Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization
2.2. Synthesis of Additional γ,δ-Unsaturated Amides 3
2.3. Extension towards a Mechanochemical Belluš–Claisen-Type Rearrangement
3. Materials and Methods
3.1. General Information
3.1.1. Chemicals
3.1.2. Chromatography
3.1.3. Melting Point
3.1.4. Nuclear Magnetic Resonance (NMR) Spectroscopy
3.1.5. Infrared (IR) Spectroscopy
3.1.6. Mass Spectrometry (MS)
3.1.7. Elemental Analysis (CHN)
3.1.8. Mechanochemical Reactions
3.2. General Procedures
3.2.1. General Procedure 1 (GP1)—Optimization
3.2.2. General Procedure 2 (GP2)—Optimized Conditions
3.2.3. General Procedure 3 (GP3)—Solution/Neat Conditions
3.3. Charge-Accelerated Aza-Claisen Rearrangement
3.3.1. Synthesis and Characterization of Additives
3.3.2. Synthesis and Characterizations of the Starting Materials 2
3.3.3. Synthesis and Characterization of the Products 3
3.4. Belluš–Claisen-Type Rearrangement
3.4.1. Synthesis and Characterization of the Starting Materials
3.4.2. Synthesis and Characterization of the Product
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Garcia-Martinez, J. Chemistry 2030: A Roadmap for a New Decade. Angew. Chem. Int. Ed. 2021, 60, 4956–4960. [Google Scholar] [CrossRef]
- Adebiyi, F.M. Air quality and management in petroleum refining industry: A review. Environ. Chem. Ecotoxicol. 2022, 4, 89–96. [Google Scholar] [CrossRef]
- Yan, Y.-H.; Li, L.; Ye, L.-W. Claisen Rearrangement Triggered by Brønsted Acid Catalyzed Alkyne Alkoxylation. Synlett 2022, 33, 1813–1818. [Google Scholar] [CrossRef]
- Zhang, X.-M.; Li, B.-S.; Wang, S.-H.; Zhang, K.; Zhang, F.-M.; Tu, Y.-Q. Recent development and applications of semipinacol rearrangement reactions. Chem. Sci. 2021, 12, 9262–9274. [Google Scholar] [CrossRef]
- Jana, S.; Guo, Y.; Koenigs, R.M. Recent Perspectives on Rearrangement Reactions of Ylides via Carbene Transfer Reactions. Chem. Eur. J. 2021, 27, 1270–1281. [Google Scholar] [CrossRef]
- Hoffmann, R.; Woodward, R.B. Conservation of orbital symmetry. Acc. Chem. Res. 1968, 1, 17–22. [Google Scholar] [CrossRef]
- Woodward, R.B.; Hoffmann, R. Selection Rules for Sigmatropic Reactions. J. Am. Chem. Soc. 1965, 87, 2511–2513. [Google Scholar] [CrossRef]
- Hoffmann, R.; Woodward, R.B. Orbotal Symmetries and Orientational Effects in a Sigmatropic Reaction. J. Am. Chem. Soc. 1965, 87, 4389–4390. [Google Scholar] [CrossRef]
- Spangler, C.W. Thermal [1,j] Sigmatropic Rearrangements. Chem. Rev. 1976, 78, 187–217. [Google Scholar] [CrossRef]
- Ilardi, E.A.; Stivala, C.E.; Zakarian, A. [3,3]-Sigmatropic rearrangements: Recent applications in the total synthesis of natural products. Chem. Soc. Rev. 2009, 38, 3133–3148. [Google Scholar] [CrossRef]
- Lee, H.; Kim, K.T.; Kim, M.; Kim, C. Recent Advances in Catalytic [3,3]-Sigmatropic Rearrangements. Catalysts 2022, 12, 227. [Google Scholar] [CrossRef]
- Sweeney, J.B. Sigmatropic rearrangements of ‘onium’ ylids. Chem. Soc. Rev. 2009, 38, 1027–1038. [Google Scholar] [CrossRef]
- Chen, L.; Li, G.; Zu, L. Natural product total synthesis using rearrangement reactions. Org. Chem. Front. 2022, 9, 5383–5394. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, X. Recent advances in metal-catalysed asymmetric sigmatropic rearrangements. Chem. Sci. 2022, 13, 12290–12308. [Google Scholar] [CrossRef]
