Research of Liquid-Crystal Materials for a High-Performance FFS-TFT Display
Abstract
:1. Introduction
2. Results and Discussions
2.1. Technical Route
2.2. Technical Specification Requirements
2.3. Design and Performance Evaluation of High-Performance Liquid-Crystal Compounds
2.3.1. Structure Determination of the High-Performance Liquid-Crystal Compounds
2.3.2. Synthesis of High-Performance Liquid-Crystal Compounds
2.3.3. Performance Evaluation of the High-Performance Liquid-Crystal Compound
2.4. The Preparation of the Liquid-Crystal Material Mixture
2.4.1. The Method of Allocating Mixed Liquid Crystal
2.4.2. Debugging Rules and Test Methods for Mixed Liquid Crystal—Adjustment and Test Method for Clear Point (TNI)
2.4.3. Adjustment and Test Method of Δn
2.4.4. Adjustment and Test Method of Δε
2.4.5. Adjustment and Test Method of Low-Temperature Miscibility
- Observation method I
- 2.
- Observation method II
- 3.
- DSC spectrum
2.4.6. Adjustment and Test Method of K
2.4.7. Adjustment and Test Method of γ1
3. Materials and Methods
3.1. Experimental Result
3.2. Physical Performance Test
3.3. Quality Performance Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sackmann, H.; Demus, D. Properties of polymorphism in liquid-crystals. Mol. Cryst. Liq. Cryst. 1973, 21, 239–273. [Google Scholar] [CrossRef]
- Naemure, S. Physicochemical study on liquid crystal-substrate interfacial interactions. Mol. Cryst. Liq. Cryst. 1981, 68, 183–198. [Google Scholar] [CrossRef]
- Heilmeier, G.H.; Zanoni, L.A.; Barton, L.A. Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals. Proc. IEEE 1968, 56, 1162–1171. [Google Scholar] [CrossRef]
- Lu, C.W.; Huang, Y.S.; Lin, Y.S. Area-efficient fully R-DAC based TFT-LCD column driver architectures with DAC sharing techniques. J. Disp. Technol. 2015, 11, 689–697. [Google Scholar] [CrossRef]
- Kim, D.C.; Lee, S.J.; Nam, S.J.; Kwon, O.K. A power-efficient driving method for in-plane switching-mode TFT-LCD using a negative liquid crystal. J. Disp. Technol. 2015, 10, 1093–1100. [Google Scholar] [CrossRef]
- Chu, L.W.; Liu, P.T.; Ker, M.D. Design of integrated gate driver with threshold voltage drop cancellation in amorphous silicon technology for TFT-LCD application. J. Disp. Technol. 2011, 7, 657–664. [Google Scholar] [CrossRef]
- Seo, D.S.; Lee, J.H.; Kim, H.Y. Wide viewing angle and fast response time using a novel vertical-alignment-pi cell mode on a homeotropic alignment layer. Liq. Cryst. 2001, 27, 1149–1150. [Google Scholar] [CrossRef]
- Zhao, W.Q.; Chen, W.; Ji, F.L.; Lin, B.S.; Chen, Z.H. TFT-LCD advanced adaptive de-mura system. SID Symp. Dig. Tech. Pap. 2019, 50, 1417–1473. [Google Scholar] [CrossRef]
- Chen, J.F.; Zhao, W.; Lin, W.Q.; Chen, Z.G. TFT-LCD auto gamma adjustment system. SID Symp. Dig. Tech. Pap. 2019, 50, 1471–1473. [Google Scholar]
- Jae, O.; Kang, D.H.; Park, W.H.; Kim, H.J.; Hong, S.M.; Hur, J.H.; Jang, J. High-resolution stereoscopic TFT-LCD with wire grid polarizer. SID 2007 DIGEST 2007, 38, 1164–1176. [Google Scholar]
- Wang, D.; Zhang, S.K.; Wang, J.Y.; Chen, W.T.; Yuan, J.F. Mechanism analysis of wide color-gamut TFT-LCD light-caused green mura. SID Symp. Dig. Tech. Pap. 2019, 50, 912–914. [Google Scholar]
- Liu, C.T.; Wang, A.; Hong, H.J.; Hsieh, Y.J.; Lai, M.S.; Wang, T.M.; Jou, M.J.; Chang, W.C.; Sui, S.L.; Liao, J.H.; et al. Color and image enhancement for large-size TFT-LCD TVs. SID Symp. Dig. Tech. Pap. 2005, 36, 1730. [Google Scholar] [CrossRef]
