Residual Behavior and Dietary Risk Assessment of Chlorfenapyr and Its Metabolites in Radish
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.2. Degradation of Chlorfenapyr in Radish Leaf
2.3. Final Residue Test
2.4. Chronic Dietary Intake Risk Assessment
3. Experimental Materials and Methods
3.1. Experimental Materials
3.2. Instrument Condition
3.3. Design of Field Trial Tests
3.3.1. Dynamic Digestion Test
3.3.2. Final Residue Test
3.4. Sample Pretreatment
3.5. Method Validation
3.6. Data Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rand, G.M. Fate and Effects of the Insecticide–Miticide Chlorfenapyr in Outdoor Aquatic Microcosms. Ecotoxicol. Environ. Saf. 2004, 58, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Black, B.C.; Hollingworth, R.M.; Ahammadsahib, K.I.; Kukel, C.D.; Donovan, S. Insecticidal Action and Mitochondrial Uncoupling Activity of AC-303,630 and Related Halogenated Pyrroles. Pestic. Biochem. Physiol. 1994, 50, 115–128. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, Z.W.; Zhang, Y.; Yang, W.; Liu, H.F.; Zhou, Y.F.; Yang, M.F. Influence of Pyranose and Spacer Arm Structures on Phloem Mobility and Insecticidal Activity of New Tralopyril Derivatives. Mol. J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, J.; Nazeer Hussain, H.; Latif, M.; Barjees Baig, M.; Owayss, A.A.; Raweh, H.S.; Alqarni, A.S. A Field Study Investigating the Insecticidal Efficacy against Diaphorina Citri Kuwayama on Kinnow Mandarin, Citrus Reticulata Blanco Trees. Saudi J. Biol. Sci. 2020, 27, 1237–1241. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Wang, Y.; Zhang, Z.; Wei, Y.; Liu, F.; Zhou, C.; Mu, W. Chlorfenapyr, a Potent Alternative Insecticide of Phoxim To Control Bradysia Odoriphaga (Diptera: Sciaridae). J. Agric. Food Chem. 2017, 65, 5908–5915. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Ding, J.; Wang, Y.; Zhang, Z.; Liu, F.; Mu, W. Sublethal Effects of Chlorfenapyr on the Life Table Parameters, Nutritional Physiology and Enzymatic Properties of Bradysia Odoriphaga (Diptera: Sciaridae). Pestic. Biochem. Physiol. 2018, 148, 93–102. [Google Scholar] [CrossRef]
- Nicastro, R.L.; Sato, M.E.; Arthur, V.; da Silva, M.Z. Chlorfenapyr Resistance in the Spider Mite Tetranychus Urticae: Stability, Cross-Resistance and Monitoring of Resistance. Phytoparasitica 2013, 41, 503–513. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Cao, X.; Wang, F.; Yang, Y.; Wu, S.; Wu, Y. Long-Term Monitoring and Characterization of Resistance to Chlorfenapyr in Plutella Xylostella (Lepidoptera: Plutellidae) from China. Pest Manag. Sci. 2019, 75, 591–597. [Google Scholar] [CrossRef]
