First Phytochemical Profiling and In-Vitro Antiprotozoal Activity of Essential Oil and Extract of Plagiochila porelloides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Resolution of Ambiguous Identifications of Sesquiterpenes
2.2. Structural Elucidations of New Natural Compounds
2.3. P. porelloides Volatile Components: Chemical Compositions of Specific Plant Extracts
2.4. Evaluation of Biological Activity: Antitrypanosomal, Antileishmanial and Cytotoxic Activities
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oil and Hydrosol Isolation
3.3. SPME Experiments
3.4. Solvent Extractions
3.5. Microwave-Assisted Extractions
3.6. Essential Oil (EO) and Diethyl Oxide Extract (EXTO) Fractionations
3.7. GC-FID Conditions
3.8. GC-MS Analysis
3.9. High Resolution Mass Spectrometry Experiments
3.10. NMR Conditions
3.11. Identification of Components
3.12. Component Quantification
3.13. Parasites, Cells and Media
3.14. In Vitro Test for Antitrypanosomal and Antileishmanial Activity
3.15. Cytotoxicity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Manneville, O. Les Bryophytes: Mousses, Sphaignes, Hepatiques Particularités et Cycles Biologiques, Divers Groupes, Écologie; Station Alpine de Joseph Fourier: Grenoble, France, 2011. [Google Scholar]
- Sotiaux, A.; Pioli, A.; Royaud, A.; Schumacker, R.; Vanderpoorten, A. A checklist of the bryophytes of Corsica (France): New records and a review of the literature. J. Bryol. 2007, 29, 41–53. [Google Scholar] [CrossRef]
- Pannequin, A. Caractérisation Chimique des Bryophytes de Corse et Propriétés Biologiques. Ph.D. Thesis, Université Pascal Paoli, Corte, France, 2019. [Google Scholar]
- Pannequin, A.; Tintaru, A.; Desjobert, J.-M.; Costa, J.; Muselli, A. New advances in the volatile metabolites of Frullania tamarisci. Flavour Fragr. J. 2017, 32, 409–418. [Google Scholar] [CrossRef]
- Asakawa, Y. Chemical constituents of the hepaticae. In Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Springer: Berlin/Heidelberg, Germany, 1982; pp. 1–285. ISBN 978-3-7091-8679-4. [Google Scholar]
- Asakawa, Y. Biologically active compounds from bryophytes. Pure Appl. Chem. 2007, 79, 557–580. [Google Scholar] [CrossRef]
- Asakawa, Y.; Ludwiczuk, A.; Nagashima, F. Chemical constituents of bryophytes: Bio- and chemical diversity, biological activity, and chemosystematics. In Progress in the Chemistry of Organic Natural Products; Springer: Berlin/Heidelberg, Germany, 2013; Volume 95. [Google Scholar]
- Zinsmeister, H.D.; Becker, H.; Eicher, T. Bryophytes, a Source of Biologically Active, Naturally Occurring Material? Angew. Chem. Int. Ed. Engl. 1991, 30, 130–147. [Google Scholar] [CrossRef]
- Asakawa, Y. Chemical constituents of the bryophytes. In Progress in the Chemistry of Organic Natural Products/Fortschritte der Chemie Organischer Naturstoffe; Springer: Berlin/Heidelberg, Germany, 1995; pp. 1–562. ISBN 978-3-7091-7427-2. [Google Scholar]
- Asakawa, Y. Chemosystematics of the hepaticae. Phytochemistry 2004, 65, 623–669. [Google Scholar] [CrossRef]
