Schieberle, P. Odor-Active Constituents in Fresh Pineapple ( Ananas comosus [L.] Merr.) by Quantitative and Sensory Evaluation. Biosci. Biotechnol. Biochem. 2005, 69, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Mendes, D.; Dias, T.; Garcia, R.; Da Silva, M.G.; Cabrita, M.J. Revealing the yeast modulation potential on amino acid composition and volatile profile of Arinto white wines by a combined chromatographic-based approach. J. Chromatogr. 2021, 1641, 461991. [Google Scholar] [CrossRef]
- Li, W.; Fan, G.; Fu, Z.; Wang, W.; Xu, Y.; Teng, C.; Zhang, C.; Yang, R.; Sun, B.; Li, X. Effects of fortification of Daqu with various yeasts on microbial community structure and flavor metabolism. Food Res. Int. 2020, 129, 108837. [Google Scholar] [CrossRef]
- Lee, M.-A.; Choi, Y.-J.; Lee, H.; Hwang, S.; Lee, H.J.; Park, S.J.; Chung, Y.B.; Yun, Y.-R.; Park, S.-H.; Min, S.; et al. Influence of Salinity on the Microbial Community Composition and Metabolite Profile in Kimchi. Fermentation 2021, 7, 308. [Google Scholar] [CrossRef]
- Song, H.S.; Whon, T.W.; Kim, J.; Lee, S.H.; Kim, J.Y.; Kim, Y.B.; Choi, H.-J.; Rhee, J.-K.; Roh, S.W. Microbial niches in raw ingredients determine microbial community assembly during kimchi fermentation. Food Chem. 2020, 318, 126481. [Google Scholar] [CrossRef]
- Chun, B.H.; Kim, K.H.; Jeong, S.E.; Jeon, C.O. The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybean paste. Food Micr. 2020, 86, 103329. [Google Scholar] [CrossRef]
- Tang, H.; Wang, H.; Wu, H.; Deng, J.; Liu, Y.; Wang, Y. Screening, Identification and Characterization of Aroma-Producing and Salt-Tolerant Yeast Strains from Pickles from South Sichuan, China. Food Sci. 2020, 41, 150–157. [Google Scholar]
- Xu, J.; Zhang, Y.; Yan, F.; Tang, Y.; Yu, B.; Chen, B.; Lu, L.; Yuan, L.; Wu, Z.; Chen, H. Monitoring Changes in the Volatile Com-pounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS. Foods 2022, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Shen, S.; Huang, L.; Deng, G.; Wei, Y.; Ning, J.; Wang, Y. Revelation of volatile contributions in green teas with different aroma types by GC–MS and GC–IMS. Food Res. Int. 2023, 169, 112845. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huo, D.; Zhang, J. Gas Recognition in E-Nose System: A Review. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mesa, M.; Ropartz, D.; García-Campaña, A.M.; Rogniaux, H.; Dervilly-Pinel, G.; Le Bizec, B. Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules 2019, 24, 2706. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Y.; Ren, L.; Su, Z.; Bian, X.; Fan, J.; Wang, Y.; Han, B.; Zhang, N. HS-GC-IMS and PCA to Characterize the Volatile Flavor Compounds in Three Sweet Cherry Cultivars and Their Wines in China. Molecules 2022, 27, 9056. [Google Scholar] [CrossRef]