- El Sherif, D.F.; Soliman, N.H.; Alshallash, K.S.; Ahmed, N.; Ibrahim, M.A.R.; Al-Shammery, K.A.; Al-Khalaf, A.A. The Binary Mixtures of Lambda-Cyhalothrin, Chlorfenapyr, and Abamectin, against the House Fly Larvae, Musca Domestica L. Molecules 2022, 27, 3084. [Google Scholar] [CrossRef]
- Li, H.; Sun, F.; Hu, S.; Sun, Q.; Zou, N.; Li, B.; Mu, W.; Lin, J. Determination of Market, Field Samples, and Dietary Risk Assessment of Chlorfenapyr and Tralopyril in 16 Crops. Foods 2022, 11, 1246. [Google Scholar] [CrossRef]
- Wu, P. Rhodopseudomonas Capsulata Enhances Cleaning of Chlorfenapyr from Environment. J. Clean. Prod. 2020, 7, 120271. [Google Scholar] [CrossRef]
- Park, B.K.; Kwon, S.H.; Yeom, M.S.; Joo, K.S.; Heo, M.J. Detection of Pesticide Residues and Risk Assessment from the Local Fruits and Vegetables in Incheon, Korea. Sci. Rep. 2022, 12, 9613. [Google Scholar] [CrossRef]
- Ma, T.; Li, S.; Li, Y.; Li, X.; Luo, Y. Simultaneous Determination and Exposure Assessment of Six Common Pesticides in Greenhouses through Modified QuEChERS and Gas Chromatography–Mass Spectrometry. Stoch. Environ. Res. Risk Assess. 2020, 34, 1967–1982. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, J.; Teng, M.; Zhang, J.; Qian, L.; Duan, M.; Zhao, F.; Zhao, W.; Wang, Z.; Wang, C. Bioaccumulation, Metabolism and the Toxic Effects of Chlorfenapyr in Zebrafish (Danio Rerio). J. Agric. Food Chem. 2021, 69, 8110–8119. [Google Scholar] [CrossRef]
- Liu, Z.; Su, H.; Lyu, B.; Yan, S.; Lu, H.; Tang, J. Safety Evaluation of Chemical Insecticides to Tetrastichus Howardi (Hymenoptera: Eulophidae), a Pupal Parasitoid of Spodoptera Frugiperda (Lepidoptera: Noctuidae) Using Three Exposure Routes. Insects 2022, 13, 443. [Google Scholar] [CrossRef]
- Chomin, J.; Heuser, W.; Nogar, J.; Ramnarine, M.; Stripp, R.; Sud, P. Delayed Hyperthermia from Chlorfenapyr Overdose. Am. J. Emerg. Med. 2018, 36, 2129.e1–2129.e2. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; He, X.; Yan, X.; Yang, Y.; Li, Q.; Yao, T.; Lu, L.; Peng, L.; Zou, L. Unravelling the Polytoxicology of Chlorfenapyr on Non-Target HepG2 Cells: The Involvement of Mitochondria-Mediated Programmed Cell Death and DNA Damage. Molecules 2022, 27, 5722. [Google Scholar] [CrossRef]
- Yang, J.; Luo, F.; Zhou, L.; Sun, H.; Yu, H.; Wang, X.; Zhang, X.; Yang, M.; Lou, Z.; Chen, Z. Residue Reduction and Risk Evaluation of Chlorfenapyr Residue in Tea Planting, Tea Processing, and Tea Brewing. Sci. Total Environ. 2020, 738, 139613. [Google Scholar] [CrossRef]
- Huang, J.X.; Liu, C.Y.; Lu, D.H.; Chen, J.J.; Deng, Y.C.; Wang, F.H. Residue Behavior and Risk Assessment of Mixed Formulation of Imidacloprid and Chlorfenapyr in Chieh-qua under Field Conditions. Environ. Monit. Assess. 2015, 187, 650. [Google Scholar] [CrossRef]
