Bee Pollen and Bread as a Super-Food: A Comparative Review of Their Metabolome Composition and Quality Assessment in the Context of Best Recovery Conditions
Abstract
:1. Introduction
2. Macronutrients
2.1. Carbohydrates
2.2. Fats
2.3. Proteins
3. Micronutrients (Vitamins/Minerals)
3.1. Vitamins
3.2. Macro- and Microelements
4. Phytonutrients
4.1. Volatile Compounds
4.2. Coenzyme Q10
4.3. Carotenoids
4.4. Glucosinolates (GLS)
4.5. Phenolics
4.6. Anthocyanins
5. Processing and Extraction Methods of BP Bioactives
5.1. Polysaccharides Extraction
5.2. Protein and Peptides
5.3. Lipids and Fatty Acids
5.4. Phenolics
6. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, X.; Zhao, J.; Chen, L.; Zhou, J.; Yue, B.; Li, Y.; Wu, L.; Liu, F. Analysis of coenzyme Q10 in bee pollen using online cleanup by accelerated solvent extraction and high performance liquid chromatography. Food Chem. 2012, 133, 573–578. [Google Scholar] [CrossRef]
- Di Paola-Naranjo, R.D.; Sánchez-Sánchez, J.; González-Paramás, A.M.A.; Rivas-Gonzalo, J.C. Liquid chromatographic–mass spectrometric analysis of anthocyanin composition of dark blue bee pollen from Echium plantagineum. J. Chromatogr. A 2004, 1054, 205–210. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Eid, N.; Abd El-Wahed, A.A.; Rateb, M.E.; Afifi, H.S.; Algethami, A.F.; Zhao, C.; Al Naggar, Y.; Alsharif, S.M.; Tahir, H.E. Honey Bee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties. Front. Nutr. 2022, 8, 761267. [Google Scholar] [CrossRef]
- Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.L.; Khan, Z.; Watson, D.G.; Fearnley, J. Analysis of sugars in bee pollen and propolis by ligand exchange chromatography in combination with pulsed amperometric detection and mass spectrometry. J. Food Compos. Anal. 2008, 21, 78–83. [Google Scholar] [CrossRef]
- Dolezal, A.G.; Toth, A.L. Feedbacks between nutrition and disease in honey bee health. Curr. Opin. Insect Sci. 2018, 26, 114–119. [Google Scholar] [CrossRef]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee pollen: Chemical composition and therapeutic application. Evid.-Based Complement. Altern. Med. 2015, 2015, 297425. [Google Scholar] [CrossRef] [Green Version]
- Webby, R.; Bloor, S. Pigments in the blue pollen and bee pollen of Fuchsia excorticata. Z. Nat. C 2000, 55, 503–505. [Google Scholar] [CrossRef]
- Zuluaga, C.M.; Serratob, J.C.; Quicazana, M.C. Chemical, nutritional and bioactive characterization of Colombian bee-bread. Chem. Eng. 2015, 43, 175–180. [Google Scholar]
- Keller, I.; Fluri, P.; Imdorf, A. Pollen nutrition and colony development in honey bees: Part 1. Bee World 2005, 86, 3–10. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Žilić, S.; Vančetović, J.; Janković, M.; Maksimović, V. Chemical composition, bioactive compounds, antioxidant capacity and stability of floral maize (Zea mays L.) pollen. J. Funct. Foods 2014, 10, 65–74. [Google Scholar] [CrossRef]
- Čeksteryté, V.; Kurtinaitienė, B.; Venskutonis, P.R.; Pukalskas, A.; Kazernavičiūtė, R.; Balžekas, J. Evaluation of antioxidant activity and flavonoid composition in differently preserved bee products. Czech J. Food Sci. 2016, 34, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Mayda, N.; Özkök, A.; Ecem Bayram, N.; Gerçek, Y.C.; Sorkun, K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020, 14, 1795–1809. [Google Scholar] [CrossRef]
- Margaoan, R.; Mărghitaş, L.A.; Dezmirean, D.S.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Bobiş, O. Predominant and secondary pollen botanical origins influence the carotenoid and fatty acid profile in fresh honeybee-collected pollen. J. Agric. Food Chem. 2014, 62, 6306–6316. [Google Scholar] [CrossRef]
- Fuenmayor, B.C.; Zuluaga, D.C.; Díaz, M.C.; Quicazán de, C.M.; Cosio, M.; Mannino, S. Evaluation of the physicochemical and functional properties of Colombian bee pollen. Rev. MVZ Córdoba 2014, 19, 4003–4014. [Google Scholar] [CrossRef] [Green Version]
- Omar, W.A.W.; Yahaya, N.; Ghaffar, Z.A.; Fadzilah, N.H. GC-MS analysis of chemical constituents in ethanolic bee pollen extracts from three species of Malaysian stingless bee. J. Apic. Sci. 2018, 62, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Bastos, D.H.; Barth, O.M.; Rocha, C.I.; da Silva Cunha, I.; de Oliveira Carvalho, P.; Torres, E.; Michelan, M. Fatty acid composition and palynological analysis of bee (Apis) pollen loads in the states of São Paulo and Minas Gerais, Brazil. J. Apic. Res. 2004, 43, 35–39. [Google Scholar] [CrossRef]