- Han, Y.; Wang, C.; Zhang, X.; Li, X.; Gao, Y. Characteristic volatiles analysis of Dongbei Suancai across different fermentation stages based on HS-GC-IMS with PCA. J. Food Sci. 2022, 87, 612–622. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, H.; Ding, S.; Zhou, H.; Qin, D.; Deng, F.; Wang, R. Changes in volatile compounds of fermented minced pepper during natural and inoculated fermentation process based on headspace–gas chromatography–ion mobility spectrometry. Food Sci. Nutr. 2020, 8, 3362–3379. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, L.; Tu, K. Aroma in freshly squeezed strawberry juice during cold storage detected by E-nose, HS–SPME–GC–MS and GC-IMS. Food Meas. 2023, 17, 3309–3322. [Google Scholar] [CrossRef]
- Yu, H.; Xie, T.; Xie, J.; Ai, L.; Tian, H. Characterization of key aroma compounds in Chinese rice wine using gas chromatog-raphy-mass spectrometry and gas chromatography-olfactometry. Food Chem. 2019, 293, 8–14. [Google Scholar] [CrossRef]
- Hernandezorte, P.; Cersosimo, M.; Loscos, N.; Cacho, J.; Garciamoruno, E.; Ferreira, V. The development of varietal aroma from non-floral grapes by yeasts of different genera. Food Chem. 2008, 107, 1064–1077. [Google Scholar] [CrossRef]
- Chen, Z.; Geng, Y.; Wang, M.; Lv, D.; Huang, S.; Guan, Y.; Hu, Y. Relationship between microbial community and flavor profile during the fermentation of chopped red chili (Capsicum annuum L.). Food Bio. 2022, 50, 102071. [Google Scholar] [CrossRef]
- Cai, W.; Tang, F.; Wang, Y.; Zhang, Z.; Xue, Y.; Zhao, X.; Guo, Z.; Shan, C. Bacterial diversity and flavor profile of Zha-Chili, a traditional fermented food in China. Food Res. Int. 2021, 141, 110112. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.; Chen, F.; Guan, H.; Liu, L.; Zhang, C.; Zhu, P.; Liu, Y.; et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Schwab, W.; Ho, C.-T.; Song, C.; Wan, X. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS. Food Chem. 2021, 376, 131933. [Google Scholar] [CrossRef]
- Lee, S.; Ahn, B. Comparison of volatile components in fermented soybean pastes using simultaneous distillation and extraction (SDE) with sensory characterisation. Food Chem. 2009, 114, 600–609. [Google Scholar] [CrossRef]
- Ye, Z.; Shang, Z.; Zhang, S.; Li, M.; Zhang, X.; Ren, H.; Hu, X.; Yi, J. Dynamic analysis of flavor properties and microbial communities in Chinese pickled chili pepper (Capsicum frutescens L.): A typical industrial-scale natural fermentation process. Food Res. Int. 2022, 153, 110952. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Feng, J.; Laghi, L.; Deng, J.; Dao, X.; Tang, J.; Ji, L.; Zhu, C.; Picone, G. Characterization of Flavor Profile of “Nanx Wudl” Sour Meat Fermented from Goose and Pork Using Gas Chromatography–Ion Mobility Spectrometry (GC–IMS) Combined with Electronic Nose and Tongue. Foods 2023, 12, 2194. [Google Scholar] [CrossRef]
- Choi, S.M.; Lee, D.-J.; Kim, J.-Y.; Lim, S.-T. Volatile composition and sensory characteristics of onion powders prepared by convective drying. Food Chem. 2017, 231, 386–392. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Y.; Wang, Y.; Li, L.; Huang, J.; Yang, X.; Chen, S.; Zhao, Y. Contribution of microbial community to flavor formation in tilapia sausage during fermentation with Pediococcus pentosaceus. LWT 2022, 154, 112628. [Google Scholar] [CrossRef]