- Abdel Ghani, S.B.; Abdallah, O.I. Method Validation and Dissipation Dynamics of Chlorfenapyr in Squash and Okra. Food Chem. 2016, 194, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Chen, J.; Wang, Y.; Liang, J.; Chen, L.; Lu, Y. HPLC/UV Analysis of Chlorfenapyr Residues in Cabbage and Soil to Study the Dynamics of Different Formulations. Sci. Total Environ. 2005, 350, 38–46. [Google Scholar] [CrossRef]
- Ditya, P.; Das, S.P.; Sarkar, P.K.; Bhattacharyya, A. Degradation Dynamics of Chlorfenapyr Residue in Chili, Cabbage and Soil. Bull. Environ. Contam. Toxicol. 2010, 84, 602–605. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Ganguly, P.; Barik, S.R.; Samanta, A. Dissipation Kinetics and Risk Assessment of Chlorfenapyr on Tomato and Cabbage. Environ. Monit. Assess. 2018, 190, 71. [Google Scholar] [CrossRef]
- Shi, K.; Li, L.; Yuan, L.; Li, W.; Liu, F. Residues and Risk Assessment of Bifenthrin and Chlorfenapyr in Eggplant and Soil under Open Ecosystem Conditions. Int. J. Environ. Anal. Chem. 2016, 96, 173–184. [Google Scholar] [CrossRef]
- Jeong, D.-K.; Lee, H.-J.; Bae, J.-Y.; Jang, Y.-S.; Hong, S.-M.; Kim, J.-H. Chlorfenapyr Residue in Sweet Persimmon from Farm to Table. J. Food Prot. 2019, 82, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Choi, J.-H.; Abd El-Aty, A.M.; Park, J.H.; Park, J.-Y.; Im, G.-J.; Shim, J.-H. Determination of Chlorfenapyr in Leek Grown under Greenhouse Conditions with GC-ΜECD and Confirmation by Mass Spectrometry: Chlorfenapyr Residues in Leek. Biomed. Chromatogr. 2012, 26, 172–177. [Google Scholar] [CrossRef]
- Tomšič, R.; Heath, D.; Heath, E.; Markelj, J.; Kandolf Borovšak, A.; Prosen, H. Determination of Neonicotinoid Pesticides in Propolis with Liquid Chromatography Coupled to Tandem Mass Spectrometry. Molecules 2020, 25, 5870. [Google Scholar] [CrossRef]
- Jang, S.; Seo, H.; Kim, H.; Kim, H.; Ahn, J.; Cho, H.; Hong, S.; Lee, S.; Na, T. Development of a Quantitative Method for Detection of Multiclass Veterinary Drugs in Feed Using Modified QuPPe Extraction and LC–MS/MS. Molecules 2022, 27, 4483. [Google Scholar] [CrossRef]
- An, D.; Ko, R.; Kim, J.; Kang, S.; Lee, K.; Lee, J. Dissipation Behavior and Dietary Exposure Risk of Pesticides in Brussels Sprout Evaluated Using LC–MS/MS. Sci. Rep. 2022, 12, 12726. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Su, Y.; Dong, B.; Lu, W.; Hu, J.; Liu, X. Dissipation Residue Behaviors and Dietary Risk Assessment of Boscalid and Pyraclostrobin in Watermelon by HPLC-MS/MS. Molecules 2022, 27, 4410. [Google Scholar] [CrossRef]
- Zhang, D.; Gou, Y.; Yu, X.; Wang, M.; Yu, W.; Zhou, J.; Liu, W.; Li, M. Detection and Risk Assessments of Multi-Pesticides in Traditional Chinese Medicine Chuanxiong Rhizoma by LC/MS-MS and GC/MS-MS. Molecules 2022, 27, 622. [Google Scholar] [CrossRef] [PubMed]