- Dong, J.; Yang, Y.; Wang, X.; Zhang, H. Fatty acid profiles of 20 species of monofloral bee pollen from China. J. Apic. Res. 2015, 54, 503–511. [Google Scholar] [CrossRef]
- Kaplan, M.; Karaoglu, Ö.; Eroglu, N.; Silici, S. Fatty acid and proximate composition of bee bread. Food Technol. Biotechnol. 2016, 54, 497. [Google Scholar] [CrossRef]
- Sagona, S.; Pozzo, L.; Peiretti, P.G.; Biondi, C.; Giusti, M.; Gabriele, M.; Pucci, L.; Felicioli, A. Palynological origin, chemical composition, lipid peroxidation and fatty acid profile of organic Tuscanian bee-pollen. J. Apic. Res. 2017, 56, 136–143. [Google Scholar] [CrossRef]
- AL-Kahtani, S.N. Fatty Acids and B Vitamins Contents in Honey Bee Collected Pollen in Relation to Botanical Origin. Sci. J. King Faisal Univ. (Basic Appl. Sci.) 2017, 18, 41–48. [Google Scholar]
- Jarukas, L.; Kuraite, G.; Baranauskaite, J.; Marksa, M.; Bezruk, I.; Ivanauskas, L. Optimization and Validation of the GC/FID Method for the Quantification of Fatty Acids in Bee Products. Appl. Sci. 2021, 11, 83. [Google Scholar] [CrossRef]
- Negri, G.; Barreto, L.M.R.C.; Sper, F.L.; Carvalho, C.D.; Campos, M.d.G.R. Phytochemical analysis and botanical origin of Apis mellifera bee pollen from the municipality of Canavieiras, Bahia State, Brazil. Braz. J. Food Technol. 2018, 21, e2016176. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Wu, D.; Ye, X.; Liu, D.; Chen, J.; Sun, P. Characterization of chemical composition of bee pollen in China. J. Agric. Food Chem. 2013, 61, 708–718. [Google Scholar] [CrossRef]
- Li, F.; Guo, S.; Zhang, S.; Peng, S.; Cao, W.; Ho, C.-T.; Bai, N. Bioactive constituents of F. esculentum bee pollen and quantitative analysis of samples collected from seven areas by HPLC. Molecules 2019, 24, 2705. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Liu, L.; Zhao, W.; Zhao, X.; Suo, Y.; Wang, H.; Li, Y. Study of a new derivatizing reagent that improves the analysis of amino acids by HPLC with fluorescence detection: Application to hydrolyzed rape bee pollen. Anal. Bioanal. Chem. 2007, 387, 2705–2718. [Google Scholar] [CrossRef]
- Paramás, A.M.G.; Bárez, J.A.G.; Marcos, C.C.; García-Villanova, R.J.; Sánchez, J.S. HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chem. 2006, 95, 148–156. [Google Scholar] [CrossRef]
- Bayram, N.E.; Gercek, Y.C.; Çelik, S.; Mayda, N.; Kostić, A.Ž.; Dramićanin, A.M.; Özkök, A. Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin–similarities and differences. Arab. J. Chem. 2021, 14, 103004. [Google Scholar] [CrossRef]
- Ecem Bayram, N. Vitamin, mineral, polyphenol, amino acid profile of bee pollen from Rhododendron ponticum (source of “mad honey”): Nutritional and palynological approach. J. Food Meas. Charact. 2021, 15, 2659–2666. [Google Scholar] [CrossRef]
- Matuszewska, E.; Klupczynska, A.; Maciołek, K.; Kokot, Z.J.; Matysiak, J. Multielemental analysis of bee pollen, propolis, and royal jelly collected in west-central Poland. Molecules 2021, 26, 2415. [Google Scholar] [CrossRef]
- Pohl, P.; Dzimitrowicz, A.; Lesniewicz, A.; Welna, M.; Szymczycha-Madeja, A.; Jamroz, P.; Cyganowski, P. Multivariable optimization of ultrasound-assisted solvent extraction of bee pollen prior to its element analysis by FAAS. Microchem. J. 2020, 157, 105009. [Google Scholar] [CrossRef]
- Costa, M.C.A.; Morgano, M.A.; Ferreira, M.M.C.; Milani, R.F. Quantification of mineral composition of Brazilian bee pollen by near infrared spectroscopy and PLS regression. Food Chem. 2019, 273, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Adaškevičiūtė, V.; Kaškonienė, V.; Kaškonas, P.; Barčauskaitė, K.; Maruška, A. Comparison of physicochemical properties of bee pollen with other bee products. Biomolecules 2019, 9, 819. [Google Scholar] [CrossRef] [Green Version]
- Kaškonienė, V.; Ruočkuvienė, G.; Kaškonas, P.; Akuneca, I.; Maruška, A. Chemometric analysis of bee pollen based on volatile and phenolic compound compositions and antioxidant properties. Food Anal. Methods 2015, 8, 1150–1163. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Kaškonas, P.; Maruška, A. Volatile compounds composition and antioxidant activity of bee pollen collected in Lithuania. Chem. Pap. 2015, 69, 291–299. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Karabagias, V.K.; Karabournioti, S.; Badeka, A.V. Aroma identification of Greek bee pollen using HS-SPME/GC–MS. Eur. Food Res. Technol. 2021, 247, 1781–1789. [Google Scholar] [CrossRef]