- Lou, W.C.; Zhang, J.H.; Fang, X.; Lin, L.; Lei, S.J.; Zhang, Z.; Hou, S.H.W. An ultra low power optimization design for TFT-LCD. SID Symp. Dig. Tech. Pap. 2021, 52, 1376–1379. [Google Scholar]
- Gauza, S.; Li, J.; Wu, S.T.; Spadlo, A.; Cheng, K.L. High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures. Liq. Cryst. 2005, 28, 1077–1085. [Google Scholar] [CrossRef]
- Chen, P.L.; Chen, S.H.; Su, F.C. An effective method for evaluating the imagesticking effect of TFT-LCDs by interpretative modelling of optical measurements. Liq. Cryst. 2000, 27, 965–975. [Google Scholar] [CrossRef]
- Kim, Y.B.; Hur, I.K. High speed response time of nematic liquid crystal mixture for LCD monitor and TV aoolications. J. Inform. Display 2001, 2, 32–38. [Google Scholar] [CrossRef]
- Mochizuki, A. A fast response sematic LCD using induced polarization. J. Inform. Display 2005, 6, 6–11. [Google Scholar] [CrossRef]
- Haseba, Y.; Matsui, S. Phenyldioxane Derivatives, Liquid Crystal Compositions, and Liquid Crystal Display Elements. PCT Patent US5858272, 12 January 1999. [Google Scholar]
- Haseba, Y.; Matsui, S. Phenyldioxane Derivatives, Liquid Crystal Compositions, and Liquid Crystal Display Elements. PCT Patent JP19960205188, 6 October 1999. [Google Scholar]
- Birendra, B. Liquid Crystals Applications and Uses; World Scientific Publishing Co, Pte. Ltd.: Singapore, 1990; p. 128. [Google Scholar]
- Kahn, F.J.; Gerritsma, H.B. The Physics and Chemistry of Liquid Ccrystal Devices; Sprokel, G., Ed.; Plenum Press: New York, NY, USA, 1980. [Google Scholar]
- Osman, M.; Schad, M.; Zeller, H. Dielectric dispersion of a polar nonpolar liquid mixture near the critical solution temperature. Chem. Phys. 1963, 39, 3285–3288. [Google Scholar]
- Wen, C.H.; Gauza, S.; Wu, S.T. Photostability of liquid crystals and alignment layers. J. Soc. Inf. Display 2005, 13, 850–860. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, J.Y.; Li, Y.; Wu, S.T. Fast-response liquid crystal phase modulators with an excellent photostability. Crystals 2020, 10, 765. [Google Scholar] [CrossRef]
- Talukder, J.; Huang, Y.; Wu, S. High performance LCD for augmented reality and virtual reality displays. Liq. Crystals 2018, 44, 1–10. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S.L.; Kim, H.Y. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl. Phys. Lett. 1998, 73, 2881–2883. [Google Scholar] [CrossRef]
- Bonghyun, Y.; Hui, N.; Hyojin, L. Image adaptive refresh rate technology for ultra low power consumption. SID Symp. Dig. Tech. Pap. 2020, 51, 676–679. [Google Scholar]
- Zhang, F.Z.; Shi, L.B.; Li, X.L.; Liu, Y.J.; Song, J.P.; Peng, K.J. A novel approach for higher efficient LCD. SID 2007 DIGEST 2020, 51, 1994–1997. [Google Scholar] [CrossRef]
Entry | Device Performance | Requirements for LCs |
---|---|---|
1 | A low driving voltage (energy saving) | A low Vth |
2 | Fast response (suitable for dynamic display) | Low rotational viscosity (γ1), a large K value |
3 | High transmittance (energy saving) | Small Δε, a large off-state dielectric constant |
4 | A high contrast (improves the display effect) | A large K value, small no, ne, and (Δn) |
5 | Suitable Δnd value (consistent with the requirements) | A cell thickness (d) necessary for matching with Δn |
6 | A wide temperature range | Large Cp (≥80 °C), Δn, Δε, and K |
7 | High reliability (long service life) | High VHR (≥97%), low ion, high resistivity and purity, and high UV and thermal stability |
Liquid-Crystal Property | Specification | |
---|---|---|