- Asakawa, Y.; Inoue, H.; Toyota, M.; Takemoto, T. Sesquiterpenoids of fourteen Plagiochila species. Phytochemistry 1980, 19, 2623–2626. [Google Scholar] [CrossRef]
- Toyota, M.; Nakamura, I.; Huneck, S.; Asakawa, Y. Sesquiterpene esters from the liverwort Plagiochila porelloides. Phytochemistry 1994, 37, 1091–1093. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Sim-Sim, M.; Costa, M.M.; Barroso, J.G.; Pedro, L.G.; Esquível, M.G.; Gutierres, F.; Lobo, C.; Fontinha, S. Comparison of the essential oil composition of four Plagiochila species: P. bifaria, P. maderensis, P. retrorsa and P. stricta. Flavour Fragr. J. 2005, 20, 703–709. [Google Scholar] [CrossRef]
- Hackl, T.; König, W.A.; Muhle, H. Three ent-eudesmenones from the liverwort Plagiochila bifaria. Phytochemistry 2006, 67, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Adio, A.M.; König, W.A. Sesquiterpene constituents from the essential oil of the liverwort Plagiochila asplenioides. Phytochemistry 2005, 66, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, F.; Tanaka, H.; Toyota, M.; Hashimoto, T.; Okamoto, Y.; Tori, M.; Asakawa, Y. 2,3-Secoaromadendrane-, aromadendrane- and maaliane-type sesquiterpenoids from liverwort. J. Essent. Oil Res. 1995, 7, 343–345. [Google Scholar] [CrossRef]
- Darriet, F.; Desjobert, J.M.; Costa, J.; Muselli, A. Identification of Chrysanthenyl Esters from the Essential Oil of Anthemis maritima L. Investigated by GC/RI, GC-MS (EI and CI) and 13C-NMR Spectroscopy: Chemical Composition and Variability. Phytochem. Anal. 2009, 20, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Monzote, L.; Piñón, A.; Setzer, W.N. Antileishmanial Potential of Tropical Rainforest Plant Extracts. Medicines 2014, 1, 32–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Control of Neglected Tropical Diseases. Available online: https://www.who.int/health-topics/neglected-tropical-diseases (accessed on 21 December 2022).
- Bero, J.; Kpoviessi, S.; Quetin-Leclercq, J. Anti-parasitic activity of essential oils and their constituents against Plasmodium, Trypanosoma and Leishmania. In Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics; Gurib-Fakim, A., Ed.; John Wiley & Sons: Chichester, UK, 2014. [Google Scholar]
- Merfort, I. Review of the analytical techniques for sesquiterpenes and sesquiterpene lactones. J. Chromatogr. A 2002, 967, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, U.; Thomas, S.; Russell, M.F. Accelerated metabolite identification by “Extraction-NMR”. J. Pharm. Biomed. Anal. 2003, 32, 531–538. [Google Scholar] [CrossRef]
- Bothner-By, A.A.; Harris, R.K. Nuclear Magnetic Resonance Studies of 1,3-Butadienes. II. The Relation of (H,H) Coupling Constants to Conformation1. J. Am. Chem. Soc. 1965, 87, 3451–3455. [Google Scholar] [CrossRef]
- Silverstein, R.; Webster, F.; Kiemle, D. Identification Spectrométrique de Composés Organiques; De Boeck: Brussels, Belgium, 2016; ISBN 978-2-8073-0293-8. [Google Scholar]
