Compounds from the Petroleum Ether Extract of Wedelia chinensis with Cytotoxic, Anticholinesterase, Antioxidant, and Antimicrobial Activities
Abstract
:1. Introduction
2. Results
2.1. Isolation of Compounds
2.2. Cytotoxic Activity
2.3. Antioxidant Activity
2.4. Anticholinesterase Activity
2.5. Antimicrobial Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Organisms
4.2. Plant Materials
4.3. Extraction
4.4. Isolation and Characterization of Compounds
4.4.1. (-) Kaur-16α Hydroxy-19 Oic Acid (1)
4.4.2. (-) Kaur-16-en-19- Oic Acid (2)
4.4.3. β-Sitosterol (3)
4.4.4. Cholesta-5, 23-Dien-3-ol (4)
4.5. Cytotoxicity
4.6. Antioxidant Activity
4.7. Anti-Acetylcholinesterase (Anti-AChE) and Anti-butyrylcholinesterase Activity (Anti-BChE) Assay
4.8. Antimicrobial Activity
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kadir, M.F.; Bin Sayeed, M.S.; Setu, N.I.; Mostafa, A.; Mia, M.M. Ethnopharmacological survey of medicinal plants used by traditional health practitioners in Thanchi, Bandarban Hill Tracts, Bangladesh. J. Ethnopharmacol. 2014, 155, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; Zidorn, C. Traditional Herbal Medicines Against CNS Disorders from Bangladesh. Nat. Prod. Bioprospect 2020, 10, 377–410. [Google Scholar] [CrossRef] [PubMed]
- Kirtikar, K.R.; Basu, B.D. Indian medicinal plants. Dehradun Int. Book Distrib. 2006, 1324–1345. [Google Scholar]
- Ghani, A. Medicinal Plants of Bangladesh. Dhaka Asiat. Soc. Bangladesh 2003, 321. [Google Scholar]
- Morshed, A.J.M. A survey of medicinal plants as regards to their uses by the tribal practitioners in the chittagong hill tracts of Bangladesh to check various diseases. Hamdard Med. 2013, 56, 5618–5640. [Google Scholar]
- Koul, S.; Pandurangan, A.; Khosa, R.L. Wedelia chinensis (Asteraceae)—An overview. Asian Pac. J. Trop. Biomed. 2012, 2, 1169–1175. [Google Scholar] [CrossRef]
- Lin, Y.L.; Chang, C.C.; Lee, I.J. Review of phytochemical study of Asteraceae in Taiwan (1996~2005). J. Chin. Med. 2008, 19, 135–149. [Google Scholar]
- Lin, F.M.; Chen, L.R.; Lin, E.H.; Ke, F.C.; Chen, H.Y.; Tsai, M.J.; Hsiao, P.W. Compounds from Wedelia chinensis synergistically suppress androgen activity and growth in prostate cancer cells. Carcinogenesis 2007, 28, 2521–2529. [Google Scholar] [CrossRef] [Green Version]
- Manjamalai, A.; Berlin Grace, V.M. Antioxidant activity of essential oils from Wedelia chinensis (Osbeck) in vitro and in vivo lung cancer bearing C57BL/6 mice. Asian Pac. J. Cancer Prev. 2012, 13, 3065–3071. [Google Scholar] [CrossRef] [Green Version]
- Jalal, A.A.; Selvakumar, S.; Nallathambi, R.; Jeevaprakash, G.; Dheivanai, S.L.; Senthilvelan, S. Hepatoprotective activity of Wedelia chinensis against carbon tetrachloride induced liver damage in rats. Int. J. Phytopharmacol. 2012, 3, 121–125. [Google Scholar]
- Darah, I.; Lim, S.H.; Nithianantham, K. Effects of Methanol Extract of Wedelia chinensis Osbeck (Asteraceae) Leaves against Pathogenic Bacteria with Emphasise on Bacillus cereus. Indian J. Pharm. Sci. 2013, 75, 533–539. [Google Scholar]
- Suresh, V.; Kumar, R.M.; Suresh, A.; Kumar, N.S.; Arunachalam, G.; Umasankar, K. CNS activity of ethanol extract of Wedelia chinensis in experimental animal. Int. J. Pharm. Sci. Nanotech. 2010, 3, 881–886. [Google Scholar]