- Lima, J.d.S.; Lopes, J.A.D.; Moita, J.M.; Lima, S.G.d.; Luz, C.F.P.d.; Citó, A.M.d.G.L. Volatile compounds and palynological analysis from pollen pots of stingless bees from the mid-north region of Brazil. Braz. J. Pharm. Sci. 2017, 53, e14093. [Google Scholar]
- Hryniewicka, M.; Karpinska, A.; Kijewska, M.; Turkowicz, M.J.; Karpinska, J. LC/MS/MS analysis of α-tocopherol and coenzyme Q10 content in lyophilized royal jelly, beebread and drone homogenate. J. Mass Spectrom. 2016, 51, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Salazar-González, C.Y.; Rodríguez-Pulido, F.J.; Stinco, C.M.; Terrab, A.; Díaz-Moreno, C.; Fuenmayor, C.; Heredia, F.J. Carotenoid profile determination of bee pollen by advanced digital image analysis. Comput. Electron. Agric. 2020, 175, 105601. [Google Scholar] [CrossRef]
- Karkar, B.; Şahin, S.; Güneş, M.E. Evaluation of antioxidant properties and determination of phenolic and carotenoid profiles of chestnut bee pollen collected from Turkey. J. Apic. Res. 2021, 60, 765–774. [Google Scholar] [CrossRef]
- Ares, A.M.; Ayuso, I.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Trace analysis of sulforaphane in bee pollen and royal jelly by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2016, 1012, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Ares, A.M.; Redondo, M.; Tapia, J.; González-Porto, A.V.; Higes, M.; Martín-Hernández, R.; Bernal, J. Differentiation of bee pollen samples according to their intact-glucosinolate content using canonical discriminant analysis. LWT 2020, 129, 109559. [Google Scholar] [CrossRef]
- Fanali, C.; Dugo, L.; Rocco, A. Nano-liquid chromatography in nutraceutical analysis: Determination of polyphenols in bee pollen. J. Chromatogr. A 2013, 1313, 270–274. [Google Scholar] [CrossRef]
- Mohdaly, A.A.; Mahmoud, A.A.; Roby, M.H.; Smetanska, I.; Ramadan, M.F. Phenolic extract from propolis and bee pollen: Composition, antioxidant and antibacterial activities. J. Food Biochem. 2015, 39, 538–547. [Google Scholar] [CrossRef]
- Toribio, L.; Arranz, S.; Ares, A.M.; Bernal, J. Polymeric stationary phases based on poly (butylene terephthalate) and poly (4-vinylpirydine) in the analysis of polyphenols using supercritical fluid chromatography. Application to bee pollen. J. Chromatogr. A 2018, 1572, 128–136. [Google Scholar] [CrossRef]
- Thakur, M.; Nanda, V. Screening of Indian bee pollen based on antioxidant properties and polyphenolic composition using UHPLC-DAD-MS/MS: A multivariate analysis and ANN based approach. Food Res. Int. 2021, 140, 110041. [Google Scholar] [CrossRef]
- Gercek, Y.C.; Celik, S.; Bayram, S. Screening of Plant Pollen Sources, Polyphenolic Compounds, Fatty Acids and Antioxidant/Antimicrobial Activity from Bee Pollen. Molecules 2022, 27, 117. [Google Scholar] [CrossRef]
- Thakur, M.; Nanda, V. Composition and functionality of bee pollen: A review. Trends Food Sci. Technol. 2020, 98, 82–106. [Google Scholar] [CrossRef]
- Glick, N.R.; Fischer, M.H. The role of essential fatty acids in human health. J. Evid.-Based Complement. Altern. Med. 2013, 18, 268–289. [Google Scholar] [CrossRef]
- Silva Figueiredo, P.; Carla Inada, A.; Marcelino, G.; Maiara Lopes Cardozo, C.; de Cássia Freitas, K.; De Cássia Avellaneda Guimarães, R.; Pereira de Castro, A.; Aragão do Nascimento, V.; Aiko Hiane, P. Fatty acids consumption: The role metabolic aspects involved in obesity and its associated disorders. Nutrients 2017, 9, 1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manning, R.; Harvey, M. Fatty acids in honeybee-collected pollens from six endemic Western Australian eucalypts and the possible significance to the Western Australian beekeeping industry. Aust. J. Exp. Agric. 2002, 42, 217–223. [Google Scholar] [CrossRef]
- Morais, M.; Moreira, L.; Feás, X.; Estevinho, L.M. Honeybee-collected pollen from five Portuguese Natural Parks: Palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chem. Toxicol. 2011, 49, 1096–1101. [Google Scholar] [CrossRef]
