The Activity of Red Nigerian Propolis and Some of Its Components against Trypanosoma brucei and Trypanosoma congolense
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Ethanol Extract of Nigerian Propolis by 1H Nuclear Magnetic Resonance Spectroscopy (NMR)
2.2. Characterization of Red Nigerian Propolis Subfractions Using Liquid Chromatography–Mass Spectrometry (LC-MS) and 1HNMR
2.3. Isolation of Compounds from RN sup1 and RN ppt 2
2.3.1. Isolation of 7-O-Methylvestitol
2.3.2. Isolation of Neovestitol
2.3.3. Characterization of 7-Hydroxyflavanone in a Mixture with Medicarpin
2.3.4. Isolation of Medicarpin
2.3.5. Isolation of Vestitol
2.4. In Vitro Anti-Trypanosomal Activity and Cross-Resistance Studies of Red Nigerian Propolis Extracts and Its Fractions
2.5. In Vitro Cytotoxicity of Nigerian Propolis Extracts and Its Fractions to Mammalian Cells
3. Discussion
4. Materials and Methods
4.1. General
4.2. Preliminary Treatment of the Propolis Sample
4.3. Column Chromatography
4.4. LC-MS Analysis
4.5. NMR
4.6. Determination of the Cytotoxic Effect of PNG Extract and Its Purified Compounds on U937 Mammalian Cells
4.7. Anti-Protozoal Assay
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honeybee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Siheri, W.; Alenezi, S.; Tusiimire, J.; Watson, D.G. The chemical and biological properties of propolis. In Bee Products-Chemical and Biological Properties; Springer: Berlin/Heidelberg, Germany, 2017; pp. 137–178. [Google Scholar]
- Pusceddu, M.; Annoscia, D.; Floris, I.; Frizzera, D.; Zanni, V.; Angioni, A.; Satta, A.; Nazzi, F. Honeybees use propolis as a natural pesticide against their major ectoparasite. Proc. R. Soc. B 2021, 288, 2021–2101. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.; Brinkman, D.; Spivak, M.; Gardner, G.; Cohen, J. Regional variation in composition and antimicrobial activity of US propolis against Paenibacillus larvae and Ascosphaera apis. J. Invertebr. Pathol. 2015, 124, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Mura, A.; Pusceddu, M.; Theodorou, P.; Angioni, A.; Floris, I.; Paxton, R.J.; Satta, A. Propolis consumption reduces Nosema ceranae infection of European honey bees (Apis mellifera). Insects 2020, 11, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habryka, C.; Socha, R.; Juszczak, L. The effect of enriching honey with propolis on the antioxidant activity, sensory characteristics, and quality parameters. Molecules 2020, 25, 1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saelao, P.; Borba, R.S.; Ricigliano, V.; Spivak, M.; Simone-Finstrom, M. Honeybee microbiome is stabilized in the presence of propolis. Biol. Lett. 2020, 16, 20200003. [Google Scholar] [CrossRef] [PubMed]
- Regan, T.; Barnett, M.W.; Laetsch, D.R.; Bush, S.J.; Wragg, D.; Budge, G.E.; Highet, F.; Dainat, B.; de Miranda, J.R.; Watson, M. Characterisation of the British honey bee metagenome. Nat. Commun. 2018, 9, 4995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravoet, J.; Schwarz, R.S.; Descamps, T.; Yañez, O.; Tozkar, C.O.; Martin-Hernandez, R.; Bartolomé, C.; De Smet, L.; Higes, M.; Wenseleers, T. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J. Invertebr. Pathol. 2015, 130, 21–27. [Google Scholar] [CrossRef]
- Quintana, S.; Plischuk, S.; Brasesco, C.; Revainera, P.; García, M.L.G.; Bravi, M.E.; Reynaldi, F.; Eguaras, M.; Maggi, M. Lotmaria passim (Kinetoplastea: Trypanosomatidae) in honey bees from Argentina. Parasitol. Int. 2021, 81, 102244. [Google Scholar] [CrossRef]