- Yuan, F.; Chen, J.; Sun, P.P.; Guan, S.; Xu, J. Wedelolactone inhibits LPS-induced pro-inflammation via NF-kappaB Pathway in RAW 264.7 cells. J. Biomed. Sci. 2013, 20, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Liang, Y.; Wang, J.; Li, G.; Wang, G.; Li, Y.; Chung, H.Y. Anti-angiogenic activity and mechanism of kaurane diterpenoids from Wedelia chinensis. Phytomedicine 2016, 23, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Zaman, S.; Biswas, K.; Al-Amin, M.Y.; Hasan, M.K.; Alam, A.H.M.K.; Sadik, G.; Tanaka, T. Evaluation of cholinesterase inhibitory and antioxidant activity of Wedelia chinensis and isolation of apigenin as an active compound. BMC Complement. Med. Ther. 2021, 21, 204. [Google Scholar] [CrossRef]
- Mottakin, A.K.; Chowdhury, R.; Haider, M.S.; Rahman, K.M.; Hasan, C.M.; Rashid, M.A. Cytotoxicity and antibacterial activity of extractives from Wedelia calendulacea. Fitoterapia 2004, 75, 355–359. [Google Scholar] [CrossRef]
- Haider, M.S.; Chowdhury, R.; Mottakin, A.K.M.; Sohrab, M.H.; Hasan, C.M.; Rahman, A.H.M.M.; Rashid, M.A. Kauren diterpenes from Wedelia calendulacea. Biochem. Syst. Ecol. 2003, 31, 539–540. [Google Scholar] [CrossRef]
- Qiu, Q.; Xia, W.; Guo-qiang, L.; Yao-lan, L.; Guo-cai, W. Chemical constituents from Wedelia chinensis. Chin. Tradit. Pat. Med. 2014, 5, 1000–1004. [Google Scholar]
- Wiart, C.; Au, T.S.; Mohd, Y.; Hamimah, H.; Sulaiman, M. 16α Hydroxy-(-)-Kauran-19-oic acid: An antibacterial diterpene from sweet apple (Annona squamosal L., Annonaceae). Int. J. Pharmacol. 2005, 1, 296–298. [Google Scholar]
- Findlay, J.A.; Patil, A.D. Novel sterols from the finger sponge Haliclona oculata. Can. J. Chem. 1985, 63, 2406–2410. [Google Scholar] [CrossRef] [Green Version]
- Sadik, G.; Islam, R.; Rahman, M.M.; Khondkar, P.; Rashid, M.A.; Sarker, S.D. Antimicrobial and cytotoxic constituents of Loranthus globosus. Fitoterapia 2003, 74, 308–311. [Google Scholar] [CrossRef]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres Jr, V.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smittenaar, C.R.; Petersen, K.A.; Stewart, K.; Moitt, N. Cancer incidence and mortality projections in the UK until 2035. Br. J. Cancer. 2016, 115, 1147–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florento, L.; Matias, R.; Tuaño, E.; Santiago, K.; Dela Cruz, F.; Tuazon, A. Comparison of Cytotoxic Activity of Anticancer Drugs against Various Human Tumor Cell Lines Using In Vitro Cell-Based Approach. Int. J. Biomed. Sci. 2012, 8, 76–80. [Google Scholar] [PubMed]
- McLaughlin, J.; Chang, C.; Smith, D. Simple bench-top bioassays (brine shrimp and potato discs) for the discovery of plant antitumour compounds. In Proceedings of the 18th National Seminar and UNESCO Workshop on Natural Products, Kuala Lumpur, Malaysia, 20–25 September 1993. [Google Scholar]
- Wu, Z.; Zhang, Y.; Yang, L.; Chen, N.; Jiang, L.; Jiang, S.; Li, G.; Li, Y.; Wang, G. Three new ent-kaurane diterpenes from the herbs of Wedelia prostrata. J. Nat. Med. 2017, 71, 305–309. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Kundo, N.K.; Manik MI, N.; Biswas, K.; Khatun, R.; Al-Amin, M.Y.; Alam AH, M.K.; Tanaka, T.; Sadik, G. Identification of Polyphenolics from Loranthus globosus as Potential Inhibitors of Cholinesterase and Oxidative Stress for Alzheimer’s Disease Treatment. Biomed. Res. Int. 2021, 2021, 9154406. [Google Scholar] [CrossRef]