- Hakme, E.; Lozano, A.; Gómez-Ramos, M.; Hernando, M.; Fernández-Alba, A. Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-of-flight mass spectrometry. Chemosphere 2017, 184, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Aylanc, V.; Falcão, S.I.; Ertosun, S.; Vilas-Boas, M. From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends Food Sci. Technol. 2021, 109, 464–481. [Google Scholar] [CrossRef]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Khalifa, S.A.; Elashal, M.; Kieliszek, M.; Ghazala, N.E.; Farag, M.A.; Saeed, A.; Xiao, J.; Zou, X.; Khatib, A.; Göransson, U. Recent insights into chemical and pharmacological studies of bee bread. Trends Food Sci. Technol. 2020, 97, 300–316. [Google Scholar] [CrossRef]
- Sattler, J.A.G.; de Melo, I.L.P.; Granato, D.; Araújo, E.; de Freitas, A.d.S.; Barth, O.M.; Sattler, A.; de Almeida-Muradian, L.B. Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil: A screening study. Food Res. Int. 2015, 77, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Tomás, A.; Falcão, S.I.; Russo-Almeida, P.; Vilas-Boas, M. Potentialities of beebread as a food supplement and source of nutraceuticals: Botanical origin, nutritional composition and antioxidant activity. J. Apic. Res. 2017, 56, 219–230. [Google Scholar] [CrossRef]
- Grosso, G.; Bei, R.; Mistretta, A.; Marventano, S.; Calabrese, G.; Masuelli, L.; Giganti, M.G.; Modesti, A.; Galvano, F.; Gazzolo, D. Effects of vitamin C on health: A review of evidence. Front. Biosci. 2013, 18, 1017–1029. [Google Scholar]
- Sharma, A.; Pant, K.; Brar, D.S.; Thakur, A.; Nanda, V. A review on Api-products: Current scenario of potential contaminants and their food safety concerns. Food Control 2022, 145, 109499. [Google Scholar] [CrossRef]
- Barakat, H.H.; Hussein, S.A.; Marzouk, M.S.; Merfort, I.; Linscheid, M.; Nawwar, M.A. Polyphenolic metabolites of Epilobium hirsutum. Phytochemistry 1997, 46, 935–941. [Google Scholar] [CrossRef]
- Sikorska-Zimny, K.; Beneduce, L. The Metabolism of Glucosinolates by Gut Microbiota. Nutrients 2021, 13, 2750. [Google Scholar] [CrossRef]
- Mazurek, S.; Szostak, R.; Kondratowicz, M.; Węglińska, M.; Kita, A.; Nemś, A. Modeling of Antioxidant Activity, Polyphenols and Macronutrients Content of Bee Pollen Applying Solid-State 13C NMR Spectra. Antioxidants 2021, 10, 1123. [Google Scholar] [CrossRef]
- Grainger, M.N.; Hewitt, N.; French, A.D. Optimised approach for small mass sample preparation and elemental analysis of bees and bee products by inductively coupled plasma mass spectrometry. Talanta 2020, 214, 120858. [Google Scholar] [CrossRef]
- Sevin, S.; Tutun, H.; Yipel, M.; Aluç, Y.; Ekici, H. Concentration of essential and non-essential elements and carcinogenic/non-carcinogenic health risk assessment of commercial bee pollens from Turkey. J. Trace Elem. Med. Biol. 2023, 75, 127104. [Google Scholar] [CrossRef]
- Baky, M.H.; Shamma, S.N.; Xiao, J.; Farag, M.A. Comparative aroma and nutrients profiling in six edible versus nonedible cruciferous vegetables using MS based metabolomics. Food Chem. 2022, 383, 132374. [Google Scholar] [CrossRef]
- Čakar, U.; Čolović, M.; Milenković, D.; Medić, B.; Krstić, D.; Petrović, A.; Đorđević, B. Protective effects of fruit wines against hydrogen peroxide—Induced oxidative stress in rat synaptosomes. Agronomy 2021, 11, 1414. [Google Scholar] [CrossRef]
- Eva, I.; Miroslava, K.; Helena, F.; Jana, P.; Jana, H.; Valerii, B.; Serhii, V.; Leonora, A.; Zuzana, S.; Janette, M. Bee bread-perspective source of bioactive compounds for future. Potravinarstvo 2015, 9, 1. [Google Scholar]
- Liolios, V.; Tananaki, C.; Kanelis, D.; Rodopoulou, M.A. The microbiological quality of fresh bee pollen during the harvesting process. J. Apic. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Ares, A.M.; Valverde, S.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Extraction and determination of bioactive compounds from bee pollen. J. Pharm. Biomed. Anal. 2018, 147, 110–124. [Google Scholar] [CrossRef]
- Akhmetova, R.; Sibgatullin, J.; Garmonov, S.; Akhmetova, L. Technology for extraction of bee-bread from the honeycomb. Procedia Eng. 2012, 42, 1822–1825. [Google Scholar] [CrossRef] [Green Version]
- Semkiw, P.; Skubida, P. Bee Bread Production—A New Source of Income for Beekeeping Farms? Agriculture 2021, 11, 468. [Google Scholar] [CrossRef]