- Naik Rathod, H.; Mallappa, B.; Malenahalli Sidramappa, P.; Reddy Vennapusa, C.S.; Kamin, P.; Revanasiddappa Nidoni, U.; Desai, B.R.K.R.; Rao, S.N.; Mariappan, P. Determination of 77 Multiclass Pesticides and Their Metabolitesin Capsicum and Tomato Using GC-MS/MS and LC-MS/MS. Molecules 2021, 26, 1837. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandín-España, P.; Mateo-Miranda, M.; López-Goti, C.; Seris-Barrallo, E.; Alonso-Prados, J.-L. Analysis of Pesticide Residues by QuEChERS Method and LC-MS/MS for a New Extrapolation of Maximum Residue Levels in Persimmon Minor Crop. Molecules 2022, 27, 1517. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Varela-Martínez, D.A.; Riaño-Herrera, D.A. Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review. Molecules 2022, 27, 4323. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; He, Q.; Lin, H.; Chang, H.; Sun, H.; Liu, Y. Simultaneous Determination of Seven Pesticides and Metabolite Residues in Litchi and Longan through High-Performance Liquid Chromatography-Tandem Mass Spectrometry with Modified QuEChERS. Molecules 2022, 27, 5737. [Google Scholar] [CrossRef]
Analyte | Matrix | Linearity Range (mg/L) | Regression Equation | R2 | Fortified Concentration (mg/kg) | Mean Recovery (%) | RSD (%) | LOQ (mg/kg) |
---|---|---|---|---|---|---|---|---|
Chlorfenapyr | Radish | 0.01–1 | Y = 740431.3X − 6894.6 | 0.9974 | 0.01 | 95.0 | 3.0 | 0.01 |
0.1 | 88.9 | 3.7 | ||||||
1 | 88.7 | 2.5 | ||||||
Radish leaf | 0.01–12 | Y = 1079662.2X − 20821.1 | 0.9948 | 0.1 | 88.3 | 1.7 | 0.01 | |
1 | 85.3 | 4.4 | ||||||
10 | 74.0 | 2.1 | ||||||
12 | 75.8 | 3.2 | ||||||
Tralopyril | Radish | 0.01–1 | Y = 883612.9X + 44608.7 | 0.9930 | 0.01 | 106.3 | 2.4 | 0.01 |
0.1 | 101.3 | 2.8 | ||||||
1 | 96.9 | 2.7 | ||||||
Radish leaf | 0.01–1 | Y = 846318.0X + 42024.3 | 0.9936 | 0.01 | 91.7 | 2.0 | 0.01 | |
0.1 | 106.8 | 4.4 | ||||||
1 | 103.0 | 6.9 |
Time | Anhui | Huibei | ||||||
---|---|---|---|---|---|---|---|---|
Residual Amount (mg/kg) | Digestion Rate (%) | Residual Amount (mg/kg) | Digestion Rate (%) | |||||
Chlorfenapyr | Tralopyril | Total Quantity | Chlorfenapyr | Tralopyril | Total Quantity | |||
2 h | 16.88 | <0.01 | 16.880 | — | 17.41 | <0.01 | 17.42 | — |
1 d | 14.99 | <0.01 | 15.00 | 11.14 | 16.07 | <0.01 | 16.08 | 2.47 |
3 d | 14.01 | 0.013 | 14.14 | 16.23 | 16.96 | <0.01 | 16.99 | 7.70 |
5 d | 7.99 | 0.019 | 8.18 | 51.53 | 8.91 | <0.01 | 8.93 | 48.77 |
7 d | 7.45 | 0.022 | 7.67 | 54.59 | 8.32 | 0.019 | 8.52 | 51.15 |
14 d | 5.96 | 0.021 | 6.17 | 63.44 | 5.57 | <0.01 | 5.58 | 67.96 |
21 d | 1.07 | <0.01 | 1.08 | 93.62 | 1.33 | <0.01 | 1.34 | 92.31 |
30 d | 0.76 | <0.01 | 0.77 | 95.43 | 0.59 | <0.01 | 0.60 | 96.58 |
Equation | y = 17.1518e−0.1083x | y = 19.3711e−0.1162x | ||||||