- Ebiloma, G.U.; Ichoron, N.; Siheri, W.; Watson, D.G.; Igoli, J.O.; De Koning, H.P. The strong anti-kinetoplastid properties of bee propolis: Composition and identification of the active agents and their biochemical targets. Molecules 2020, 25, 5155. [Google Scholar] [CrossRef]
- Ravoet, J.; Maharramov, J.; Meeus, I.; De Smet, L.; Wenseleers, T.; Smagghe, G.; De Graaf, D.C. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS ONE 2013, 8, e72443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omar, R.M.; Igoli, J.; Gray, A.I.; Ebiloma, G.U.; Clements, C.; Fearnley, J.; Edrada Ebel, R.A.; Zhang, T.; De Koning, H.P.; Watson, D.G. Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma brucei. Phytochem. Anal. 2016, 27, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siheri, W.; Zhang, T.; Ebiloma, G.U.; Biddau, M.; Woods, N.; Hussain, M.Y.; Clements, C.J.; Fearnley, J.; Ebel, R.E.; Paget, T.; et al. Chemical and antimicrobial profiling of propolis from different regions within Libya. PLoS ONE 2016, 11, e0155355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siheri, W.; Ebiloma, G.U.; Igoli, J.O.; Gray, A.I.; Biddau, M.; Akrachalanont, P.; Alenezi, S.; Alwashih, M.A.; Edrada-Ebel, R.; Muller, S. Isolation of a novel flavanonol and an alkylresorcinol with highly potent anti-trypanosomal activity from Libyan propolis. Molecules 2019, 24, 1041. [Google Scholar] [CrossRef] [Green Version]
- Omar, R.; Igoli, J.O.; Zhang, T.; Gray, A.I.; Ebiloma, G.U.; Clements, C.J.; Fearnley, J.; Ebel, R.E.; Paget, T.; De Koning, H.P. The chemical characterization of Nigerian propolis samples and their activity against Trypanosoma brucei. Sci. Rep. 2017, 7, 923. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, A.; Ebiloma, G.U.; Williams, R.; Alenezi, S.; Donachie, A.-M.; Guillaume, S.; Igoli, J.O.; Fearnley, J.; De Koning, H.P.; Watson, D.G. European propolis is highly active against trypanosomatids including Crithidia fasciculata. Sci. Rep. 2019, 9, 11364. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, G.M.; Camara, C.A.; Silva, E.M.S.D.; Santos, M.S.; Leite, A.B.; Queiroz, A.C.; Evelyn Da Silva, A.; Araújo, M.V.; Alexandre-Moreira, M.S.; Silva, T.M.S. Leishmanicidal activity of propolis collected in the Semiarid Region of Brazil. Front. Pharmacol. 2021, 12, 1625. [Google Scholar] [CrossRef]
- Alotaibi, A.; Ebiloma, G.U.; Williams, R.; Alfayez, I.A.; Natto, M.J.; Alenezi, S.; Siheri, W.; AlQarni, M.; Igoli, J.O.; Fearnley, J.; et al. Activity of compounds from temperate propolis against Trypanosoma brucei and Leishmania mexicana. Molecules 2021, 26, 3912. [Google Scholar] [CrossRef]
- Giordani, F.; Morrison, L.J.; Rowan, T.G.; De Koning, H.P.; Barrett, M.P. The animal trypanosomiases and their chemotherapy: A review. Parasitology 2016, 143, 1862–1889. [Google Scholar] [CrossRef]
- Simarro, P.P.; Diarra, A.; Ruiz Postigo, J.A.; Franco, J.R.; Jannin, J.G. The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: The way forward. PLoS Negl. Trop. Dis. 2011, 5, e1007. [Google Scholar] [CrossRef]
- Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need. Nat. Rev. Microbiol. 2017, 15, 217–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, K.; Brun, R.; Croft, S.; Fairlamb, A.; Gürtler, R.E.; McKerrow, J.; Reed, S.; Tarleton, R. Kinetoplastids: Related protozoan pathogens, different diseases. J. Clin. Investig. 2008, 118, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Koning, H.P. The drugs of sleeping sickness: Their mechanisms of action and resistance, and a brief history. Trop. Med. Infect. Dis. 2020, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alaribe, C.S.; Esposito, T.; Sansone, F.; Sunday, A.; Pagano, I.; Piccinelli, A.L.; Celano, R.; Cuesta Rubio, O.; Coker, H.A.; Nabavi, S.M. Nigerian propolis: Chemical composition, antioxidant activity and α-amylase and α-glucosidase inhibition. Nat. Prod. Res. 2021, 35, 3095–3099. [Google Scholar] [CrossRef] [PubMed]
- Chinwe, S.A.; Rastrelli, L.; Sunday, A.; Emmanuel, O.; Sola, I.; Herbert, C. Anti-Helicobacter pylori activities of Nigerian propolis (Bee Product). Planta Med. 2013, 79, PM2. [Google Scholar]
- Piccinelli, A.L.; Campo Fernandez, M.; Cuesta-Rubio, O.; Márquez Hernández, I.; De Simone, F.; Rastrelli, L. Isoflavonoids isolated from Cuban propolis. J. Agric. Food Chem. 2005, 53, 9010–9016. [Google Scholar] [CrossRef]
- Franchin, M.; Colón, D.F.; da Cunha, M.G.; Castanheira, F.V.; Saraiva, A.L.; Bueno-Silva, B.; Alencar, S.M.; Cunha, T.M.; Rosalen, P. Neovestitol, an isoflavonoid isolated from Brazilian red propolis, reduces acute and chronic inflammation: Involvement of nitric oxide and IL-6. Sci. Rep. 2016, 6, 36401. [Google Scholar] [CrossRef] [Green Version]
- Kostrzewa-Susłow, E.; Janeczko, T. Microbial transformations of 7-hydroxyflavanone. The Sci. World J. 2012, 2012, 254929. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhao, Y.; Hsieh, M.T.; Xin, G.; Wu, R.T.; Hsu, P.L.; Horng, L.Y.; Sung, H.C.; Cheng, C.H.; Lee, K.H. Total synthesis of (+)-medicarpin. J. Nat. Prod. 2017, 80, 3284–3288. [Google Scholar] [CrossRef]
- Munday, J.C.; Settimo, L.; De Koning, H.P. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei. Front. Pharmacol. 2015, 6, 32. [Google Scholar] [CrossRef]
- Carter, N.S.; Barrett, M.P.; De Koning, H.P. A drug resistance determinant from Trypanosoma brucei. Trends Microbiol. 1999, 7, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Bray, P.G.; Barrett, M.P.; Ward, S.A.; De Koning, H.P. Pentamidine uptake and resistance in pathogenic protozoa. Trends Parasitol. 2003, 19, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Anene, B.M.; Ezeokonkwo, R.C.; Mmesirionye, T.I.; Tettey, J.N.A.; Barrett, M.P.; De Koning, H.P. A diminazene resistant strain of Trypanosoma brucei brucei isolated from a dog is cross-resistant to pentamidine in experimentally infected albino rats. Parasitology 2006, 132, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Passmore, J.S.; Lukey, P.T.; Ress, S.R. The human macrophage cell line U937 as an in vitro model for selective evaluation of mycobacterial antigen-specific cytotoxic T-cell function. Immunology 2001, 102, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.H.; Munday, J.C.; Campagnaro, G.D.; Gurvic, D.; Svensson, F.; Okpara, C.E.; Kumar, A.; Quintana, J.; Abril, M.E.M.; Milić, P.; et al. Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei. eLife 2020, 9, e56416. [Google Scholar] [CrossRef]
- Ebiloma, G.U.; Ayuga, T.D.; Balogun, E.O.; Gil, L.A.; Donachie, A.; Kaiser, M.; Herraiz, T.; Inaoka, D.K.; Shiba, T.; Harada, S.; et al. Inhibition of trypanosome alternative oxidase without its N-terminal mitochondrial targeting signal (ΔMTS-TAO) by cationic and non-cationic 4-hydroxybenzoate and 4-alkoxybenzaldehyde derivatives active against T. brucei and T. congolense. Eur. J. Med. Chem. 2018, 150, 385–402. [Google Scholar] [CrossRef] [Green Version]