- Didaras, N.A.; Karatasou, K.; Dimitriou, T.G.; Amoutzias, G.D.; Mossialos, D. Antimicrobial activity of bee-collected pollen and beebread: State of the art and future perspectives. Antibiotics 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- de Arruda, V.A.S.; Pereira, A.A.S.; Estevinho, L.M.; de Almeida-Muradian, L.B. Presence and stability of B complex vitamins in bee pollen using different storage conditions. Food Chem. Toxicol. 2013, 51, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Siuda, M.; Wilde, J.; Bak, T. The effect of various storage methods on organoleptic quality of bee pollen loads. J. Apic. Sci. 2012, 56, 71. [Google Scholar] [CrossRef] [Green Version]
- Urcan, A.C.; Criste, A.D.; Dezmirean, D.S.; Mărgăoan, R.; Caeiro, A.; Graça Campos, M. Similarity of data from bee bread with the same taxa collected in India and Romania. Molecules 2018, 23, 2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Yuan, Q.; Rashid, F. Isolation, purification and immunobiological activity of a new water-soluble bee pollen polysaccharide from Crataegus pinnatifida Bge. Carbohydr. Polym. 2009, 78, 80–88. [Google Scholar] [CrossRef]
- Wang, B.; Diao, Q.; Zhang, Z.; Liu, Y.; Gao, Q.; Zhou, Y.; Li, S. Antitumor activity of bee pollen polysaccharides from Rosa rugosa. Mol. Med. Rep. 2013, 7, 1555–1558. [Google Scholar] [CrossRef] [Green Version]
- Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol. 2016, 92, 37–48. [Google Scholar] [CrossRef]
- Li, X.; Gong, H.; Yang, S.; Yang, L.; Fan, Y.; Zhou, Y. Pectic bee pollen polysaccharide from Rosa rugosa alleviates diet-induced hepatic steatosis and insulin resistance via induction of AMPK/mTOR-mediated autophagy. Molecules 2017, 22, 699. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Qu, Y.; Chen, J.; Chen, S.; Sun, L.; Zhou, Y.; Fan, Y. Bee Pollen Polysaccharide from Rosa rugosa Thunb.(Rosaceae) Promotes Pancreatic β-Cell Proliferation and Insulin Secretion. Front. Pharmacol. 2021, 12, 688073. [Google Scholar] [CrossRef]
- Zhu, L.; Li, J.; Wei, C.; Luo, T.; Deng, Z.; Fan, Y.; Zheng, L. A polysaccharide from Fagopyrum esculentum Moench bee pollen alleviates microbiota dysbiosis to improve intestinal barrier function in antibiotic-treated mice. Food Funct. 2020, 11, 10519–10533. [Google Scholar] [CrossRef]
- Li, Q.-Q.; Wang, K.; Marcucci, M.C.; Sawaya, A.C.H.F.; Hu, L.; Xue, X.-F.; Wu, L.-M.; Hu, F.-L. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J. Funct. Foods 2018, 49, 472–484. [Google Scholar] [CrossRef]
- Vanderplanck, M.; Leroy, B.; Wathelet, B.; Wattiez, R.; Michez, D. Standardized protocol to evaluate pollen polypeptides as bee food source. Apidologie 2014, 45, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Sun, T.; Tuo, X.; Li, Y.; Yang, H.; Deng, J. A novel reversibly glycosylated polypeptide-2 of bee pollen from rape (Brassica napus L.): Purification and characterization. Protein Pept. Lett. 2021, 28, 543–553. [Google Scholar] [CrossRef]
- Saisavoey, T.; Sangtanoo, P.; Chanchao, C.; Reamtong, O.; Karnchanatat, A. Identification of novel anti-inflammatory peptides from bee pollen (Apis mellifera) hydrolysate in lipopolysaccharide-stimulated RAW264.7 macrophages. J. Apic. Res. 2021, 60, 280–289. [Google Scholar] [CrossRef]
- Saisavoey, T.; Sangtanoo, P.; Srimongkol, P.; Reamtong, O.; Karnchanatat, A. Hydrolysates from bee pollen could induced apoptosis in human bronchogenic carcinoma cells (ChaGo-K-1). J. Food Sci. Technol. 2021, 58, 752–763. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, S.; Wang, L.; Huang, D.; Chen, S. Identification and characterization of an angiotensin-I converting enzyme inhibitory peptide from enzymatic hydrolysate of rape (Brassica napus L.) bee pollen. LWT 2021, 147, 111502. [Google Scholar] [CrossRef]
- Nagai, T.; Nagashima, T.; Suzuki, N.; Inoue, R. Antioxidant activity and angiotensin I-converting enzyme inhibition by enzymatic hydrolysates from bee bread. Z. Nat. C 2005, 60, 133–138. [Google Scholar] [CrossRef]
- Turhan, S.; Yazici, F.; Saricaoglu, F.T.; Mortas, M.; Genccelep, H. Evaluation of the nutritional and storage quality of meatballs formulated with bee pollen. Korean J. Food Sci. Anim. Resour. 2014, 34, 423. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Liang, X.; Xue, X.; Wang, K.; Wu, L. Lipidomics provides novel insights into understanding the bee pollen lipids transepithelial transport and metabolism in human intestinal cells. J. Agric. Food Chem. 2019, 68, 907–917. [Google Scholar] [CrossRef]