Clear point | TNI [°C] | ≥90 |
Low-temperature storage | TSN [°C] | ≤−30 |
Dielectric anisotropy [25 °C, 1.0 kHz] | Δε | 5.6 ± 0.2 |
Optical anisotropy [589.3 nm, 25 °C] | Δn | 0.100 ± 0.002 |
Elastic constant [25 °C] | K11 [pN] | 13.4 ± 0.5 |
K22 [pN] | 6.7 ± 0.5 | |
K33 [pN] | 16.7 ± 0.5 | |
γ1 [25 °C] | [mpa.s] | ≤80 |
Response Time [25 °C] | R.T [ms] | ≤30 |
Physical Property Parameters of Liquid Crystal | ||||||||
---|---|---|---|---|---|---|---|---|
Structure of the Compounds | Δε [25 °C] | Δn [25 °C] | TS-N [°C] | Cp [°C] | γ1 [mPa.s] | K11 [pN] | K22 [pN] | K33 [pN] |
12.9 | 0.1734 | 102.9 | 258.8 | 773.1 | 25.4 | 12.7 | 36.0 | |
34.5 | 0.268 | 82.9 | 102 | 225.6 | 27.5 | 14.0 | 38.0 |
Entry | Structural | Percentage | Remarks |
---|---|---|---|
1 | 36% | Reduce γ1 | |
2 | 10% | Reduce γ1 | |
3 | 5% | Increase Δn | |
4 | 5% | Increase Δn | |
5 | 5% | Increase Δε | |
6 | 5% | Increase Δε | |
7 | 3% | Increase Cp, K | |
8 | 3% | Increase Cp, K | |
9 | 13% | Increase Cp, Δn, K | |
10 | 15% | Increase Cp, Δn, K |
Liquid-Crystal Property | Spec | ZBE-5311 | BHR95300 | Result | |
---|---|---|---|---|---|
Clear point | TNI [°C] | ≥90 | 90.6 | 93.0 | OK |
Low-temperature Storage | TSN [°C] | ≤−30 | ≤−30 | ≤−30 | OK |
Dielectric anisotropy [25 °C, 1.0 kHz] | Δε | +5.6 ± 0.2 | +5.6 | +5.6 | OK |
ε‖ | 8.5 | 8.5 | OK | ||
ε⊥ | 2.9 | 2.9 | OK | ||
Optical anisotropy [589.3 nm, 25 °C] | Δn | 0.100 ± 0.002 | 0.101 | 0.100 | OK |
ne | 1.585 | 1.573 | OK | ||
no | 1.484 | 1.473 | OK | ||
Response Time [25 °C] | R.T [ms] | ≤30 | 21.50 | 25.7 | OK |
Liquid-Crystal Property | Spec | ZBE-5311 | BHR95300 | Result | |
---|---|---|---|---|---|
Elastic constant [25 °C] | K11 [pN] | 13.4 ± 0.5 | 13.4 | 13.2 | OK |
K22 [pN] | 6.7 ± 0.5 | 6.7 | 6.6 | OK | |
K33 [pN] | 16.7 ± 0.5 | 16.7 | 17.2 | OK | |
Rotary Viscosity | γ1 [25 °C, mpa.s] | ≤80 | 63 | 78 | OK |
Liquid-Crystal Property | Spec | ZBE5311 | BHR95300 | Result | |
---|---|---|---|---|---|
Specific resistivity [25 °C] | ρ [Ω·cm] | ≥1 × 1013 | 1.8 × 1014 | 2.2 × 1014 | OK |
Specific resistivity [25 °C] After heat 120 °C, 2 h | ρ [Ω·cm] | ≥1 × 1012 | 5.4 × 1013 | 6.2 × 1013 | OK |
resistivity [25 °C] After UV 10,000 mW/cm2 | ρ [Ω·cm] | ≥1 × 1012 | 8.9 × 1013 | 9.1 × 1013 | OK |
VHR [1 V, 2 s, 60 °C] | (%) | ≥98.5% | 99.3% | 99.4% | OK |
VHR [1 V, 2 s, 60 °C] After UV 10,000 mW/cm2 | (%) | ≥98% | 99.1% | 99.1% | OK |
Ion density [1 V, 0.01 Hz, 60 °C] | PC | ≤50 | 25.6 | 24.3 | OK |
Ion density [1 V, 0.01 Hz, 60 °C] After UV 10,000 mW/cm2 | PC | ≤100 | 76.5 | 54.2 | OK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Liu, Y.; Chen, M.; Jiang, T.; Zhang, L.; Yang, Z.; Yang, H. Research of Liquid-Crystal Materials for a High-Performance FFS-TFT Display. Molecules 2023, 28, 754. https://doi.org/10.3390/molecules28020754
Chen H, Liu Y, Chen M, Jiang T, Zhang L, Yang Z, Yang H. Research of Liquid-Crystal Materials for a High-Performance FFS-TFT Display. Molecules. 2023; 28(2):754. https://doi.org/10.3390/molecules28020754
Chicago/Turabian StyleChen, Haiguang, Youran Liu, Maoxian Chen, Tianmeng Jiang, Lanying Zhang, Zhou Yang, and Huai Yang. 2023. "Research of Liquid-Crystal Materials for a High-Performance FFS-TFT Display" Molecules 28, no. 2: 754. https://doi.org/10.3390/molecules28020754
APA StyleChen, H., Liu, Y., Chen, M., Jiang, T., Zhang, L., Yang, Z., & Yang, H. (2023). Research of Liquid-Crystal Materials for a High-Performance FFS-TFT Display. Molecules, 28(2), 754. https://doi.org/10.3390/molecules28020754