- Ccana-Ccapatinta, G.V.; Mejía, J.A.; Tanimoto, M.H.; Groppo, M.; Carvalho, J.C.; Bastos, J.K. Dalbergia ecastaphyllum (L.) Taub. and Symphonia globulifera Lf: The botanical sources of isoflavonoids and benzophenones in Brazilian red propolis. Molecules 2020, 25, 2060. [Google Scholar] [CrossRef]
- Arismendi, N.; Castro, M.P.; Vargas, M.; Zapata, C.; Riveros, G. The trypanosome Lotmaria passim prevails in honey bees of different ages and stages of development. J. Apicult. Res. 2022, 61, 63–69. [Google Scholar] [CrossRef]
- Gómez-Moracho, T.; Buendía-Abad, M.; Benito, M.; García-Palencia, P.; Barrios, L.; Bartolomé, C.; Maside, X.; Meana, A.; Jiménez-Antón, M.D.; Olías-Molero, A.I. Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. Int. J. Parasitol. 2020, 50, 1117–1124. [Google Scholar] [CrossRef]
- Liu, Q.; Lei, J.; Darby, A.C.; Kadowaki, T. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology. Commun. Biol. 2020, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Tomás-Barberán, F.A.; Ferreres, F.; García-Vignera, C.; Tomás-Lorente, F. Flavonoids in honey of different geographical origin. Z. Lebensm. Unters. Forsch. 1993, 196, 38–44. [Google Scholar] [CrossRef]
- Rofaidi, M.A.; Alotaibi, A.; Alqarni, A.; Alghamdi, A.; Fearnley, J.; Watson, D.G. A preliminary study of the absorption and metabolism of temperate propolis by human subjects. J. Food Nutr. Metab. 2020, 3, 1–6. [Google Scholar]
- Bloor, S.J.; Mitchell, K.A. Metabolic products of European-type propolis. Synthesis and analysis of glucuronides and sulfates. J. Ethnopharmacol. 2021, 274, 114035. [Google Scholar] [CrossRef] [PubMed]
- Nweze, N.E.; Okoro, H.O.; Al Robaian, M.; Omar, R.M.; Tor-Anyiin, T.A.; Watson, D.G.; Igoli, J.O. Effects of Nigerian red propolis in rats infected with Trypanosoma brucei brucei. Comp. Clin. Pathol. 2017, 26, 1129–1133. [Google Scholar] [CrossRef]
- Delespaux, V.; De Koning, H.P. Transporters in anti-parasitic drug development and resistance. In Trypanosomatid Diseases: Molecular Routes to Drug Discovery; Jäger, T., Koch, O., Flohe, L., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 335–349. [Google Scholar]
- De Koning, H.P.; MacLeod, A.; Barrett, M.P.; Cover, B.; Jarvis, S.M. Further evidence for a link between melarsoprol resistance and P2 transporter function in African trypanosomes. Mol. Biochem. Parasitol. 2000, 106, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Bridges, D.; Gould, M.K.; Nerima, B.; Mäser, P.; Burchmore, R.J.S.; De Koning, H.P. Loss of the High Affinity Pentamidine Transporter is responsible for high levels of cross-resistance between arsenical and diamidine drugs in African trypanosomes. Mol. Pharmacol. 2007, 71, 1098–1108. [Google Scholar] [CrossRef] [Green Version]
- Munday, J.C.; Eze, A.A.; Baker, N.; Glover, L.; Clucas, C.; Aguinaga Andrés, D.; Natto, M.J.; Teka, I.A.; McDonald, J.; Lee, R.S. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J. Antimicrob. Chemother. 2014, 69, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, L.V.; Munday, J.C.; Ebiloma, G.; Steketee, P.; Jayaraman, S.; Campagnaro, G.D.; Ungogo, M.A.; Lemgruber, L.; Donachie, A.-M.; Rowan, T.G.; et al. Diminazene resistance in Trypanosoma congolense is not caused by reduced transport capacity but associated with reduced mitochondrial membrane potential. Mol. Microbiol. 2021, 116, 564–588. [Google Scholar] [CrossRef]
Samples | T. b. brucei WT | T. b. brucei B48 | Comparison | |||