- Politowicz, J.; Lech, K.; Lipan, L.; Figiel, A.; Carbonell-Barrachina, Á.A. Volatile composition and sensory profile of shiitake mushrooms as affected by drying method: Aroma profile of fresh and dried Lentinula edodes. J. Sci. Food Agric. 2018, 98, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Eva. GC-MS Analysis and PLS-DA Validation of the Trimethyl Silyl-Derivatization Techniques. Am. J. Appl. Sci. 2012, 9, 1124–1136. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, Y.; Ma, S.; Shi, J.; Yan, H.; Lin, Z.; Lv, H. Aroma characterisation of Liu-pao tea based on volatile fingerprint and aroma wheel using SBSE-GC-MS. Food Chem. 2023, 414, 135739. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Li, Y.; Zhu, H.; Liu, Y.; Quan, K. Effect of Lactobacillus plantarum fermentation on the volatile flavors of mung beans. LWT 2021, 146, 111434. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Feng, T. Screening of Yeast in Various Vineyard Soil and Study on Its Flavor Compounds from Brewing Grape Wine. Molecules 2022, 27, 512. [Google Scholar] [CrossRef]
- Wang, P.; Ma, X.; Wang, W.; Xu, D.; Zhang, X.; Zhang, J.; Sun, Y. Characterization of flavor fingerprinting of red sufu during fermentation and the comparison of volatiles of typical products. Food Sci. Hum. Wellness 2019, 8, 375–384. [Google Scholar] [CrossRef]
- Fan, G.; Fu, Z.; Sun, B.; Zhang, Y.; Wang, X.; Xia, Y.; Huang, M.; Li, X. Roles of aging in the production of light-flavored Daqu. J. Biosci. Bioeng. 2019, 127, 309–317. [Google Scholar] [CrossRef]
- Chou, C.-C.; Hwan, C.-H. Effect of ethanol on the hydrolysis of protein and lipid during the ageing of a chinese fermented soya bean curd—Sufu. J. Sci. Food Agric. 1994, 66, 393–398. [Google Scholar] [CrossRef]
- Wang, F.; Gao, Y.; Wang, H.; Xi, B.; He, X.; Yang, X.; Li, W. Analysis of volatile compounds and flavor fingerprint in Jingyuan lamb of different ages using gas chromatography–ion mobility spectrometry (GC–IMS). Meat Sci. 2021, 175, 108449. [Google Scholar] [CrossRef]
- Jiang, L.; Lu, Y.; Ma, Y.; Liu, Z.; He, Q. Comprehensive investigation on volatile and non-volatile metabolites in low-salt doubanjiang with different fermentation methods. Food Chem. 2023, 413, 135588. [Google Scholar] [CrossRef]
- Gao, X.-L.; Cui, C.; Zhao, H.-F.; Zhao, M.-M.; Yang, L.; Ren, J.-Y. Changes in volatile aroma compounds of traditional Chinese-type soy sauce during moromi fermentation and heat treatment. Food Sci. Biotechnol. 2010, 19, 889–898. [Google Scholar] [CrossRef]
- Cai, W.; Li, B.; Chen, Y.; Fu, G.; Fan, H.; Deng, M.; Wan, Y.; Liu, N.; Li, M. Increase the Content of Ester Compounds in Blueberry Wine Fermentation with the Ester-Producing Yeast: Candida glabrata, Pichia anomala, and Wickerhamomyces anomalus. Foods 2022, 11, 3655. [Google Scholar] [CrossRef]
