Binary Diffusion Coefficients for Short Chain Alcohols in Supercritical Carbon Dioxide—Experimental and Predictive Correlations
Abstract
:1. Introduction
2. Results
2.1. Experimental Diffusion Coefficients for Alcohols in Supercritical CO2
2.2. Predicted Diffusion Coefficients for Alcohols in Supercritical CO2
3. Discussion
Solute | A | B | 102 C | 104 D | R2 | Inflection Point |
---|---|---|---|---|---|---|
Methanol | −6707 | 63.66 | −20.01 | 2.10 | 0.999 | 319 |
Ethanol | −6601 | 62.60 | −19.79 | 2.04 | 0.997 | 323 |
1-Propanol | −7162 | 67.70 | −21.30 | 2.20 | 0.997 | 323 |
2-Propanol | −4421 | 41.79 | −13.01 | 1.34 | 0.998 | 324 |
1-Butanol | −5835 | 55.03 | −17.30 | 1.77 | 0.998 | 325 |
4. Materials and Methods
4.1. Materials
4.2. Equipment and Experimental Procedure
4.3. Preparation of Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knez, Ž.; Pantić, M.; Cör, D.; Novak, Z.; Knez Hrnčič, M. Are Supercritical Fluids Solvents for the Future? Chem. Eng. Process.-Process Intensif. 2019, 141, 107532. [Google Scholar] [CrossRef]
- Badens, E.; Masmoudi, Y.; Mouahid, A.; Crampon, C. Current Situation and Perspectives in Drug Formulation by Using Supercritical Fluid Technology. J. Supercrit. Fluids 2018, 134, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Bensaid, S.; Hoang, D.; Bellantoni, P.; Saracco, G. Supercritical Fluid Technology in Biodiesel Production: Pilot Plant Design and Operation. Green Process. Synth. 2013, 2, 397–406. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhu, X.; Lin, K.; Zhao, Y.P. Molecular Dynamics Simulations of the Enhanced Recovery of Confined Methane with Carbon Dioxide. Phys. Chem. Chem. Phys. 2015, 17, 31887–31893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koytsoumpa, E.I.; Bergins, C.; Kakaras, E. The CO2 Economy: Review of CO2 Capture and Reuse Technologies. J. Supercrit. Fluids 2018, 132, 3–16. [Google Scholar] [CrossRef]
- Buscheck, T.A.; Bielicki, J.M.; Edmunds, T.A.; Hao, Y.; Sun, Y.; Randolph, J.B.; Saar, M.O. Multifluid Geo-Energy Systems: Using Geologic CO2 Storage for Geothermal Energy Production and Grid-Scale Energy Storage in Sedimentary Basins. Geosphere 2016, 12, 678–696. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, K.; Molnár, L.; Harty, M.; Murphy, F. Feasibility Study of Carbon Dioxide Plume Geothermal Systems in Germany−utilising Carbon Dioxide for Energy. Energies 2020, 13, 2416. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Alonso-Fariñas, B.; Vilches Arenas, L.F.; Navarrete, B. Carbon Capture and Utilization Technologies: A Literature Review and Recent Advances. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1403–1433. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Makhnenko, R.Y.; Rutqvist, J. Field and Laboratory Studies of Geomechanical Response to the Injection of CO2. In Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Gaponenko, Y.; Mialdun, A.; Shevtsova, V. Diffusion of Quinine with Ethanol as a Co-Solvent in Supercritical CO2. Molecules 2020, 25, 5372. [Google Scholar] [CrossRef]
- Guo, P.; Liu, S.; Yan, J.; Wang, J.; Zhang, Q. Experimental Study on Heat Transfer of Supercritical CO2 Flowing in a Mini Tube under Heating Conditions. Int. J. Heat Mass Transf. 2020, 153, 119623. [Google Scholar] [CrossRef]
- Secuianu, C.; Feroiu, V.; Geana, D. High-Pressure Vapor-Liquid Equilibria in the System Carbon Dioxide + 1-Butanol at Temperatures from (293.15 to 324.15) K. J. Chem. Eng. Data 2004, 49, 1635–1638. [Google Scholar] [CrossRef]