- Fischer, E.; Jourdan, F. Ueber die Hydrazine der Brenztraubensäure. Ber. Dtsch. Chem. Ges. 1883, 16, 2241–2245. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.; Hess, O. Synthese von Indolderivaten. Ber. Dtsch. Chem. Ges. 1884, 17, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Robinson, B. The Fischer Indole Synthesis. Chem. Rev. 1963, 63, 373–401. [Google Scholar] [CrossRef]
- Robinson, B. Studies on the Fischer indole synthesis. Chem. Rev. 1969, 69, 227–250. [Google Scholar] [CrossRef]
- Heravi, M.M.; Rohani, S.; Zadsirjan, V.; Zahedi, N. Fischer indole synthesis applied to the total synthesis of natural products. RSC Adv. 2017, 7, 52852–52887. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Kim, H.-M.; Lim, J.-S.; Lee, H.-W.; Cho, C.-G. Asymmetric Divergent Total Syntheses of (+)-Decursivine and (+)- Serotobenine via Intramolecular Fischer Indole Synthesis. Org. Lett. 2022, 24, 2873–2877. [Google Scholar] [CrossRef]
- Cope, A.C.; Hardy, E.M. The Introduction of Substituted Vinyl Groups. V. A Rearrangement Involving the Migration of an Allyl Group in a Three-Carbon System. J. Am. Chem. Soc. 1940, 62, 441–444. [Google Scholar] [CrossRef]
- Graulich, N. The Cope rearrangement–the first born of a great family. WIREs Comput. Mol. Sci. 2011, 1, 172–190. [Google Scholar] [CrossRef]
- Tomiczek, B.M.; Grenning, A.J. Aromatic Cope Rearrangements. Org. Biomol. Chem. 2021, 19, 2385–2398. [Google Scholar] [CrossRef]
- Wei, L.; Wang, C.-J. Recent advances in catalytic asymmetric aza-Cope rearrangements. Chem. Commun. 2021, 57, 10469–10483. [Google Scholar] [CrossRef]
- Hoffmann, R.; Stohrer, W.-D. The Cope rearrangement Revistited. J. Am. Chem. Soc. 1971, 93, 6941–6948. [Google Scholar] [CrossRef]
- Dupuis, M.; Murray, C.; Davidson, E.R. The Cope rearrangement revisited. J. Am. Chem. Soc. 1991, 113, 9756–9759. [Google Scholar] [CrossRef]
- Kaldre, D.; Gleason, J.L. An Organocatalytic Cope Rearrangement. Angew. Chem. Int. Ed. 2016, 55, 11557–11561. [Google Scholar] [CrossRef]
- Claisen, L. Über Umlagerung von Phenol-allyläthern in C-Allyl-phenole. Chem. Ber. 1912, 45, 3157–3166. [Google Scholar] [CrossRef] [Green Version]
- Tarbell, D.S. The Claisen Rearrangement. Chem. Rev. 1940, 27, 495–546. [Google Scholar] [CrossRef]
- Castro, A.M.M. Claisen Rearrangement over the Past Nine Decades. Chem. Rev. 2004, 104, 2939–3002. [Google Scholar] [CrossRef]
- Majumdar, K.C.; Alam, S.; Chattopadhyay, B. Catalysis of the Claisen rearrangement. Tetrahedron 2008, 64, 597–643. [Google Scholar] [CrossRef]
- Tejedor, D.; Méndez-Abt, G.; Cotos, L.; García-Tellado, F. Propargyl Claisen rearrangement: Allene synthesis and beyond. Chem. Soc. Rev. 2013, 42, 458–471. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Taguchi, T. Asymmetric Claisen rearrangement. Chem. Soc. Rev. 1999, 28, 43–50. [Google Scholar] [CrossRef]
- Hiersemann, M.; Nubbemeyer, U. The Claisen Rearrangement, Methods and Applications, 1st ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007. [Google Scholar] [CrossRef]
- Liang, Y.; Peng, B. Revisiting Aromatic Claisen Rearrangement Using Unstable Aryl Sulfonium/Iodonium Species: The Strategy of Breaking Up the Whole into Parts. Acc. Chem. Res. 2022, 55, 2103–2122. [Google Scholar] [CrossRef]
- Ziegler, F.E. The thermal, aliphatic Claisen rearrangement. Chem. Rev. 1988, 88, 1423–1452. [Google Scholar] [CrossRef]