---|---|---|---|---|---|---|
EC50 (μg/mL) | EC50 (μM) | EC50 (μg/mL) | EC50 (μM) | RF | p Value | |
RN sup 1 | 1.66 ± 0.13 | - | 2.22 ± 0.36 | 1.34 | 0.062 | |
7-O-methyl vestitol | 3.44 ± 0.66 | 12.0 ± 2.3 | 4.66 ± 1.03 | 16.3 ± 3.6 | 1.36 | 0.159 |
medicarpin | 7.93 ± 0.56 | 29.3 ± 2.1 | 8.90 ± 0.57 | 33.0 ± 2.1 | 1.12 | 0.102 |
7-hydroxyflavanone/ Medicarpin | 7.73 ± 1.52 | - | 9.14 ± 0.72 | - | 1.18 | 0.219 |
neovestitol | 5.69 ± 0.94 | 18.6 ± 3.1 | 7.88 ± 1.54 | 29.0 ± 5.7 | 1.39 | 0.103 |
RN ppt 2 | 2.53 ± 0.47 | - | 2.93 ± 0.71 | - | 1.16 | 0.454 |
vestitol | 3.86 ± 0.54 | 14.2 ± 2.0 | 4.75 ± 0.43 | 17.4 ± 1.6 | 1.23 | 0.088 |
RN sup2 | 2.51 ± 0.58 | - | 4.92 ± 0.46 | - | 1.96 | 0.005 |
pentamidine | - | 0.0022 ± 0.0019 | - | 0.49 ± 0.07 | 225 | 0.0002 |
Samples | T. congolense IL300 | T. congolense 6C3 | Comparison | |||
---|---|---|---|---|---|---|
EC50 (μg/mL) | EC50 (μM) | EC50 (μg/mL) | EC50 (μM) | RF | p Value | |
RN sup 1 | 4.00 ± 0.72 | - | 4.68 ± 0.50 | - | 1.17 | 0.250 |
7-O-methyl vestitol | 12.1 ± 1.6 | 42.3 ± 5.5 | 12.5 ± 1.8 | 43.7 ± 6.5 | 1.03 | 0.790 |
medicarpin | 8.70 ± 0.91 | 32.2 ± 3.4 | 7.45 ± 1.04 | 27.6 ± 3.8 | 0.86 | 0.195 |
7-hydroxyflavanone/ medicarpin | 7.78 ± 0.85 | - | 7.93 ± 1.08 | - | 1.02 | 0.854 |
neovestitol | 7.51 ± 1.6 | 27.6 ± 5.8 | 7.10 ± 0.49 | 26.1 ± 1.8 | 0.95 | 0.621 |
RN ppt 2 | 6.70 ± 1.8 | - | 6.74 ± 0.95 | - | 1.01 | 0.968 |
vestitol | 4.36 ± 0.46 | 16.0 ± 1.7 | 4.47 ± 0.75 | 16.4 ± 2.8 | 1.02 | 0.844 |
RN sup2 | 14.7 ± 2.6 | - | 13.2 ± 3.3 | - | 0.90 | 0.571 |
diminazene | - | 0.26 ± 0.03 | - | 3.69 ± 0.83 | 14.4 | 0.002 |
Samples | U937 | ||
---|---|---|---|
EC50 (μg/mL) | EC50 (μM) | SI | |
RN sup 1 | 86.0 ± 7.3 | - | 51.8 |
7-O-methyl vestitol | 44.4 ± 3.4 | 155 ± 12 | 12.9 |
medicarpin | 42.4 ± 6.4 | 157 ± 24 | 5.34 |
7-hydroxyflavanone/ medicarpin | 46.8 ± 6.8 | - | 6.06 |
neovestitol | 51.2 ± 5.7 | 188 ± 6 | 9.00 |
RN ppt 2 | 130 ± 5.1 | - | 51.2 |
vestitol | 65.0 ± 4.1 | 238 ± 15 | 16.8 |
RN sup2 | 120 ± 8.3 | - | 47.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alenezi, S.S.; Alenezi, N.D.; Ebiloma, G.U.; Natto, M.J.; Ungogo, M.A.; Igoli, J.O.; Ferro, V.A.; Gray, A.I.; Fearnley, J.; Koning, H.P.d.; et al. The Activity of Red Nigerian Propolis and Some of Its Components against Trypanosoma brucei and Trypanosoma congolense. Molecules 2023, 28, 622. https://doi.org/10.3390/molecules28020622
Alenezi SS, Alenezi ND, Ebiloma GU, Natto MJ, Ungogo MA, Igoli JO, Ferro VA, Gray AI, Fearnley J, Koning HPd, et al. The Activity of Red Nigerian Propolis and Some of Its Components against Trypanosoma brucei and Trypanosoma congolense. Molecules. 2023; 28(2):622. https://doi.org/10.3390/molecules28020622
Chicago/Turabian StyleAlenezi, Samya S., Naif D. Alenezi, Godwin U. Ebiloma, Manal J. Natto, Marzuq A. Ungogo, John O. Igoli, Valerie A. Ferro, Alexander I. Gray, James Fearnley, Harry P. de Koning, and et al. 2023. "The Activity of Red Nigerian Propolis and Some of Its Components against Trypanosoma brucei and Trypanosoma congolense" Molecules 28, no. 2: 622. https://doi.org/10.3390/molecules28020622
APA StyleAlenezi, S. S., Alenezi, N. D., Ebiloma, G. U., Natto, M. J., Ungogo, M. A., Igoli, J. O., Ferro, V. A., Gray, A. I., Fearnley, J., Koning, H. P. d., & Watson, D. G. (2023). The Activity of Red Nigerian Propolis and Some of Its Components against Trypanosoma brucei and Trypanosoma congolense. Molecules, 28(2), 622. https://doi.org/10.3390/molecules28020622