- Weyerstahl, P.; Christiansen, C.; Marschall, H. New sesquiterpene ethers and other constituents isolated from Brazilian vassoura oil. Liebigs Ann. 1995, 1995, 1039–1043. [Google Scholar] [CrossRef]
- Krings, U.; Hardebusch, B.; Albert, D.; Berger, R.G.; Maróstica, M.; Pastore, G.M. Odor-active alcohols from the fungal transformation of α-farnesene. J. Agric. Food Chem. 2006, 54, 9079–9084. [Google Scholar] [CrossRef] [PubMed]
- König, W.A.; Joulain, D. Terpenoids and Related Constituents of Essential Oils, Library of Mass Finder 2.1; Institute of Organic Chemistry: Hamburg, Germany, 2001. [Google Scholar]
- Asfaw, N.; Storesund, H.J.; Skattebøl, L.; Aasen, A.J. Coexistence of chrysanthenone, filifolone and (Z)-isogeranic acid in hydrodistillates. Artefacts! Phytochemistry 2001, 58, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Njoroge, S.M.; Ukeda, H.; Sawamura, M. Changes in the Volatile Composition of Yuzu (Citrus junos Tanaka) Cold-Pressed Oil during Storage. J. Agric. Food Chem. 1996, 44, 550–556. [Google Scholar] [CrossRef]
- Toyota, M.; Koyama, H.; Mizutani, M.; Asakawa, Y. (−)-ent-spathulenol isolated from liverworts is an artefact. Phytochemistry 1996, 41, 1347–1350. [Google Scholar] [CrossRef]
- Otoguro, K.; Iwatsuki, M.; Ishiyama, A.; Namatame, M.; Nishihara-Tukashima, A.; Kiyohara, H.; Hashimoto, T.; Asakawa, Y.; Ōmura, S.; Yamada, H. In vitro antitrypanosomal activity of plant terpenes against Trypanosoma brucei. Phytochemistry 2011, 72, 2024–2030. [Google Scholar] [CrossRef]
- Otoguro, K.; Ishiyama, A.; Iwatsuki, M.; Namatame, M.; Nishihara-Tukashima, A.; Kiyohara, H.; Hashimoto, T.; Asakawa, Y.; Ōmura, S.; Yamada, H. In vitro antitrypanosomal activity of bis(bibenzyls)s and bibenzyls from liverworts against Trypanosoma brucei. J. Nat. Med. 2012, 66, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Smith, A. The Moss Flora of Britain & Ireland; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Council of Europe. European Pharmacopoeia, 3rd ed.; Council of Europe: Strasbourg, France, 1997; ISBN 978-92-871-2991-8. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Braun, S.; Kalinowski, H.-O.; Stefan, B. 150 and More Basic NMR Experiments: A Practical Course; Wiley-VCH: Weinheim, Germany, 1998; Volume 37, ISBN 3-527-29512-7. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST (National Institute of Standards and Technology). Spectral Database for Organic Compounds; NIST: Gaithersburg, MD, USA, 2008. [Google Scholar]
- National Institute of Standards and Technology (NIST). PC Version of the NIST/EPA/NIH Mass Spectral Library; NIST: Gaithersburg, MD, USA, 2008. [Google Scholar]
- Bicchi, C.; Liberto, E.; Matteodo, M.; Sgorbini, B.; Mondello, L.; Zellner, B.A.; Costa, R.; Rubiolo, P. Quantitative analysis of essential oils: A complex task. Flavour Fragr. J. 2008, 23, 382–391. [Google Scholar] [CrossRef]
- Andreani, S.; Barboni, T.; Desjobert, J.-M.; Paolini, J.; Costa, J.; Muselli, A. Essential oil composition and chemical variability of Xanthium italicum Moretti from Corsica. Flavour Fragr. J. 2012, 27, 227–236. [Google Scholar] [CrossRef]