- Secuianu, C.; Feroiu, V.; Geanǎ, D. High-Pressure Vapor-Liquid Equilibria in the System Carbon Dioxide and 2-Propanol at Temperatures from 293.25 K to 323.15 K. J. Chem. Eng. Data 2003, 48, 1384–1386. [Google Scholar] [CrossRef]
- Fourie, F.C.v.N.; Schwarz, C.E.; Knoetze, J.H. Phase Equilibria of Alcohols in Supercritical Fluids. Part I. The Effect of the Position of the Hydroxyl Group for Linear C8 Alcohols in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2008, 47, 161–167. [Google Scholar] [CrossRef]
- Staby, A.; Mollerup, J. Separation of Constituents of Fish Oil Using Supercritical Fluids: A Review of Experimental Solubility, Extraction, and Chromatographic Data. Fluid Phase Equilibria 1993, 91, 349–386. [Google Scholar] [CrossRef]
- Brunner, G. Supercritical Process Technology Related to Energy and Future Directions-An Introduction. J. Supercrit. Fluids 2015, 96, 11–20. [Google Scholar] [CrossRef]
- Brennecke, J.F.; Eckert, C.A. Phase Equilibria for Supercritical Fluid Process Design. AIChE J. 1989, 35, 1409–1427. [Google Scholar] [CrossRef]
- Lemmon, E.W.; McLinden, M.O.; Friend, D.G. Thermophysical Properties of Fluid Systems. In NIST Chemistry Webbook; NIST Standard Reference Database No. 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [Google Scholar]
- Santos, C.I.A.V.; Barros, M.C.F.; Ribeiro, A.C.F. Diffusion of Ethanol in Supercritical Carbon Dioxide—Investigation of ScCO2-Cosolvent Mixtures Used in Pharmaceutical Applications. Processes 2022, 10, 660. [Google Scholar] [CrossRef]
- Stubbs, J.M. Molecular Simulations of Supercritical Fluid Systems. J. Supercrit. Fluids 2016, 108, 104–122. [Google Scholar] [CrossRef]
- Catchpole, O.J.; King, M.B. Measurement and Correlation of Binary Diffusion Coefficients in Near Critical Fluids. Ind. Eng. Chem. Res 1994, 33, 1828–1837. [Google Scholar] [CrossRef]
- Funazukuri, T.; Kong, C.Y.; Kagei, S. Binary Diffusion Coefficients of Acetone in Carbon Dioxide at 308.2 and 313.2 K in the Pressure Range from 7.9 to 40 MPa. Int. J. Thermophys 2000, 21, 651–669. [Google Scholar] [CrossRef]
- He, C.H.; Yu, Y.S. New Equation for Infinite-Dilution Diffusion Coefficients in Supercritical and High-Temperature Liquid Solvents. Ind. Eng. Chem. Res 1998, 37, 3793–3798. [Google Scholar] [CrossRef]
- Sassiat, P.R.; Mourier, P.; Caude, M.H.; Rosset, R.H. Measurement of Diffusion Coefficients in Supercritical Carbon Dioxide and Correlation with the Equation of Wilke and Chang. Anal. Chem. 1987, 59, 1164–1170. [Google Scholar] [CrossRef]
- Wilke, C.R.; Chang, P. Correlation of Diffusion Coefficients in Dilute Solutions. AIChE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
- Tyn, M.T.; Calus, W.F. Temperature and Concentration Dependence of Mutual Diffusion Coefficients of Some Binary Liquid Systems. J. Chem. Eng. Data 1975, 20, 310–316. [Google Scholar] [CrossRef]
- Lusis, M.A.; Ratcliff, C.A. Diffusion in Binary Liquid Mixtures at Infinite Dilution. Can. J. Chem. Eng 1968, 46, 385–387. [Google Scholar] [CrossRef]
- Lai, C.C.; Tan, C.S. Measurement of Molecular Diffusion Coefficients in Supercritical Carbon Dioxide Using a Coated Capillary Column. Ind. Eng. Chem. Res 1995, 34, 674–680. [Google Scholar] [CrossRef]
- Vaz, R.v.; Magalhães, A.L.; Silva, C.M. Improved Stokes-Einstein Based Models for Diffusivities in Supercritical CO2. J. Taiwan Inst. Chem. Eng 2014, 45, 1280–1284. [Google Scholar] [CrossRef]
- Magalhães, A.L.; Vaz, R.V.; Gonçalves, R.M.G.; da Silva, F.A.; Silva, C.M. Accurate Hydrodynamic Models for the Prediction of Tracer Diffusivities in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2013, 83, 15–27. [Google Scholar] [CrossRef]