- Lee, C.-L.; Lo, P.-T.; Jhan, Y.-L.; Chen, C.-J.; Chang, Y.-S. New ent-kauran diterpene and antioxidant components from the seed of Ipomoea nil. Nat. Prod. Res. 2019, 35, 2551–2557. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Junaid, M.; Ullah, F.; Subhan, F.; Sadiq, A.; Ali, G.; Ovais, M.; Shahid, M.; Ahmad, A.; Wadood, A.; et al. Anti-Alzheimer’s Studies on β-Sitosterol Isolated from Polygonum hydropiper L. Front. Pharm. 2017, 8, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akıncıoğlu, H.; Gülçin, İ. Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer’s Disease. Mini Rev. Med. Chem. 2020, 20, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Lee, E.J.; Kim, J.S.; Kang, S.S.; Lee, J.H.; Min, B.S.; Choi, J.S. Cholinesterase and BACE1 inhibitory diterpenoids from Aralia cordata. Arch. Pharm. Res. 2009, 32, 1399–1408. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Wikaningtyas, P.; Sukandar, E.Y. The antibacterial activity of selected plants towards resistant bacteria isolated from clinical specimens. Asian Pac. J. Trop. Biomed. 2016, 6, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Oyaizu, M. Studies on products of browning reactions: Antioxidant activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
Name of Bacteria Strain | Zone of Inhibition (mm) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | Std. Kan | |
400 μg/disc | 30 μg/disc | ||||
Gram Positive | |||||
1. Bacillus Subtilis | 13 | 14 | − | 12 | 24 |
2. Sarcina lutea | 17 | 16 | − | 13 | 29 |
3. Staphylococcus aureus | 23 | 13 | − | 9 | 33 |
4. Bacillus megaterium | 14 | 12 | − | 12 | 27 |
5. Strep-β-haemolyticus | 17 | 18 | − | 12 | 27 |
Gram Negative | |||||
1. Shigella dysenteriae | 19 | 20 | − | 13 | 32 |
2. Shigella shiga | 14 | 15 | − | 14 | 31 |
3. Shigella boydii | 13 | 14 | − | 10 | 31 |
4. Shigella sonnei | 15 | 13 | − | 12 | 31 |
5. Shigella flexneriae | 12 | 13 | − | 11 | 27 |
6. Escherichia coli | 14 | 16 | − | 13 | 27 |
7. Salmonella typhi | 13 | 15 | − | 10 | 28 |
8. Klebsiella species | 15 | 17 | − | 13 | 28 |
9. Pseudomonas aeruginosa | 15 | 16 | − | 12 | 31 |
Zone of Inhibition (mm) | |||||
---|---|---|---|---|---|
Name of Fungi | 1 | 2 | 3 | 4 | Std. Nystatin |
400μg/disc | 50 μg/disc | ||||
1. Aspergillus niger | − | − | − | − | 29 |
2. Aspergillus flavus | 14 | 17 | − | − | 30 |
3. Candida species | − | 13 | − | − | 28 |
4. Fusarium species | 12 | 11 | − | − | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.R.; Islam, M.A.; Biswas, K.; Al-Amin, M.Y.; Ahammed, M.S.; Manik, M.I.N.; Islam, K.M.; Kader, M.A.; Alam, A.K.; Zaman, S.; et al. Compounds from the Petroleum Ether Extract of Wedelia chinensis with Cytotoxic, Anticholinesterase, Antioxidant, and Antimicrobial Activities. Molecules 2023, 28, 793. https://doi.org/10.3390/molecules28020793
Khan MAR, Islam MA, Biswas K, Al-Amin MY, Ahammed MS, Manik MIN, Islam KM, Kader MA, Alam AK, Zaman S, et al. Compounds from the Petroleum Ether Extract of Wedelia chinensis with Cytotoxic, Anticholinesterase, Antioxidant, and Antimicrobial Activities. Molecules. 2023; 28(2):793. https://doi.org/10.3390/molecules28020793
Chicago/Turabian StyleKhan, Md. Abdur Rashid, Md. Aminul Islam, Kushal Biswas, Md. Yusuf Al-Amin, Md. Salim Ahammed, Md. Imran Nur Manik, KM Monirul Islam, Md. Abdul Kader, AHM Khurshid Alam, Shahed Zaman, and et al. 2023. "Compounds from the Petroleum Ether Extract of Wedelia chinensis with Cytotoxic, Anticholinesterase, Antioxidant, and Antimicrobial Activities" Molecules 28, no. 2: 793. https://doi.org/10.3390/molecules28020793
APA StyleKhan, M. A. R., Islam, M. A., Biswas, K., Al-Amin, M. Y., Ahammed, M. S., Manik, M. I. N., Islam, K. M., Kader, M. A., Alam, A. K., Zaman, S., & Sadik, G. (2023). Compounds from the Petroleum Ether Extract of Wedelia chinensis with Cytotoxic, Anticholinesterase, Antioxidant, and Antimicrobial Activities. Molecules, 28(2), 793. https://doi.org/10.3390/molecules28020793