- Hirumi, H.; Hirumi, K. Axenic culture of African trypanosome bloodstream forms. Parasitol. Today 1994, 10, 80–84. [Google Scholar] [CrossRef]
- Brun, R.; Lun, Z.-R. Drug sensitivity of Chinese Trypanosoma evansi and Trypanosoma equiperdum isolates. Vet. Parasitol. 1994, 52, 37–46. [Google Scholar] [CrossRef]
- Catteau, L.; Schioppa, L.; Beaufay, C.; Girardi, C.; Hérent, M.-F.; Frederich, M.; Quetin-Leclercq, J. Antiprotozoal activities of Triterpenic Acids and Ester Derivatives Isolated from the Leaves of Vitellaria paradoxa. Planta Med. 2020, 87, 860–867. [Google Scholar] [CrossRef]
- Abdul Khaliq, H.; Ortiz, S.; Alhouayek, M.; Muccioli, G.G.; Quetin-Leclercq, J. Dereplication and Quantification of Major Compounds of Convolvulus arvensis L. Extracts and Assessment of Their Effect on LPS-Activated J774 Macrophages. Molecules 2022, 27, 963. [Google Scholar] [CrossRef]
Structure of the Main Volatile Compounds | ||
---|---|---|
Species | Hydrocarbon terpenes | Oxygenated terpenes |
P. biffaria [13] | (-)-5R,7R,10S-eudesm-4(15)-en-6-one (9–19%, 1) Methyl everninate (1–35%, 2) peculiaroxide (13–16%, 3) | |
P. madernensis [13] | terpinolene (34–60%, 4) | |
P. retrorsa [13] | β-phellandrene (16–46%, 5) | peculiaroxide (9–12%, 3) |
P. retrorsa [13] | allo-ocimene (15%, 7) neo-allo-ocimene (10%, 6) terpinolene (13%, 4) | peculiaroxide (12%, 3) |
P. stricta [13] | allo-ocimene (7–19%, 7) bicyclogermacrene (4–17%, 8) neo-allo-ocimene (4–11%, 6) | peculiaroxide (11–21%, 3) Spathulenol (2–14%, 9) |
P. biffaria * [14] | ent-eudesm-4-en-6-one (10) ent-eudesm-4(15)-en-6-one (1) ent-7-hydroxyeudesm-4-en-6-one (11) | |
P. asplenioides [15] | (-)-selina-5,7(11)-diene (8%, 12) | plagio-4,7-peroxide (20%, 13) maalian-5-ol (19%, 14) |
P. ovalifolia * [16] | ent-4ß,10α-dihydroxyaromadendrane (15) Acetoxyisoplagiochilide (16) Maalian-5-ol (13) plagiochiline C (17) Plagiochiline N (18) |
Atom No. | 13C NMR | 1H NMR | 1H–1H and 1H–13C 2D Correlations | |||||
---|---|---|---|---|---|---|---|---|
δ (ppm) | Type | δ (ppm) | Mult | J (Hz) | HMBC * | NOESY | COSY | |
1 | 8.37 | CH3 | 0.9 | t | 7.4 | H2 | H2 | - |
2 | 35.43 | CH2 | 1.6 | dd | 7.44 & 1.6 | H1 H13 | H1 H13 | - |
3 | 73.38 | C-O | - | - | - | H1 H2 H4 H5 H13 | - | - |
4 | 137.80 | CH= | 5.6 | d | 15.3 | H2 H6 H13 | H6 H13 | H6 |
5 | 123.99 | CH= | 6.5 | dd | 15.3 & 10.8 | H6 H13 | H13 H14 | H14 |
6 | 124.13 | CH= | 5.9 | d | 10.8 | H4 H5 H8 H14 | H8/H9 | H8/H9 |
7 | 138.75 | C= | - | - | - | H5 H8 H14 | - | - |
8 | 39.97 | CH2 | 2.1 | m | - | H9 H14 | H6 | - |
9 | 26.62 | CH2 | 2.1 | m | - | H8 | H10 H14 H15 | H14 H15 |
10 | 124.03 | CH= | 5.1 | t | 6.0 | H8 H12 H15 | H9 H12 H15 | H12 |
11 | 131.71 | C= | - | - | - | H12 H15 | - | - |
12 | 25.71 | CH3 | 1.7 | s | - | H10 H15 | H10 | - |
13 | 27.58 | CH3 | 1.3 | s | - | H4 | H1 | - |
14 | 16.75 | CH3 | 1.8 | s | - | H6 | H5 | - |