- Spulber, R.; Dogaroglu, M.; Babeanu, N.; Popa, O. Physicochemical characteristics of fresh bee pollen from different botanical origins. Rom. Biotechnol. Lett 2018, 23, 13357–13365. [Google Scholar]
- Ukiya, M.; Akihisa, T.; Tokuda, H.; Koike, K.; Takayasu, J.; Okuda, H.; Kimura, Y.; Nikaido, T.; Nishino, H. Isolation, Structural Elucidation, and Inhibitory Effects of Terpenoid and Lipid Constituents from Sunflower Pollen on Epstein–Barr Virus Early Antigen Induced by Tumor Promoter, TPA. J. Agric. Food Chem. 2003, 51, 2949–2957. [Google Scholar] [CrossRef]
- Dranca, F.; Ursachi, F.; Oroian, M. Bee bread: Physicochemical characterization and phenolic content extraction optimization. Foods 2020, 9, 1358. [Google Scholar] [CrossRef]
- Sawicki, T.; Ruszkowska, M.; Shin, J.; Starowicz, M. Free and conjugated phenolic compounds profile and antioxidant activities of honeybee products of polish origin. Eur. Food Res. Technol. 2022, 248, 2263–2273. [Google Scholar] [CrossRef]
- Mladenova, R.; Aleksieva, K.; Solakov, N.; Loginovska, K. Effects of Gamma Irradiation on Free Radical Components, Phenolic Content and Antioxidant Activity of Beebread. Proc. Bulg. Acad. Sci. 2022, 75, 672–679. [Google Scholar] [CrossRef]
Sample | Method of Analysis | Results | Advantages | Reference |
---|---|---|---|---|
Macronutrients | ||||
BP samples (5 samples) | HPTLC and HPLEC-PAD | Sugars detected in all samples as stachyose, sucrose, glucose, galactose, and fructose | [4] | |
BP from three different Malaysian species | GC-MS | 23 sugars were identified and mannitol is major in all species followed by fructose, xylitol, glucopyranose, ribitol, myo-inositol, and inositol. | [16] | |
Brazilian pollen samples (14 samples) | GC-FID | Fatty acids were oleic acid, linoleic acid, and arachidic acid, respectively. | [17] | |
Chinese monofloral BP species (20 samples) | GC-MS/SIM | 14 saturated fatty acids, 4 MUFA, and 6 PUFA were identified: α-linolenic acid, nervonic acid, linoleic acid, arachidonic acid, and palmitic acid. | lower detection limits | [18] |
BB (8 samples) | GC-MS | 37 fatty acids were identified and the most abundant were palmitic acid, α-linoleic acid, oleic acid, stearic acid, and linolenic acid. | [19] | |
Tuscan BP species (5 samples) | GC-MS | 18 fatty acids were detected: tridecanoic, palmitic, margaric, stearic, linolenic, and α-linolenic acid. | [20] | |
BP from 6 different sources from Saudi Arabia | HPLC | Oleic acid, palmitic acid, linolenic acid, stearic acid, and linoleic acid were detected | [21] | |
Lithuanian BP and BP | GC-FID | A total SFA range of 0.51–1.82% and total USFA range of 0.03–3.7% in bee samples. | Simple and sensitive | [22] |
Malaysian BP (Three samples) | GC-MS | 7 fatty acids were identified and α-linolenic acid was the highest level followed by linoleic acid with 0.07–1.11% in all bee samples. | [16] | |
BP from Cocos nucifera L. | GC-MS | Palmitic acid, oleic acid, and behenic acid were identified | [23] | |
Chinese monofloral BP (12 samples) | GC-FID | α-Linolenic acid, palmitic acid, oleic acid, linoleic acid, and stearic acid were detected at high level. | [24] | |
BP (Seven samples) from F. esculentum L. | GC-MS | USFAs accounted for 69.14%, with (9,2,15)-octadecatrienoic acid being the major one, detected in 36.25% of the total fatty acids | [25] | |
Turkish BP and BB samples (10 samples) | GC–MS | 22 fatty acids were detected, mainly palmitic, stearic, oleic, linoleic, eicosenoic, and linoleic acid. | [26] | |
BP rape | 19 amino acids were identified in rape BP samples | sensitive | [27] | |
Spanish bee pollen from Cistus ladanifer L. and Echium plantagineum L. (32 samples) | HPLC-fluorimetric | 22 free amino acids were identified, mainly proline, leucine, alanine, phenylalanine, histidine, serine, and glutamine. | [28] | |
BP and BB (Five samples) | LC-MS/MS | 42 free amino acids were presented, while the major amino acid was L-proline followed by asparagine, aspartic acid, and a high content of γ-aminobutyric acid. | [29] | |
BP ethanolic extract (from three Malaysian species) | GC–MS | 23 sugars were detected in three species. L-alanine, L-valine, and L-asparagine were found in Trigona apicalis while L-proline and trimethylsiloxy proline were detected in T. thoracica | [16] | |
Chinese monofloral BP (Twelve samples) | GC-FID | 18 amino acids were detected; Proline, glutamic acid, and aspartic were the major amino acids. | [24] | |