- Yang, Y.; Ai, L.; Mu, Z.; Liu, H.; Yan, X.; Ni, L.; Zhang, H.; Xia, Y. Flavor compounds with high odor activity values (OAV > 1) dominate the aroma of aged Chinese rice wine (Huangjiu) by molecular association. Food Chem. 2022, 383, 132370. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Xin, X.; Liu, D.; Zhang, W. Comparative Analysis of Traditional and Modern Fermentation for Xuecai and Correlations Between Volatile Flavor Compounds and Bacterial Community. Front. Micr. 2021, 12, 631054. [Google Scholar] [CrossRef]
- Chen, C.; Fan, X.; Hu, Y.; Zhou, C.; Sun, Y.; Du, L.; Pan, D. Effect of different salt substitutions on the decomposition of lipids and volatile flavor compounds in restructured duck ham. LWT 2023, 176, 114541. [Google Scholar] [CrossRef]
- Shen, C.; Cai, Y.; Wu, X.; Gai, S.; Wang, B.; Liu, D. Characterization of selected commercially available grilled lamb shashliks based on flavor profiles using GC-MS, GC × GC-TOF-MS, GC-IMS, E-nose and E-tongue combined with chemometrics. Food Chem. 2023, 423, 136257. [Google Scholar] [CrossRef]
- Yang, P.; Song, H.; Wang, L.; Jing, H. Characterization of Key Aroma-Active Compounds in Black Garlic by Sensory-Directed Flavor Analysis. J. Agric. Food Chem. 2019, 67, 7926–7934. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Peng, D.; Zhang, W.; Duan, M.; Ruan, Z.; Huang, S.; Zhou, S.; Fang, Q. Effect of aroma-producing yeasts in high-salt liquid-state fermentation soy sauce and the biosynthesis pathways of the dominant esters. Food Chem. 2021, 344, 128681. [Google Scholar] [CrossRef] [PubMed]
No. | Volatile Compounds | Odor Description # | Threshold ψ (μg/L) | CK | APYA | APYB | APYC | APYD |
---|---|---|---|---|---|---|---|---|
1 | Nonanal | Floral, green | 3.1 | 100 | 100 | 100 | 100 | 100 |
2 | 2-methyl-1-propanol | Wine | 33 | 18.14 | 0.90 | 27.23 | 26.45 | <0.01 |
3 | 3-methyl-1-butanol | Cocoa, floral | 6.1 | 10.01 | 65.29 | <0.01 | 60.68 | 86.67 |
4 | Ethanol | Alcohol, floral | 620 | 5.17 | 0.9 | 2.26 | 1.76 | 1.39 |
5 | 1-Pentanol | Fruit, green | 153 | <0.01 | 2.61 | 4.78 | 3.16 | <0.01 |
6 | Phenylethyl alcohol | Floral, fruit | 21 | <0.01 | 4.92 | <0.01 | 15.57 | <0.01 |
7 | Eucalyptol | Camphor, cool | 5.08 | <0.01 | <0.01 | 21.60 | <0.01 | 47.57 |
8 | 2-methyl-butanal | Almond, cocoa | 1 | 93.89 | <0.01 | <0.01 | <0.01 | <0.01 |
9 | Benzeneacetaldehyde | Berry, floral, flower | 1.7 | <0.01 | <0.01 | 92.86 | <0.01 | <0.01 |
10 | Octanal | Fruity | 170 | <0.01 | <0.01 | 3.88 | <0.01 | <0.01 |
11 | Ethyl butyrate | Apple, banana | 126.1 | 2.80 | 0.23 | 5.99 | <0.01 | <0.01 |
12 | Ethyl isobutyrate | Apple, floral | 0.11 | 57.87 | 67.13 | <0.01 | 80.70 | <0.01 |
13 | Butyl acrylate | — | 10 | 25.48 | 0.94 | 7.11 | 6.64 | 65.54 |
14 | Isoamyl acetate | Apple, banana, fruit | 91.8 | <0.01 | 3.87 | <0.01 | <0.01 | <0.01 |
15 | 2-Phenylethyl formate | Rose, green | 270 | <0.01 | <0.01 | <0.01 | 1.08 | 0.35 |
16 | Acetoin | Butter, cream | 14 | <0.01 | <0.01 | <0.01 | 8.38 | <0.01 |
17 | Terpinolene | Pine, plastic, sweet | 200 | 1.54 | <0.01 | <0.01 | <0.01 | <0.01 |