15 | 17.70 | CH3 | 1.6 | s | - | H10 H12 | H10 | - |
Atom No. | 42a | 42b | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
13C NMR | 1H NMR | 2D NMR | 13C NMR | 1H NMR | 2D NMR | |||||||
δ (ppm) | DEPT | δ (ppm) | Mult (J, Hz) | HMBC * | NOESY | δ (ppm) | DEPT | δ (ppm) | Mult (J, Hz) | HMBC * | NOESY | |
1 | 134.16 | C | - | - | H7 | 134.29 | C | - | - | H7 | ||
2 | 124.88 | CH | 4.95 | d (1.26) | H7 | H3 H7 | 125.19 | CH | 4.95 s | d (1.26) | H7 | H3 H7 |
3 | 37.18 | CH | 3.08 | m | H2 H5 H9 H11 H15 | 36.93 | CH | 3.08 | m | H5 | ||
4 | 50.48 | CH | 1.5 | m | H11 H2 H10 H9 | H5 H6 | 50.54 | CH | 1.34 | m | H9 H10 | H5 H6 |
5 | 25.37 | CH2 | 1.83/1.31 | m | H3 H4 H6 | 25.29 | CH2 | 1.83/1.31 | m | |||
6 | 30.7 | CH2 | 2.03 | m | H2 H7 | 30.65 | CH2 | 1.96 | m | H5 H7 | H5 | |
7 | 23.31 | CH3 | 1.67 | s | H2 | H6 | 23.33 | CH3 | 1.64 | s | H7 | |
8 | 74.38 | C-OH | - | - | OH H10 H9 | 74.38 | C-OH | - | - | H9 H10 | ||
9 | 25.78 | CH3 | 1.17 | s | H10 | H3 | 25.71 | CH3 | 1.17 | s | H10 | H3 |
10 | 28.93 | CH3 | 1.24 | s | OH H9 | H4 H5 | 28.99 | CH3 | 1.23 | s | H8 H9 | H4 H5 |
11 | 129.59 | CH | 5.15 | dd (10.1 and 1.26) | H13 H15 | H4 H6 H13 H14 OH | 130.69 | CH | 5.11 | d(10.1) | H13 H15 | H15 |
12 | 137.34 | C | - | - | H13 H15 H14 | 137.4 | C | - | - | H13 H14 H15 | ||
13 | 32.5 | CH2 | 2.03 | q (7.32) | H11 H14 H15 | H14 H15 | 25.11 | CH2 | 2.19/2.09 | m | H14 H15 | H3 H14 |
14 | 12.55 | CH3 | 1.02 | t (7.32) | H13 | H13 | 12.85 | CH3 | 1.06 | t (7.23) | H13 | H13 |
15 | 16.21 | CH3 | 1.73 | d (0.88) | H11 H13 | H3 H9 H13 H14 | 22.98 | CH3 | 1.74 | d (1.47) | H11 H13 | H3 H9 H13 H14 |
OH | 2.6 | OH | OH | 2.6 | OH |
Samples 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No 1 | Compounds | L RIA 2 | RIA 3 | RIP ⁴ | EO | HY | EXT | MW | VF | Reference 6 | ||
EXTH | EXTO | |||||||||||
1 | hexanal | 770 | 771 | 819 | t | - | t | t | - | t | IR, MS | |
2 | heptanal | 876 | 876 | 1079 | t | - | t | t | - | t | IR, MS | |
3 | α-pinene | 931 | 931 | 1032 | t | - | t | t | - | 1.0 | IR, MS | |
4 | camphene | 943 | 944 | 1066 | t | - | t | t | - | 0.1 | IR, MS | |
5 | 6-methylhept-5-en-2-one | 963 | 954 | 1343 | 0.1 | - | t | - | - | 0.1 | IR, MS | |
6 | oct-1-en-3-ol | 959 | 962 | 1453 | 0.4 | 1.9 | - | t | - | t | IR, MS | |
7 | octen-3-one | 963 | 980 | 1260 | t | - | - | t | - | 0.1 | IR, MS | |
8 | octan-3-ol | 982 | 982 | 1401 | t | - | - | t | - | - | IR, MS | |
9 | phenylaldehyde | 1013 | 1010 | 1616 | t | - | - | - | - | t | IR, MS | |
10 | β-phellandrene | 1021 | 1021 | 1219 | t | - | - | 0.1 | - | 0.4 | IR, MS | |
11 | nonanal | 1083 | 1083 | 1396 | 0.1 | - | t | - | - | - | IR, MS | |
12 | octen-3-yl acetate | 1094 | 1094 | 1377 | 0.1 | - | t | 0.6 | 0.2 | 2.4 | RI, MS, Ref | |
13 | decanal | 1186 | 1185 | 1496 | t | - | - | - | - | - | RI, MS, Ref | |
14 | bicycloelemene | 1334 | 1334 | 1552 | 0.3 | - | 0.9 | 1.1 | 0.4 | 2.0 | RI, MS, Ref | |
15 | maali-1,3-diene | 1347 | 1346 | 1532 | 0.8 | - | 0.5 | 0.6 | - | 1.5 | RI, MS, Ref | |