- Malherbe, R.; Belluš, D. A New Type of Claisen Rearrangement Involving 1,3-Dipolar Intermediates. Preliminary communication. Helv. Chim. Acta 1978, 61, 3096–3099. [Google Scholar] [CrossRef]
- Malherbe, R.; Rist, G.; Bellus, D. Reactions of haloketenes with allyl ethers and thioethers: A new type of Claisen rearrangement. J. Org. Chem. 1983, 48, 860–869. [Google Scholar] [CrossRef]
- Gonda, J. The Belluš-Claisen Rearrangement. Angew. Chem. Int. Ed. 2004, 43, 3516–3524. [Google Scholar] [CrossRef]
- Edstrom, E.D. An unexpected reversal in the stereochemistry of transannular cyclizations. A stereoselective synthesis of (±)-epilupinine. Tetrahedron Lett. 1991, 32, 5709–5712. [Google Scholar] [CrossRef]
- Wick, A.E.; Felix, D.; Steen, K.; Eschenmoser, A. CLAISEN’sche Umlagerungen bei Allyl- und Benzylalkoholen mit Hilfe von Acetalen des N,N-Dimethylacetamids. Vorläufige Mitteilung. Helv. Chim. Acta 1964, 47, 2425–2429. [Google Scholar] [CrossRef]
- Felix, D.; Gschwend-Steen, K.; Wick, A.E.; Eschenmoser, A. CLAISEN’sche Umlagerungen bei Allyl- und Benzylalkoholen mit 1-Dimethylamino-1-methoxy-äthen. Helv. Chim. Acta 1969, 52, 1030–1042. [Google Scholar] [CrossRef]
- Varin, M.; Barré, E.; Iorga, B.; Guillou, C. Diastereoselective Total Synthesis of (±)-Codeine. Chem. Eur. J. 2008, 14, 6606–6608. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Gu, X.; Min, B.J.; Liu, Z.; Hruby, V.J. Synthesis of Anti-β-substituted γ,δ-Unsaturated Amino Acids via Eschenmoser-Claisen Rearrangement. Org. Lett. 2006, 8, 4215–4218. [Google Scholar] [CrossRef] [PubMed]
- Ireland, R.E.; Mueller, R.H. Claisen rearrangement of allyl esters. J. Am. Chem. Soc. 1972, 94, 5897–5898. [Google Scholar] [CrossRef]
- Ireland, R.E.; Willard, A.K. The stereoselective generation of ester enolates. Tetrahedron Lett. 1975, 16, 3975–3978. [Google Scholar] [CrossRef]
- Ireland, R.E.; Mueller, R.H.; Willard, A.K. The ester enolate Claisen rearrangement. Stereochemical control through stereoselective enolate formation. J. Am. Chem. Soc. 1976, 98, 2868–2877. [Google Scholar] [CrossRef]
- Ireland, R.E.; Wipf, P.; Armstrong III, J.D. Stereochemical control in the ester enolate Claisen rearrangement. 1. Stereoselectivity in silyl ketene acetal formation. J. Org. Chem. 1991, 56, 650–657. [Google Scholar] [CrossRef]
- Enders, D.; Knopp, M.; Schiffers, R. Asymmetric [3.3]-sigmatropic rearrangements in organic synthesis. Tetrahedron Asymmetry 1996, 7, 1847–1882. [Google Scholar] [CrossRef]
- Corey, E.J.; Lee, D.H. Highly enantioselective and diastereoselective Ireland-Claisen rearrangement of achiral allylic esters. J. Am. Chem. Soc. 1991, 113, 4026–4028. [Google Scholar] [CrossRef]
- Johnson, W.S.; Werthemann, L.; Bartlett, W.R.; Brocksom, T.J.; Li, T.-T.; Faulkner, D.J.; Petersen, M.R. Simple stereoselective version of the Claisen rearrangement leading to trans-trisubstituted olefinic bonds. Synthesis of squalene. J. Am. Chem. Soc. 1970, 92, 741–743. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Chowdhury, A.K.; Kattanguru, P. The Orthoester Johnson-Claisen Rearrangement in the Synthesis of Bioactive Molecules, Natural Products, and Synthetic Intermediates–Recent Advances. Eur. J. Org. Chem. 2014, 2014, 2833–2871. [Google Scholar] [CrossRef]
- Sydlik, S.A.; Swager, T.M. Functional Graphenic Materials Via a Johnson-Claisen Rearrangement. Adv. Funct. Mater. 2013, 23, 1873–1882. [Google Scholar] [CrossRef] [Green Version]