R2 | 0.9710 | 0.9876 | ||||||
T1/2 | 6.4 d | 6.0 d |
Field | Dose/(g a.i./hm2) | Application Number | Chlorfenapyr | Tralopyril | Chlorfenapyr (Evaluate Definition) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
7 d | 14 d | 21 d | 7 d | 14 d | 21 d | 7 d | 14 d | 21 d | |||
Anhui | 108 | 2 | 0.057 | 0.045 | 0.042 | <0.01 | <0.01 | <0.01 | 0.067 | 0.055 | 0.052 |
3 | 0.113 | 0.081 | 0.060 | <0.01 | <0.01 | <0.01 | 0.123 | 0.091 | 0.070 | ||
162 | 2 | 0.071 | 0.060 | 0.046 | <0.01 | <0.01 | <0.01 | 0.081 | 0.070 | 0.056 | |
3 | 0.113 | 0.106 | 0.077 | <0.01 | <0.01 | <0.01 | 0.123 | 0.116 | 0.087 | ||
Jilin | 108 | 2 | 0.094 | 0.084 | 0.078 | <0.01 | <0.01 | <0.01 | 0.104 | 0.094 | 0.088 |
3 | 0.104 | 0.083 | 0.070 | <0.01 | <0.01 | <0.01 | 0.114 | 0.093 | 0.080 | ||
162 | 2 | 0.211 | 0.133 | 0.097 | <0.01 | <0.01 | <0.01 | 0.221 | 0.143 | 0.107 | |
3 | 0.217 | 0.143 | 0.111 | <0.01 | <0.01 | <0.01 | 0.227 | 0.153 | 0.121 | ||
Hubei | 108 | 2 | 0.076 | 0.015 | 0.012 | <0.01 | <0.01 | <0.01 | 0.086 | 0.025 | 0.022 |
3 | 0.099 | 0.078 | 0.012 | <0.01 | <0.01 | <0.01 | 0.109 | 0.088 | 0.022 | ||
162 | 2 | 0.084 | 0.026 | 0.024 | <0.01 | <0.01 | <0.01 | 0.094 | 0.036 | 0.034 | |
3 | 0.159 | 0.050 | 0.020 | <0.01 | <0.01 | <0.01 | 0.169 | 0.060 | 0.030 | ||
Shandong | 108 | 2 | 0.104 | 0.080 | 0.056 | <0.01 | <0.01 | <0.01 | 0.114 | 0.090 | 0.066 |
3 | 0.299 | 0.211 | 0.101 | <0.01 | <0.01 | <0.01 | 0.309 | 0.221 | 0.111 | ||
162 | 2 | 0.242 | 0.090 | 0.090 | <0.01 | <0.01 | <0.01 | 0.252 | 0.100 | 0.100 | |
3 | 0.250 | 0.159 | 0.156 | <0.01 | <0.01 | <0.01 | 0.260 | 0.169 | 0.166 | ||
Chongqing | 108 | 2 | 0.130 | 0.132 | 0.058 | <0.01 | <0.01 | <0.01 | 0.140 | 0.142 | 0.068 |
3 | 0.254 | 0.193 | 0.202 | <0.01 | <0.01 | <0.01 | 0.264 | 0.203 | 0.212 | ||
162 | 2 | 0.313 | 0.281 | 0.177 | <0.01 | <0.01 | <0.01 | 0.323 | 0.291 | 0.187 | |
3 | 0.438 | 0.400 | 0.329 | <0.01 | <0.01 | <0.01 | 0.448 | 0.410 | 0.339 | ||
Guangdong | 108 | 2 | 0.125 | 0.108 | 0.107 | <0.01 | <0.01 | <0.01 | 0.135 | 0.118 | 0.117 |
3 | 0.199 | 0.151 | 0.115 | <0.01 | <0.01 | <0.01 | 0.209 | 0.161 | 0.125 | ||
162 | 2 | 0.438 | 0.119 | 0.116 | <0.01 | <0.01 | <0.01 | 0.448 | 0.129 | 0.126 | |
3 | 0.236 | 0.104 | 0.046 | <0.01 | <0.01 | <0.01 | 0.246 | 0.114 | 0.056 |
Field | Dose/(g a.i./hm2) | Application Number | Chlorfenapyr | Tralopyril | Chlorfenapyr (Evaluate Definition) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
7 d | 14 d | 21 d | 7 d | 14 d | 21 d | 7 d | 14 d | 21 d | |||
Anhui | 108 | 2 | 2.674 | 2.110 | 1.684 | 0.027 | 0.020 | <0.01 | 2.946 | 2.311 | 1.694 |
3 | 3.528 | 2.545 | 1.889 | <0.01 | 0.012 | <0.01 | 3.562 | 2.666 | 1.899 | ||
162 | 2 | 10.60 | 3.666 | 2.674 | 0.026 | <0.01 | 0.013 | 10.86 | 3.766 | 2.800 | |