16 | anastrepene | 1373 | 1369 | - | 0.2 | - | 0.4 | 1.2 | 0.8 | 1.4 | RI, MS, Ref | |
17 | isoledene | 1372 | 1373 | - | 0.1 | - | 0.1 | 0.2 | - | 0.2 | IR, MS | |
18 | α-copaene | 1379 | 1376 | 1498 | 0.2 | - | 0.4 | 0.4 | - | 1.7 | IR, MS | |
19 | β-elemene | 1388 | 1388 | 1592 | 0.2 | - | 0.4 | 0.6 | - | 1.4 | IR, MS | |
20 | african-3-ene | 1391 | 1390 | - | - | - | 0.0 | 0.3 | - | 1.1 | RI, MS, Ref | |
21 | α-barbatene | 1414 | 1409 | 1565 | 1.8 | - | 1.3 | 2.5 | 0.4 | 4.7 | RI, MS, Ref | |
22 | tritomarene | 1416 | 1413 | 1410 | 0.2 | - | - | 0.5 | - | 1.1 | RI, MS, Ref | |
23 | aristolene | 1420 | 1419 | 1581 | 2.6 | - | 5.0 | 1.5 | 4.1 | 7.3 | RI, MS, NMR | |
24 | γ-maaliene | 1428 | 1425 | 1613 | 1.2 | - | 2.9 | 0.2 | 3.0 | 0.5 | RI, MS, Ref | |
25 | calarene | 1439 | 1438 | 1603 | 0.6 | - | 0.5 | 0.6 | 0.5 | 1.0 | IR, MS | |
26 | α-maaliene | 1440 | 1440 | - | 0.5 | - | t | 0.6 | 0.8 | - | RI, MS, Ref | |
27 | β-barbatene | 1445 | 1445 | 1663 | 28.7 | - | 23.1 | 19.5 | 32.6 | 39.5 | RI, MS, NMR | |
28 | aromadendrene | 1447 | 1458 | 1601 | 0.3 | - | 0.4 | 0.5 | - | 0.6 | RI, MS, Ref | |
29 | α-acoradiene | 1464 | 1460 | - | 0.6 | - | 0.2 | 0.3 | - | 0.9 | RI, MS, Ref | |
30 | β-acoradiene | 1465 | 1462 | - | 0.1 | - | 0.4 | 0.2 | - | 0.4 | RI, MS, Ref | |
31 | γ-curcumene | 1475 | 1471 | - | 0.1 | - | 0.7 | 0.5 | - | 0.4 | RI, MS, Ref | |
32 | β-chamigrene | 1478 | 1473 | - | 1.3 | - | 0.5 | 0.8 | - | 1.5 | RI, MS, Ref | |
33 | α-curcumene | 1473 | 1481 | 1738 | 0.1 | - | 0.1 | 0.4 | - | 0.7 | RI, MS, Ref | |
34 | β-selinene | 1483 | 1485 | - | 1.1 | - | 0.0 | 0.1 | - | - | RI, MS, Ref | |
35 | β-maaliene | 1480 | 1481 | - | 0.1 | - | 0.1 | 0.3 | - | - | RI, MS, Ref | |
36 | bicyclogermacrene | 1494 | 1494 | 1744 | 8.2 | - | 16.4 | 14.1 | 17.8 | 14.2 | RI, MS, NMR | |
37 | 204[M]+; 107(100); 93(90) | 1498 | 1497 | - | 1.5 | - | 0.4 | 0.9 | - | 1.0 | ||
38 | ledene | 1494 | 1498 | 1706 | t | - | - | 0.9 | - | 0.4 | RI, MS | |
39 | α-chamigrene | 1503 | 1500 | - | t | - | - | 0.4 | - | 0.4 | RI, MS, Ref | |
40 | γ-cadinene | 1507 | 1514 | 1775 | t | - | - | 0.6 | - | 0.7 | RI, MS | |
41 | α-alaskene | 1512 | 1513 | - | t | - | - | 0.5 | - | 0.4 | RI, MS, Ref | |
42a | p-menth-1-en-3-[2-methyl-1E-butenyl]-8-ol | - | 1536 | 1917 | 1.2 | 3.4 | 0.3 | 1.2 | - | - | RI, MS, NMR | |
42b | p-menth-1-en-3-[2-methyl-1Z-butenyl]-8-ol | - | 1536 | 1917 | 3.8 | - | 0.6 | - | - | - | RI, MS, NMR | |
43 | tamariscol | 1535 | 1536 | 1917 | 1.2 | - | 0.6 | 1.1 | - | - | RI, MS | |
44 | 204[M]+; 161(100); 91(56) | - | 1532 | 1917 | 3.7 | - | - | - | - | - | ||
45 | 4-epi-maaliol | - | 1544 | - | 0.7 | - | 0.6 | 0.3 | - | - | RI, MS, NMR | |
46 | 222[M]+; 107(100); 135(51) | - | 1545 | 1832 | 0.9 | 4.7 | - | - | - | - | - | |
47 | pallustrol | 1567 | 1558 | 1923 | t | - | - | t | - | - | RI, MS, Ref | |
48 | spathulenol | 1557 | 1561 | 2090 | 0.7 | 9.3 | 1.1 | 0.6 | 3.5 | - | RI, MS, NMR | |
49 | 204[M]+; 107(100); 135(56) | - | 1567 | - | 0.9 | - | - | - | - | - | - | |