- Schlama, T.; Baati, R.; Gouverneur, V.; Valleix, A.; Falck, J.R.; Mioskowski, C. Total Synthesis of Halomon by a Johnson-Claisen Rearrangement. Angew. Chem. Int. Ed. 1998, 37, 2085–2087. [Google Scholar] [CrossRef]
- Geherty, M.E.; Dura, R.D.; Nelson, S.G. Catalytic Asymmetric Claisen Rearrangement of Unactivated Allyl Vinyl Ethers. J. Am. Chem. Soc. 2010, 132, 11875–11877. [Google Scholar] [CrossRef]
- Schenck, T.G.; Bosnich, B. Homogenous Catalysis. Transition-Metal-Catalyzed Claisen Rearrangements. J. Am. Chem. Soc. 1985, 107, 2058–2066. [Google Scholar] [CrossRef]
- Martinaux, P.; Laher, R.; Marin, C.; Michelet, V. Transition Metal-Catalyzed Rearrangement and Cycloisomerization Reactions Toward Hedonic Materials. Isr. J. Chem. 2022, e202200047. [Google Scholar] [CrossRef]
- Suzuki, S.; Fujita, Y.; Nishida, T. New diene formation bye ne-type chlorination and palladium catalyzed dehydrochlorination: Synthesis of citral from diprenyl ether. Tetrahedron Lett. 1983, 24, 5737–5740. [Google Scholar] [CrossRef]
- Zhou, B.; Li, L.; Zhu, X.-Q.; Yan, J.-Z.; Guo, Y.-L.; Ye, L.-W. Yttrium-Catalyzed Intramolecular Hydroalkoxylation/Claisen Rearrangement Sequence: Efficient Synthesis of Medium-Sized Lactams. Angew. Chem. Int. Ed. 2017, 56, 4015–4019. [Google Scholar] [CrossRef] [PubMed]
- Van der Baan, J.L.; Bickelhaupt, F. Palladium(II)-catalyzed claisen rearrangement of allyl vinyl ethers. Tetrahedron Lett. 1986, 27, 6267–6270. [Google Scholar] [CrossRef]
- Li, Y.; Tung, C.-H.; Xu, Z. Synthesis of Benzofuran Derivaes via Gold-Catalyzed Claisen Rearrangement Cascade. Org. Lett. 2022, 24, 5829–5834. [Google Scholar] [CrossRef]
- Yoon, T.P.; Dong, V.M.; MacMillan, D.W.C. Development of a New Lewis Acid-Catalyzed Claisen Rearrangement. J. Am. Chem. Soc. 1999, 121, 9726–9727. [Google Scholar] [CrossRef]
- Yoon, T.P.; MacMillan, D.W.C. Enantioselective Claisen Rearrangements: Development of a First Generation Asymmetric Acyl-Claisen Reaction. J. Am. Chem. Soc. 2001, 123, 2911–2912. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-F.; Zhou, B.; Wu, P.; Wang, B.; Ye, L.-W. Brønsted Acid Catalyzed Dearomatization by Intramolecular Hydroalkoxylation/Claisen Rearrangement: Diastereo- and Enantioselective Synthesis of Spirolactams. Angew. Chem. Int. Ed. 2021, 60, 27164–27170. [Google Scholar] [CrossRef] [PubMed]
- Jain, S. Zinc Chloride Catalyzed Amino Claisen Rearrangement of 1-N-Allylindolines: An Expedient Protocol for the Synthesis of Functionalized 7-Allylindolines. Heterocycl. Commun. 2019, 25, 22–26. [Google Scholar] [CrossRef]
- Halpani, C.G.; Mishra, S. Lewis acid catalyst system for Claisen-Schmidt reaction under solvent free condition. Tetrahedron Lett. 2020, 61, 152175. [Google Scholar] [CrossRef]
- Maruyama, K.; Nagai, N.; Naruta, Y. Lewis Acid Mediated Claisen-Type Rearrangement of Aryl Dienyl Ethers. J. Org. Chem. 1986, 51, 5083–5092. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Kitazume, T. Lewis-acid catalysed sequential reaction in ionic liquids. Green Chem. 2000, 2, 296–297. [Google Scholar] [CrossRef]
- Davies, H.M.L.; Dai, X. Lewis Acid-Catalyzed Tandem Diels−Alder Reaction/Retro-Claisen Rearrangement as an Equivalent of the Inverse Electron Demand Hetero Diels−Alder Reaction. J. Org. Chem. 2005, 70, 6680–6684. [Google Scholar] [CrossRef]