- Scheibel, E.G. Correspondence. Liquid Diffusivities. Viscosity of Gases. Ind. Eng. Chem. 1954, 46, 2007–2008. [Google Scholar] [CrossRef]
- RatcIiff, G.A.; Lusis, M.A. Diffusion in Simple-Complex Forming Liquid Mixtures. Ind. Eng. Chem. Fundam. 1971, 10, 474–477. [Google Scholar] [CrossRef]
- Raveendran, P.; Ikushima, Y.; Wallen, S.L. Polar Attributes of Supercritical Carbon Dioxide. Acc Chem. Res. 2005, 38, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Fujii, A.; Ebata, T.; Mikami, N. Direct Observation of Weak Hydrogen Bonds in Microsolvated Phenol: Infrared of OH Stretching Vibrations of Phenol-CO and -CO2 in S0 and D0. J. Phys. Chem. A 2002, 106, 10124–10129. [Google Scholar] [CrossRef]
- Hayduk, W.; Buckley, W.D. Effect of Molecular Size and Shape on Diffusivity in Dilute Liquid Solutions. Chem. Eng. Sci. 1972, 27, 1997–2003. [Google Scholar] [CrossRef]
- González, L.M.; Bueno, J.L.; Medina, I. Determination of Binary Diffusion Coefficients of Anisole, 2,4-Dimethylphenol, and Nitrobenzene in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2001, 40, 3711–3716. [Google Scholar] [CrossRef]
- Chatwell, R.S.; Guevara-Carrion, G.; Gaponenko, Y.; Shevtsova, V.; Vrabec, J. Diffusion of the Carbon Dioxide-Ethanol Mixture in the Extended Critical Region. Phys. Chem. Chem. Phys. 2021, 23, 3106–3115. [Google Scholar] [CrossRef] [PubMed]
- Simeoni, G.G.; Bryk, T.; Gorelli, F.A.; Krisch, M.; Ruocco, G.; Santoro, M.; Scopigno, T. The Widom Line as the Crossover between Liquid-like and Gas-like Behaviour in Supercritical Fluids. Nat. Phys. 2010, 6, 503–507. [Google Scholar] [CrossRef]
- Banuti, D.T.; Raju, M.; Ihme, M. Between Supercritical Liquids and Gases—Reconciling Dynamic and Thermodynamic State Transitions. J. Supercrit. Fluids 2020, 165, 104895. [Google Scholar] [CrossRef]
- Gaponenko, Y.; Gousselnikov, V.; Santos, C.I.A.V.; Shevtsova, V. Near-Critical Behavior of Fick Diffusion Coefficient in Taylor Dispersion Experiments. Microgravity Sci. Technol. 2019, 31, 475–486. [Google Scholar] [CrossRef]
- Mareev, E.; Aleshkevich, V.; Potemkin, F.; Bagratashvili, V.; Minaev, N.; Gordienko, V. Anomalous Behavior of Nonlinear Refractive Indexes of CO2 and Xe in Supercritical States. Opt. Express 2018, 26, 13229–13238. [Google Scholar] [CrossRef]
- Imre, A.R.; Deiters, U.K.; Kraska, T.; Tiselj, I. The Pseudocritical Regions for Supercritical Water. Nucl. Eng. Des. 2012, 252, 179–183. [Google Scholar] [CrossRef]
- Bell, I.H.; Galliero, G.; Delage-Santacreu, S.; Costigliola, L. An Entropy Scaling Demarcation of Gas- And Liquid-like Fluid Behaviors. J. Chem. Phys. 2020, 152, 191102. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, K.; Tanaka, I. Correlation Lengths and Density Fluctuations in Supercritical States of Carbon Dioxide. Chem. Phys. Lett 1995, 244, 149–152. [Google Scholar] [CrossRef]
- Santos, C.I.A.v.; Barros, M.C.F.; Faro, M.P.R.T.; Ribeiro, A.C.F. FTIR as Powerful Tool for Measurements of Diffusion in Supercritical Carbon Dioxide Using Taylor Dispersion Method. Processes 2022, 10, 1528. [Google Scholar] [CrossRef]