50 | globulol | 1571 | 1578 | 2077 | 4.4 | 17.2 | 1.9 | 1.3 | 0.2 | 0.9 | RI, MS, NMR | |
51 | viridiflorol | 1591 | 1585 | 2085 | 5.8 | 4.2 | 1.9 | - | - | 0.3 | RI, MS, NMR | |
52 | 222[M]+; 107(100) | - | 1588 | - | 1.2 | - | - | - | - | - | - | |
53 | 238[M]+; 149(100) | - | 1591 | 1920 | 5.21 | - | - | - | - | - | - | |
54 | rosifoliol | 1599 | 1587 | 2108 | 3.8 | 7.3 | 5.9 | 6.1 | 0.4 | - | RI, MS, NMR | |
55 | maalian-5-ol | 1607 | 1595 | 2051 | 5.4 | 9.4 | 2.2 | 1.9 | 7.6 | 1.2 | RI, MS, NMR | |
56 | 204[M]+;107(100);135(76) | - | 1611 | 1938 | 1.4 | - | - | - | - | - | - | |
57 | 222;107(100);105(75) | - | 1613 | - | 1.3 | 4.2 | - | - | - | - | - | |
58 | 1,2-dihydro-4,5-dehydronerolidol | - | 1616 | 2136 | - | - | 13.3 | 15.7 | 17.2 | - | RI, MS, NMR | |
Total identified | 76.9 | 52.6 | 82.6 | 77.9 | 89.4 | 90.3 | ||||||
Classes of compounds (%) | ||||||||||||
Hydrocarbon compounds | 49.3 | - | 54.4 | 49.2 | 60.4 | 85.4 | ||||||
Oxygenated compounds | 27.5 | 72.3 | 28.1 | 28.7 | 29.1 | 4.9 | ||||||
Monoterpene hydrocarbons | - | - | - | 0.1 | - | 1.5 | ||||||
Monoterpene oxygenated | - | - | - | - | - | - | ||||||
Sesquiterpene hydrocarbons | 49.3 | - | 54.4 | 49.1 | 60.4 | 83.8 | ||||||
Sesquiterpene oxygenated | 26.9 | 70.5 | 28.1 | 28.1 | 28.8 | 2.4 | ||||||
Other | 0.6 | 1.9 | - | 0.6 | 0.2 | 2.5 |
Sample | Cytotoxicity | Antiprotozoal Assay | Selectivity Indices | ||||
---|---|---|---|---|---|---|---|
IC50 ± SD in µg/mL (µM for Pure Compound) | SI = IC50 (WI38)/IC50 (J774 or parasite) | ||||||
WI38 | J774 | Lmm | Tbb | J774 | Lmm | Tbb | |
EO | 23.85 ± 4.39 | 28.81 ± 0.45 | 15.99 ± 0.85 | 2.03 ± 0.12 | 0.8 | 1.5 | 11.7 |
EXTO | 2.96 ± 0.17 | 1.25 ± 0.08 | 17.73 ± 1.14 | 5.18 ± 0.81 | 2.4 | 0.2 | 0.6 |
Camptothecin | 0.031 ± 0.002 | 0.01 ± 0.001 | |||||
Pentamidine | 0.07 ± 0.004 | ||||||
Suramine | 0.03 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pannequin, A.; Quetin-Leclercq, J.; Costa, J.; Tintaru, A.; Muselli, A. First Phytochemical Profiling and In-Vitro Antiprotozoal Activity of Essential Oil and Extract of Plagiochila porelloides. Molecules 2023, 28, 616. https://doi.org/10.3390/molecules28020616
Pannequin A, Quetin-Leclercq J, Costa J, Tintaru A, Muselli A. First Phytochemical Profiling and In-Vitro Antiprotozoal Activity of Essential Oil and Extract of Plagiochila porelloides. Molecules. 2023; 28(2):616. https://doi.org/10.3390/molecules28020616
Chicago/Turabian StylePannequin, Anaïs, Joëlle Quetin-Leclercq, Jean Costa, Aura Tintaru, and Alain Muselli. 2023. "First Phytochemical Profiling and In-Vitro Antiprotozoal Activity of Essential Oil and Extract of Plagiochila porelloides" Molecules 28, no. 2: 616. https://doi.org/10.3390/molecules28020616
APA StylePannequin, A., Quetin-Leclercq, J., Costa, J., Tintaru, A., & Muselli, A. (2023). First Phytochemical Profiling and In-Vitro Antiprotozoal Activity of Essential Oil and Extract of Plagiochila porelloides. Molecules, 28(2), 616. https://doi.org/10.3390/molecules28020616