- Ariyarathna, J.P.; Alom, N.-E.; Roberst, L.P.; Kaur, N.; Li, W. Lewis Acid-Catalyzed Halonium Generation for Morpholine Synthesis and Claisen Rearrangement. J. Org. Chem. 2022, 87, 2947–2958. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Y.-H.; Huang, J.; Yang, Z. Total Syntheses of Vicinal Dichloride Monoterpenes Enabled by Aza-Belluš−Claisen Rearrangement. Org. Lett. 2021, 23, 8465–8470. [Google Scholar] [CrossRef]
- Lambert, T.H.; MacMillan, D.W.C. Development of a New Lewis Acid-Catalyzed [3,3]-Sigmatropic Rearrangement: The Allenoate-Claisen Rearrangement. J. Am. Chem. Soc. 2002, 124, 13646–13647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiersemann, M.; Abraham, L. Catalysis of the Claisen Rearrangement of Aliphatic Allyl Vinyl Ethers. Eur. J. Org. Chem. 2002, 2002, 1461–1471. [Google Scholar] [CrossRef]
- Maity, P.; Pemberton, R.P.; Tantillo, D.J.; Tambar, U.K. Brønsted Acid Catalyzed Enantioselective Indole Aza-Claisen Rearrangement Mediated by an Arene CH–O Interaction. J. Am. Chem. Soc. 2013, 135, 16380–16383. [Google Scholar] [CrossRef]
- Krištofíková, D.; Filo, J.; Mečiarová, M.; Šebesta, R. Why do thioureas and squaramides slow down the Ireland–Claisen rearrangement? Beilstein. J. Org. Chem. 2019, 15, 2948–2957. [Google Scholar] [CrossRef]
- De Oliveira Silva, A.; Harper, J.L.; Fuhr, K.N.; Lalancette, R.A.; Cheong, P.H.-Y.; Moyer-Brenner, S.E. DyKAT by DiCat: Stereoconvergent Dienamine-Catalyzed Claisen Rearrangements. J. Org. Chem. 2022, 87, 10105–10113. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Kitamura, T.; Arulmozhiraja, S.; Manabe, K.; Tokiwa, H.; Suzuki, Y. Total Synthesis of Termicalcicolanone A via Organocatalysis and Regioselective Claisen Rearrangement. Org. Lett. 2019, 21, 2777–2781. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Li, Z.; Liao, W.-W. An organocatalytic hydroalkoxylation/Claisen rearrangement/Michael addition tandem sequence: Divergent synthesis of multi-substituted 2,3-dihydrofurans and 2,3-dihydropyrroles from cyanohydrins. Green Chem. 2019, 21, 1614–1618. [Google Scholar] [CrossRef]
- Kee, C.W.; Wong, M.W. In Silico Design of Halogen-Bonding-Based Organocatalyst for Diels–Alder Reaction, Claisen Rearrangement, and Cope-Type Hydroamination. J. Org. Chem. 2016, 81, 7459–7470. [Google Scholar] [CrossRef]
- Kirsten, M.; Rehbein, J.; Hiersemann, M.; Strassner, T. Organocatalytic Claisen Rearrangement: Theory and Experiment. J. Org. Chem. 2007, 72, 4001–4011. [Google Scholar] [CrossRef]
- White, W.N.; Wolfrath, E.F. The ortho Claisen Rearrangement. VIII. Solvent Effects. J. Org. Chem. 1970, 35, 2196–2199. [Google Scholar] [CrossRef]
- Grieco, P.A.; Brandes, E.B.; McCann, S.; Clark, J.D. Water as a Solvent for the Claisen Rearrangement: Practical Implications for Synthetic Organic Chemistry. J. Org. Chem. 1989, 54, 5849–5851. [Google Scholar] [CrossRef]
- Ganem, B. The Mechanism of the Claisen Rearrangement: Déjà Vu All Over Again. Angew. Chem. Int. Ed. 1996, 35, 936–945. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. What Causes Aqueous Acceleration of the Claisen Rearrangement? J. Am. Chem. Soc. 1992, 114, 8794–8799. [Google Scholar] [CrossRef]
- Gajewski, J.J. The Claisen Rearrangement. Response to Solvents and Substituents: The Case for Both Hydrophobic and Hydrogen Bond Acceleration in Water and for a Variable Transition State. Acc. Chem. Res. 1997, 30, 219–225. [Google Scholar] [CrossRef]