- Suehiro, Y.; Nakajima, M.; Yamada, K.; Uematsu, M. Critical Parameters of {xCO2 + (1 − x)CHF3} Forx = (1.0000, 0.7496, 0.5013, and 0.2522). J. Chem. Thermodyn 1996, 28, 1153–1164. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Ribeiro, A.C.F.; Esteso, M.A. Drug Delivery Systems: Study of Inclusion Complex Formation between Methylxanthines and Cyclodextrins and Their Thermodynamic and Transport Properties. Biomolecules 2019, 9, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callendar, R.; Leaist, D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solution Chem. 2006, 35, 353–379. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Esteso, M.A.; Lobo, V.M.M.; Cabral, A.M.T.D.P.V.; Ribeiro, A.C.F. Taylor Dispersion Technique as a Tool for Measuring Multicomponent Diffusion in Drug Delivery Systems at Physiological Temperature. J. Chem. Thermodyn. 2015, 84, 76–80. [Google Scholar] [CrossRef]
- Morin, P.; Caude, M.; Richard, H.; Rosset, R. Carbon Dioxide Supercritical Fluid Chromatography-Fourier Transform Infrared Spectrometry. Chromatographia 1986, 21, 523–530. [Google Scholar] [CrossRef]
T/K | ρ /kg/m3 | η /(10−5 cP) | (DMethanol ± SD) /(10−8 m2 s−1) | (DEthanol a ± SD) /(10−8 m2 s−1) | (D1-Propanol ± SD) /(10−8 m2 s−1) | (D2-Propanol ± SD) /(10−8 m2 s−1) | (D1-Butanol ± SD) /(10−8 m2 s−1) |
---|---|---|---|---|---|---|---|
306.15 | 752.30 | 6.37 | 1.54 ± 0.06 | 1.49 ± 0.01 | 1.42 ± 0.06 | 1.35 ± 0.01 | 1.25 ± 0.05 |
311.15 | 690.79 | 5.51 | 1.83 ± 0.05 | 1.76 ± 0.08 | 1.61 ± 0.03 | ||
316.15 | 604.79 | 4.52 | 2.01 ± 0.08 | 1.98 ± 0.05 | 1.87 ± 0.09 | 1.75 ± 0.03 | 1.66 ± 0.07 |
321.15 | 489.18 | 3.49 | 2.18 ± 0.10 | 2.10± 0.08 | 1.95 ± 0.12 | 1.84± 0.09 | 1.73 ± 0.08 |
326.15 | 393.92 | 2.85 | 2.50 ± 0.11 | 2.48 ± 0.18 | 2.07 ± 0.12 | ||
331.15 | 338.03 | 2.57 | 3.18 ± 0.14 | 3.06 ± 0.18 | 2.66 ± 0.15 | 2.44 ± 0.12 | 2.22 ± 0.14 |
Model | AAD% | ||||
---|---|---|---|---|---|
Methanol | Ethanol | 1-Propanol | 2-Propanol | 1-Butanol | |
Wilke–Chang a | 8.19 | 4.54 | 2.98 | 4.31 | 3.21 |
Scheibel a | 13.14 | 9.92 | 9.10 | 10.86 | 10.59 |
Lusis–Ratcliff a | 11.15 | 5.81 | 3.49 | 4.84 | 3.30 |
Lai-Tan | 4.59 | 5.28 | 6.98 | 8.58 | 10.46 |
Sassiat | 20.97 | 14.66 | 11.78 | 13.76 | 11.67 |
He and Yu | 8.63 | 5.13 | 3.89 | 5.27 | 4.56 |
Alcohol | Vibration Mode | Absorption Wavenumber |
---|---|---|
Methanol | C–C single bond | 1032 cm−1 |
C–H bond | 2830 cm−1 | |
C–H bond | 2943 cm−1 | |
Ethanol | C–C single bond | 1087 cm−1 |
C–H bond | 2973 cm−1 | |
1-Propanol | C–C single bond | 1066 cm−1 |
C–H bond | 2963 cm−1 | |
2-Propanol | C–C single bond | 1112 cm−1 |
C–H bond | 2887 cm−1 | |
C–H bond | 2972 cm−1 | |
1-Butanol | C–C single bond | 1075 cm−1 |
C–H bond | 2934 cm−1 | |
C–H bond | 2975 cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.I.A.V.; Ribeiro, A.C.F.; Shevtsova, V. Binary Diffusion Coefficients for Short Chain Alcohols in Supercritical Carbon Dioxide—Experimental and Predictive Correlations. Molecules 2023, 28, 782. https://doi.org/10.3390/molecules28020782
Santos CIAV, Ribeiro ACF, Shevtsova V. Binary Diffusion Coefficients for Short Chain Alcohols in Supercritical Carbon Dioxide—Experimental and Predictive Correlations. Molecules. 2023; 28(2):782. https://doi.org/10.3390/molecules28020782
Chicago/Turabian StyleSantos, Cecília I. A. V., Ana C. F. Ribeiro, and Valentina Shevtsova. 2023. "Binary Diffusion Coefficients for Short Chain Alcohols in Supercritical Carbon Dioxide—Experimental and Predictive Correlations" Molecules 28, no. 2: 782. https://doi.org/10.3390/molecules28020782
APA StyleSantos, C. I. A. V., Ribeiro, A. C. F., & Shevtsova, V. (2023). Binary Diffusion Coefficients for Short Chain Alcohols in Supercritical Carbon Dioxide—Experimental and Predictive Correlations. Molecules, 28(2), 782. https://doi.org/10.3390/molecules28020782