18 | β-pinene | Pine, polish | 140 | 2.62 | <0.01 | <0.01 | <0.01 | <0.01 |
19 | α-Phellandrene | Citrus, mint, pepper | 40 | 6.08 | <0.01 | <0.01 | <0.01 | 9.26 |
20 | Limonene | Citrus, fruit | 210 | 1.63 | <0.01 | 0.53 | <0.01 | <0.01 |
21 | Anethole | Anise, sweet | 57 | <0.01 | 1.98 | 1.72 | <0.01 | <0.01 |
22 | D-Limonene | Citrus, lemon | 45 | <0.01 | <0.01 | <0.01 | 1.75 | <0.01 |
23 | Estragole | Anise, herb | 16 | 4.51 | <0.01 | <0.01 | 10.75 | 29.50 |
24 | N-propylbenzene | Mothball | 19 | <0.01 | 1.19 | <0.01 | 2.70 | <0.01 |
25 | Palmitic acid ethyl ester | Fatty, fruity, rancid | 2000 | <0.01 | <0.01 | <0.01 | <0.01 | 1.17 |
No. | Volatile Compounds | Odor Description # | Threshold ψ (mg/L) | CK | APYA | APYB | APYC | APYD |
---|---|---|---|---|---|---|---|---|
1 | Ethyl 2-methylpentanoate | Anise, fruit | 0.003 | 100 | 100 | 100 | 100 | 100 |
2 | Acrolein | Burnt sweet, pungent | 8.3 | 1.24 | 0.42 | 0.28 | 0.27 | 0.31 |
3 | Ethyl valerate | Apple, herb | 0.58 | 4.11 | 1.1 | 0.58 | 0.52 | 0.74 |
4 | Ethyl 2-methylbutanoate | Apple, fruit | 0.063 | 5.46 | 4.29 | 2.82 | 2.86 | 3.55 |
5 | Ethyl isobutanoate | Floral, rubber | 0.003 | 2.21 | 3.33 | 12.76 | 10.45 | 4.79 |
6 | Ethyl isovalerate | Apple, citrus, | 0.11 | 1.98 | 0.72 | 0.62 | 0.72 | 1.31 |
7 | Prop-1-ene-3,3’-thiobis | Garlic, pepper | 1 | 6.63 | 2.80 | 1.83 | 1.59 | 2.05 |
8 | O-Cresol | Must, phenol, smoke | 1.2 | 0.85 | 1.85 | 1.56 | 1.65 | 1.73 |
9 | 2,6-Dimethylphenol | Coffee, phenol | 0.2 | 12.05 | 26.63 | 23.81 | 26.6 | 26.29 |
10 | 2-Acetylpyrazine | Baked, nutty | 0.4 | 1.67 | 3.87 | 3.28 | 3.53 | 3.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Guan, J.; Wu, B.; Wang, T.; Yi, Y.; Tang, W.; Zhu, K.; Deng, J.; Wu, H. Exploring the Profile Contributions in Meyerozyma guilliermondii YB4 under Different NaCl Concentrations Using GC-MS Combined with GC-IMS and an Electronic Nose. Molecules 2023, 28, 6979. https://doi.org/10.3390/molecules28196979
Xiong Y, Guan J, Wu B, Wang T, Yi Y, Tang W, Zhu K, Deng J, Wu H. Exploring the Profile Contributions in Meyerozyma guilliermondii YB4 under Different NaCl Concentrations Using GC-MS Combined with GC-IMS and an Electronic Nose. Molecules. 2023; 28(19):6979. https://doi.org/10.3390/molecules28196979
Chicago/Turabian StyleXiong, Yiling, Ju Guan, Baozhu Wu, Tianyang Wang, Yuwen Yi, Wanting Tang, Kaixian Zhu, Jing Deng, and Huachang Wu. 2023. "Exploring the Profile Contributions in Meyerozyma guilliermondii YB4 under Different NaCl Concentrations Using GC-MS Combined with GC-IMS and an Electronic Nose" Molecules 28, no. 19: 6979. https://doi.org/10.3390/molecules28196979
APA StyleXiong, Y., Guan, J., Wu, B., Wang, T., Yi, Y., Tang, W., Zhu, K., Deng, J., & Wu, H. (2023). Exploring the Profile Contributions in Meyerozyma guilliermondii YB4 under Different NaCl Concentrations Using GC-MS Combined with GC-IMS and an Electronic Nose. Molecules, 28(19), 6979. https://doi.org/10.3390/molecules28196979