- Wipf, P.; Ribe, S. Water-Accelerated Tandem Claisen Rearrangement−Catalytic Asymmetric Carboalumination. Org. Lett. 2001, 3, 1503–1505. [Google Scholar] [CrossRef]
- Narayan, S.; Muldoon, J.; Finn, M.G.; Fokin, V.V.; Kolb, H.C.; Sharpless, B. “On Water”: Unique Reactivity of Organic Compounds in Aqueous Suspension. Angew. Chem. Int. Ed. 2005, 44, 3275–3279. [Google Scholar] [CrossRef]
- Wipf, P.; Rodríguez, S. Water-Accelerated Claisen Rearrangements. Adv. Synth. Catal. 2002, 344, 434–440. [Google Scholar] [CrossRef]
- Acevedo, O.; Armacost, K. Claisen Rearrangements: Insight into Solvent Effects and “on Water” Reactivity from QM/MM Simulations. J. Am. Chem. Soc. 2010, 132, 1966–1975. [Google Scholar] [CrossRef]
- Lubineau, A.; Augé, J.; Bellanger, N.; Caillebourdin, S. Water-promoted organic synthesis using glyco-organic substrates: The Claisen rearrangement. J. Chem. Soc. Perkin Trans. 1992, 1631–1636. [Google Scholar] [CrossRef]
- Seki, T.; Yu, X.; Zhang, P.; Yu, C.-C.; Liu, K.; Gunkel, L.; Dong, R.; Nagata, Y.; Feng, X.; Bonn, M. Real-time study of on-water chemistry: Surfactant monolayer-assisted growth of a crystalline quasi-2D polymer. Chem 2021, 7, 2758–2770. [Google Scholar] [CrossRef]
- Sahraeian, T.; Kulyk, D.S.; Fernandez, J.P.; Hadad, C.M.; Badu-Tawiah, A.K. Capturing Fleeting Intermediates in a Claisen Rearrangement Using Nonequilibrium Droplet Imbibition Reaction Conditions. Anal. Chem. 2022, 94, 15093–15099. [Google Scholar] [CrossRef] [PubMed]
- Beare, K.D.; McErlean, C.S.P. Revitalizing the aromatic aza-Claisen rearrangement: Implications for the mechanism of ‘on-water’ catalysis. Org. Biomol. Chem. 2013, 11, 2452–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes-Clerget, M.; Yu, J.; Kincaid, J.R.A.; Walde, P.; Gallou, F.; Lipshutz, B.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend. Chem. Sci. 2021, 12, 4237–4266. [Google Scholar] [CrossRef] [PubMed]
- Koga, G.; Kikuchi, N. Photo-Claisen Rearrangement. The Photochemical Rearrangement of Allyl Phenyl Ethers. Bull. Chem. Soc. Jpn. 1968, 41, 745–746. [Google Scholar] [CrossRef] [Green Version]
- Galindo, F. The photochemical rearrangement of aromatic ethers: A review of the Photo-Claisen reaction. J. Photochem. Photobiol. C 2005, 6, 123–138. [Google Scholar] [CrossRef]
- Vogler, B.; Bayer, R.; Meller, M.; Kraus, W. Photo-Aza-Claisen Rearrangements of Cyclic Enaminones. J. Org. Chem. 1989, 54, 4165–4168. [Google Scholar] [CrossRef]
- Syamala, M.S.; Ramamurthy, V. Modification of photochemical reactivity by cyclodextrin complexation: Selectivity in photo-claisen rearrangement. Tetrahedron 1988, 44, 7223–7233. [Google Scholar] [CrossRef]
- Srikrishna, A.; Nagaraju, S. Acceleration of ortho Claisen rearrangement by a commercial microwave oven. J. Chem. Soc. Perkin Trans. 1992, 311–312. [Google Scholar] [CrossRef]
- Kotha, S.; Mandal, K.; Deb, A.C.; Banerjee, S. Microwave-assisted Claisen rearrangement on a silica gel support. Tetrahedron Lett. 2004, 45, 9603–9605. [Google Scholar] [CrossRef]
- Nushiro, K.; Kikuchi, S.; Yamada, T. Microwave effect on catalytic enantioselective Claisen rearrangement. Chem. Commun. 2013, 49, 8371–8373. [Google Scholar] [CrossRef]