BP from Rhododenron ponticum L. | LC-MS | 13 amino acids were detected and the main were L-tryptophan, L-glutamic acid, L-aspartic acid, and 3-amino isobutyric acid | [30] | |
Micronutrients | ||||
BP Rhododendron ponticum L. | HPLC-FLD and HPLC-UV | Vitamins C, B5, B2, E, B6, B1, A-β-carotene, B12, A-retinol, B7, and K2 were identified | [30] | |
Polish BP samples | ICP-MS and ICP-OES | K, P, and S were detected at high levels and microelements such as Fe, Zn and Mn were detected. | [31] | |
Bee pollen (10 samples) | LS-FAAS with UAE | Ca, Cu, Fe, Mg, Mn, and Zn were detected. | Fast and simple | [32] |
BP samples (144 samples) | NIR-PLS | Ca, Mg, Zn, P, and K were detected. | Fast | [33] |
Chinese monofloral BP (12 samples) | GC-FID | Macro- and microelements such as P, K, Ca, Mg, and Na were detected. | [24] | |
BP and BB samples (10 samples) | ICP-MS | 42 elements in all of the BP and BB samples were detected and the main elements were K, P, Mg, Ca, and Si. | [26] | |
BP (Eighteen samples) | ICP-MS | Co and Sr, and Ca and Mg were detected | [34] | |
BP sample of Rhododenron ponticum L. | ICP-MS | K, P, and Ca, and Mg, Cu, Fe, Mn, Na, Zn, and Ni were detected | [30] | |
Volatile compounds | ||||
HoneyBP (Fourteen samples) | SPME-GC-MS | 42 volatiles were identified, such as nonanal dodecane and tridecane. | [35] | |
Three different polyfloral Lithuanian BP (Three samples) | SPME-GC-MS | Styrene was the most abundant component in all samples. | [36] | |
Ground BP and its aqueous solution. | HS-SPME/GC–MS | 25 volatiles were identified in ground BP and 22 from aqueous solution. | [37] | |
Stingless BP samples (genus Scaptotrigona sp.) | GC-MS | The most abundant volatile compounds identified were kaur-16-ene, methyl cinnamate, benzyl acetate, methyl benzoate, methyl hidrocinnamate, and ethyl phenylacetate. | [38] | |
Coenzyme Q10 | ||||
Rape BP, tea BP, apricot BP and mixed BP (11 commercial samples) | HPLC-DAD | Detection of CoQ10 in bee pollen | [1] | |
BB commercial sample | LC/MS-MS. | Coenzyme Q10 amounted to 11.5 μg/g and α-tocopherol was detected at a level of 80 μg/g | Sensitive, short analysis time and selective | [39] |
Carotenoids | ||||
BP samples | (RRLC)-UV–Vis spectrophotometry | 11 Carotenoids were identified, mainly α-tocopherol and Phytoene. | [40] | |
Turkish chestnut BP (Sixteen samples) | HPLC-DAD | 5 carotenoids were identified as lutein, zeaxanthin, β-cryptoxanthin, a-carotene, and β-carotene. | [41] | |
Glucosinolates | ||||
BP (Five samples) | LC–MS/MS | Determination of Sulforaphane | Sensitive, short analysis time and selective | [42] |
Spanish BP samples (Forty nine samples) | UPLC-Q-TOF/MS | glucosinolate was detected at a range 34–9806 μg/kg | [43] | |
Phenolic compounds | ||||
Dark blue BP (Five samples) | HPLC-MS | 8 anthocyanins were identified and petunidin-3-O-rutinoside was the major compound detected. | [2] | |
BP of Fuchsia extorticata L. and blue pollen | HPLC | Delphindin, petunidin, and malvidin-3-O-glucosides, and delphinidin-3-O-glucosides were detected. | [7] | |
BP sample | LC-MS | 9 polyphenols were identified including ferulic acid, o-, p-coumaric acid, quercetin, cinnamic acid, naringenin, hesperitin, and kaempferol | higher sensitivity and shorter analysis time | [44] |
BP methanol extract sample | HPLC | 3, 4-Dimethoxycinnamic acid was detected at higher levels followed by gallic acid, catechin, and quercitin. | [45] | |
Commercial BP sample | SFC | 9 polyphenolic compounds detected and the most abundant were catechin, quercetin, p-coumaric acid, and cinnamic acid | high resolution and short analysis time with low usage of solvents | [46] |
Indian BP (35 samples) | UHPLC-DAD-MS/MS | 60 compounds were identified and the most abundant compounds were catechin, rutin, quercetin, luteolin, kaempferol, and apigenin | [47] | |
Turkish Chestnut BP (16 samples) | HPLC-DAD | 29 phenolic acids were identified and the major phenolic compounds were luteolin, hyperoside, vitexin, trans-chalcone, rosmarinic acid, pinocembrin, and chrysin | [41]. | |
Mixture of Turkish pollen samples | LC-MS/MS | 23 phenolic compounds were identified and the most abundant was rutin followed by kaempferol, quercetin, myricetin, and p-coumaric acid. | Sensitive, short analysis time and selective | [48] |