3 | 11.88 | 5.858 | 4.984 | 0.027 | <0.01 | <0.01 | 12.14 | 5.868 | 4.994 | ||
Jilin | 108 | 2 | 7.438 | 3.523 | 2.030 | 0.013 | 0.023 | 0.016 | 7.571 | 3.755 | 2.190 |
3 | 9.640 | 5.088 | 2.937 | 0.035 | 0.056 | 0.045 | 9.994 | 5.646 | 3.385 | ||
162 | 2 | 10.41 | 4.627 | 5.138 | 0.034 | 0.053 | 0.064 | 10.76 | 5.156 | 5.773 | |
3 | 10.91 | 6.690 | 2.057 | 0.025 | 0.027 | <0.01 | 11.23 | 6.939 | 2.328 | ||
Hubei | 108 | 2 | 7.501 | 3.288 | 1.640 | <0.01 | <0.01 | <0.01 | 7.511 | 3.298 | 1.65 |
3 | 8.012 | 4.607 | 2.378 | 0.012 | 0.0.15 | 0.018 | 8.131 | 4.756 | 2.558 | ||
162 | 2 | 7.271 | 5.694 | 3.369 | 0.011 | 0.011 | 0.014 | 7.385 | 5.803 | 3.509 | |
3 | 10.98 | 4.168 | 3.148 | 0.021 | 0.015 | 0.016 | 11.19 | 4.321 | 3.421 | ||
Shandong | 108 | 2 | 4.361 | 3.148 | 2.063 | 0.042 | 0.040 | 0.028 | 4.779 | 3.55 | 2.343 |
3 | 3.528 | 3.365 | 0.925 | 0.033 | 0.039 | 0.027 | 3.963 | 3.759 | 1.195 | ||
162 | 2 | 5.275 | 4.234 | 2.128 | 0.023 | 0.035 | 0.030 | 5.505 | 4.58 | 2.427 | |
3 | 3.846 | 3.035 | 1.355 | 0.026 | 0.048 | <0.01 | 5.125 | 4.106 | 3.51 | ||
Chongqing | 108 | 2 | 1.355 | 1.092 | 0.490 | <0.01 | <0.01 | <0.01 | 1.365 | 1.102 | 0.500 |
3 | 4.724 | 1.606 | 0.356 | <0.01 | <0.01 | <0.01 | 4.734 | 1.616 | 0.366 | ||
162 | 2 | 4.017 | 2.426 | 1.490 | <0.01 | <0.01 | <0.01 | 4.027 | 2.436 | 1.500 | |
3 | 7.601 | 4.246 | 2.239 | <0.01 | <0.01 | <0.01 | 7.611 | 4.256 | 2.249 | ||
Guangdong | 108 | 2 | 4.245 | 2.225 | 1.448 | 0.175 | 0.110 | 0.069 | 5.992 | 3.328 | 2.135 |
3 | 3.176 | 2.413 | 1.066 | 0.108 | 0.086 | 0.067 | 4.259 | 3.270 | 1.736 | ||
162 | 2 | 4.103 | 3.070 | 2.791 | 0.149 | 0.128 | 0.097 | 5.593 | 4.35 | 3.758 | |
3 | 5.601 | 3.630 | 1.690 | 0.118 | 0.1240 | 0.087 | 6.781 | 4.873 | 2.563 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Yi, X.; Tong, Z.; Dong, X.; Chu, Y.; Meng, D.; Duan, J. Residual Behavior and Dietary Risk Assessment of Chlorfenapyr and Its Metabolites in Radish. Molecules 2023, 28, 580. https://doi.org/10.3390/molecules28020580
Sun M, Yi X, Tong Z, Dong X, Chu Y, Meng D, Duan J. Residual Behavior and Dietary Risk Assessment of Chlorfenapyr and Its Metabolites in Radish. Molecules. 2023; 28(2):580. https://doi.org/10.3390/molecules28020580
Chicago/Turabian StyleSun, Mingna, Xiaotong Yi, Zhou Tong, Xu Dong, Yue Chu, Dandan Meng, and Jinsheng Duan. 2023. "Residual Behavior and Dietary Risk Assessment of Chlorfenapyr and Its Metabolites in Radish" Molecules 28, no. 2: 580. https://doi.org/10.3390/molecules28020580
APA StyleSun, M., Yi, X., Tong, Z., Dong, X., Chu, Y., Meng, D., & Duan, J. (2023). Residual Behavior and Dietary Risk Assessment of Chlorfenapyr and Its Metabolites in Radish. Molecules, 28(2), 580. https://doi.org/10.3390/molecules28020580