- Koyama, E.; Ito, N.; Sugiyama, J.; Barham, J.P.; Norikane, Y.; Azumi, R.; Ohneda, N.; Ohno, Y.; Yoshimura, T.; Odajima, H.; et al. A continuous-flow resonator-type microwave reactor for high-efficiency organic synthesis and Claisen rearrangement as a model reaction. J. Flow Chem. 2018, 8, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Egami, H.; Tamakoi, S.; Abe, M.; Ohneda, N.; Yoshimura, T.; Okamoto, T.; Odajima, H.; Mase, N.; Takeda, K.; Hamashima, Y. Scalable Microwave-Assisted Johnson–Claisen Rearrangement with a Continuous Flow Microwave System. Org. Process Res. Dev. 2018, 22, 1029–1033. [Google Scholar] [CrossRef]
- Hui, Z.; Jiang, S.; Qi, X.; Ye, X.-Y.; Xie, T. Investigating the microwave-accelerated Claisen rearrangement of allyl aryl ethers: Scope of the catalysts, solvents, temperatures, and substartes. Tetrahedron Lett. 2020, 61, 151995. [Google Scholar] [CrossRef]
- Horie, K.; Barón, M.; Fox, R.B.; He, J.; Mess, M.; Kahovec, J.; Kitayama, T.; Kubisa, T.; Maréchal, E.; Mormann, W.; et al. Definitions of terms relating to reactions of polymers and to functional polymeric materials (IUPAC Recommendations 2003). Pure Appl. Chem. 2004, 76, 889–906. [Google Scholar] [CrossRef]
- Hernández, J.G. Mechanochemical borylation of aryldiazonium salts; merging light and ball milling. Beilstein J. Org. Chem. 2017, 13, 1463–1469. [Google Scholar] [CrossRef] [Green Version]
- Hernández, J.G.; Bolm, C. Altering Product Selectivity by Mechanochemistry. J. Org. Chem. 2017, 82, 4007–4019. [Google Scholar] [CrossRef] [PubMed]
- Seo, T.; Toyoshima, N.; Kubota, K.; Ito, H. Tackling Solubility Issues in Organic Synthesis: Solid-State Cross-Coupling of Insoluble Aryl Halides. J. Am. Chem. Soc. 2021, 143, 6165–6175. [Google Scholar] [CrossRef]
- Puccetti, F.; Schumacher, C.; Wotruba, H.; Hernández, J.G.; Bolm, C. The Use of Copper and Vanadium Mineral Ores in Catalyzed Mechanochemical Carbon–Carbon Bond Formations. ACS Sustain. Chem. Eng. 2020, 8, 7262–7266. [Google Scholar] [CrossRef]
- Cuccu, F.; De Luca, L.; Delogu, F.; Colacino, E.; Solin, N.; Mocci, R.; Porcheddu, A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of “Impossible” Reactions. ChemSusChem 2022, 15, e202200362. [Google Scholar] [CrossRef]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef] [Green Version]
- Kappe, O.C.; Mack, J.; Bolm, C. Enabling Techniques for Organic Synthesis. J. Org. Chem. 2021, 86, 14242–14244. [Google Scholar] [CrossRef]
- Oliveira, P.F.M.; Guidetti, B.; Chamayou, A.; André-Barrès, C.; Madacki, J.; Korduláková, J.; Mori, G.; Orena, B.S.; Chiarelli, L.R.; Pasca, M.R.; et al. Mechanochemical Synthesis and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity. Molecules 2017, 22, 1457. [Google Scholar] [CrossRef] [PubMed]
- Ardila-Fierro, K.J.; Lukin, S.; Etter, M.; Užarević, K.; Halasz, I.; Bolm, C.; Hernández, J.G. Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angew. Chem. Int. Ed. 2020, 59, 13458–13462. [Google Scholar] [CrossRef]
- Virieux, D.; Delogu, F.; Porcheddu, A.; García, F.; Colacino, E. Mechanochemical Rearrangements. J. Org. Chem. 2021, 86, 13885–13894. [Google Scholar] [CrossRef]
- Koby, R.F.; Hanusa, T.P.; Schley, N.D. Mechanochemically Driven Transformations in Organotin Chemistry: Stereochemical Rearrangement, Redox Behavior, and Dispersion-Stabilized Complexes. J. Am. Chem. Soc. 2018, 140, 15934–15942. [Google Scholar] [CrossRef]