BP and BB (5 fresh samples) | LC-MS/MS | 23 phenolic compounds were identified. Rutin was found in higher concentrations in both BP and BB. Other phenolic compounds were detected at much higher levels in BP over BB, such as caffeic acid, ethyl gallate, trans-ferulic acid and myricetin, protocatechuic acid, p-coumaric acid, quercetin, isorhamnetin, luteolin, salicylic acid, chlorogenic acid, 2, 5-dihydroxybenzoic acid, kaempferol, and gallic acid. | Sensitive, short analysis time and selective | [29] |
Honey BP (Fourteen samples) | HPLC-ECD | 11 phenolic acid and flavonoids compounds were identified, such as 2-hydroxycinnamic acid, rutin, and quercetin. | [35] | |
BP from Cocos nucifera L. | HPLC-DAD-ESI-MS/MS | 13 phenolic compounds were identified, such as isorhamnetin-3-O-(2″-O-rhamnosyl) glucoside, isorhamnetin-3-O-(2″,3″-O-dirhamnosyl) glucoside, and isorhamnetin-di-3,7-O-glucoside, as well as hydroxycinnamic acid amide derivatives. | [23] | |
BP of Rhododendron ponticum L. | LC–MS/MS | 33 phenolic compounds were identified, with myricetin at the highest level followed by epicatechin, catechin and tyrosol. | Sensitive, short analysis time and selective | [2] |
Sample | Arg | Asp | Ser | Glu | Thr | Gly | Ala | GABA | Pro | Val | Phe | Ile | Leu | (Cys)2 | His | Lys | Try | Tyr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rape bee pollen (mg/g) Xinjiang | 7.27 | 10.6 | 8.26 | 9.5 | 5.83 | 6.28 | 6.5 | 0.34 | 11.4 | 6.4 | 4.89 | 4.96 | 9.28 | - | 2.9 | 9.85 | 3.86 | |
Rape bee pollen (mg/g) Qinghai | 6.45 | 14.1 | 7.97 | 11.85 | 6.82 | 6.46 | 7.13 | 0.16 | 12.17 | 9.07 | 5.25 | 5.02 | 9.86 | 0.56 | 3.89 | 10.36 | 4.27 | |
Bee-pollen free AA (mg/g) | 2.48 | 0.4 | 0.6 | 0.25 | 0.25 | 0.21 | 0.82 | 0.35 | 20.27 | 0.21 | 0.75 | 0.51 | 0.91 | - | 0.74 | 0.26 | 0.32 | |
Bee-pollen total AA (mg/g) | 5.03 | 15.1 | 2.74 | 17.88 | 4.17 | 6.4 | 10.86 | - | 22.88 | 7.26 | 9.62 | 9.22 | 10.81 | - | 6.84 | 10.97 | 7.43 | |
Bee-pollen (mg/g) | 7.15 | 7.79 | 1.98 | 5.33 | 2.29 | 2.23 | 2.71 | 1.59 | 2.09 | 1.22 | 8.05 | 1.25 |
Sample/ Elements | K | P | S | Fe | Zn | Mn | Ca | Cu | Mg | Na | Al | Si | Ni | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Polish bee pollen | 4233.3 mg/kg | 4050.0 mg/kg | 2383.3 mg/kg | 114.5 mg/kg | 31.3 mg/kg | 25.0 mg/kg | -- | -- | -- | -- | -- | -- | -- | [31] |
Bee pollen | -- | -- | -- | 2.2–3.9% | 2.1–3.1% | 2.0–2.8% | 3.0–4.4% | 2.2–3.5% | 1.8–3.5% | -- | -- | -- | -- | [32] |
Bee pollen (Brazilian) | 3182 to 7376 mg/kg | 3257 to 6886 mg/kg | -- | -- | 38 to 76 mg/kg | -- | 1346 to 3724 mg/kg | -- | 915 to 1744 mg/kg | -- | -- | -- | -- | [33] |
Chinese monofloral bee pollen | 5324 mg/kg | 5946 mg/kg | -- | 119.3 mg/kg | 45.10 mg/kg | 70.23 mg/kg | 2068 mg/kg | 17.35 mg/kg | 1449 mg/kg | 483.4 mg/kg, | 129.3 mg/kg | -- | -- | [24] |
BP and BB samples | 5429.27–8994.25 mg/kg | 4221.86–5948.96 mg/kg | -- | -- | -- | -- | 189.69–447.13 mg/kg | -- | 1033.72 mg/kg | -- | -- | 47–537.97 mg/kg | -- | [26] |
bee pollen sample of Rhododenron ponticum L. | 3002.084 mg/kg | 9145.125 mg/kg | -- | 47.007 mg/kg | 28.760 mg/kg | 25.629 mg/kg | 459.507 mg/kg | 13.496 mg/kg | 1113.509 mg/kg | 113.707 mg/kg | -- | -- | 3.764 mg/kg | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baky, M.H.; Abouelela, M.B.; Wang, K.; Farag, M.A. Bee Pollen and Bread as a Super-Food: A Comparative Review of Their Metabolome Composition and Quality Assessment in the Context of Best Recovery Conditions. Molecules 2023, 28, 715. https://doi.org/10.3390/molecules28020715
Baky MH, Abouelela MB, Wang K, Farag MA. Bee Pollen and Bread as a Super-Food: A Comparative Review of Their Metabolome Composition and Quality Assessment in the Context of Best Recovery Conditions. Molecules. 2023; 28(2):715. https://doi.org/10.3390/molecules28020715
Chicago/Turabian StyleBaky, Mostafa H., Mostafa B. Abouelela, Kai Wang, and Mohamed A. Farag. 2023. "Bee Pollen and Bread as a Super-Food: A Comparative Review of Their Metabolome Composition and Quality Assessment in the Context of Best Recovery Conditions" Molecules 28, no. 2: 715. https://doi.org/10.3390/molecules28020715
APA StyleBaky, M. H., Abouelela, M. B., Wang, K., & Farag, M. A. (2023). Bee Pollen and Bread as a Super-Food: A Comparative Review of Their Metabolome Composition and Quality Assessment in the Context of Best Recovery Conditions. Molecules, 28(2), 715. https://doi.org/10.3390/molecules28020715