- Mocci, R.; Colacino, E.; De Luca, L.; Fattuoni, C.; Porcheddu, A.; Delogu, F. The Mechanochemical Beckmann Rearrangement: An Eco-efficient “Cut-and-Paste” Strategy to Design the “Good Old Amide Bond”. ACS Sustain. Chem. Eng. 2021, 9, 2100–2114. [Google Scholar] [CrossRef]
- Baier, D.M.; Rensch, T.; Dobreva, D.; Spula, C.; Fanenstich, S.; Rappen, M.; Bergheim, K.; Grätz, S.; Borchardt, D. The Mechanochemical Beckmann Rearrangement over Solid Acids: From the Ball Mill to the Extruder. Chem. Methods 2022, e202200058. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Y.; Yu, N.; Yan, K. Solvent-Free Mechanochemical Diaza-Cope Rearrangement. ACS Sustain. Chem. Eng. 2021, 9, 16092–16102. [Google Scholar] [CrossRef]
- Cheng, T.; Ma, W.; Luo, H.; Ye, Y.; Yan, K. Manipulating Reaction Energy Coordinate Landscape of Mechanochemical Diaza-Cope Rearrangement. Molecules 2022, 27, 2570. [Google Scholar] [CrossRef]
- Breilly, D.; Fadlallah, S.; Froidevaux, V.; Lamaty, F.; Allais, F.; Métro, T.-X. Sustainability and efficiency assessment of vanillin allylation: In solution versus ball-milling. Green Chem. 2022, 24, 7874–7882. [Google Scholar] [CrossRef]
- Nubbemeyer, U. Recent Advances in Charge-Accelerated Aza-Claisen Rearrangements. Top. Curr. Chem. 2005, 244, 149–213. [Google Scholar] [CrossRef]
- Nubbemeyer, U. Diastereoselective Zwitterionic Aza-Claisen Rearrangement: The Synthesis of Bicyclic Tetrahydrofurans and a Total Synthesis of (+)-Dihydrocanadensolide. J. Org. Chem. 1996, 61, 3677–3686. [Google Scholar] [CrossRef]
- Dittrich, N.; Jung, E.-K.; Davidson, S.J.; Barker, D. An acyl-Claisen/Paal-Knorr approach to fully substituted pyrroles. Tetrahedron 2016, 72, 4676–4689. [Google Scholar] [CrossRef]
- For extensive optimization tables, we refer to the Supplementary Material.
- Hwang, S.; Grätz, S.; Borchardt, L. A guide to direct mechanocatalysis. Chem. Commun. 2022, 58, 1661–1671. [Google Scholar] [CrossRef] [PubMed]
- Vedejs, E.; Gingras, M. Aza-Claisen Rearrangements Initiated by Acid-Catalyzed Michael Addition. J. Am. Chem. Soc. 1994, 116, 579–588. [Google Scholar] [CrossRef]
- Bartalucci, E.; Schumacher, C.; Puccetti, F.; d’Anciães Almeida Silva, I.; Dervişoğlu, R.; Puttreddy, R.; Bolm, C.; Wiegand, T. Disentangling the effect of pressure on a mechanochemical bromination reaction by solid-state NMR spectroscopy. Chem. Eur. J. 2022, e202203466. [Google Scholar] [CrossRef]
- Bolm, C.; Hernández, J.G. Mechanochemistry of Gaseous Reactants. Angew. Chem. Int. Ed. 2019, 58, 3285–3299. [Google Scholar] [CrossRef] [PubMed]
- Diederich, M.; Nubbemeyer, U. Synthesis of Optically Active Nine-Membered Ring Lactams by a Zwitterionic Aza-Claisen Reaction. Angew. Chem. Int. Ed. 1995, 34, 1026–1028. [Google Scholar] [CrossRef]
- Jung, J.-W.; Kim, S.-H.; Suh, Y.-G. Advances in Aza-Claisen-Rearrangement-Induced Ring-Expansion Strategies. Asian J. Org. Chem. 2017, 6, 1117–1129. [Google Scholar] [CrossRef]
- Bremner, J.B.; Perkins, D.F. Synthesis of functionalised azecine and azonine derivatives via an enolate assisted aza Claisen rearrangement. Tetrahedron 2005, 61, 2659–2665. [Google Scholar] [CrossRef]
- Suh, Y.-G.; Kim, S.-A.; Jung, J.-K.; Shin, D.-Y.; Min, K.-H.; Koo, B.-A.; Kim, H.-S. Asymmetric Total Synthesis of Fluvirucinine A1. Angew. Chem. Int. Ed. 1999, 38, 3545–3547. [Google Scholar] [CrossRef]
- Xiao, K.-J.; Wang, Y.; Ye, K.-Y.; Huang, P.-Q. Versatile One-Pot Reductive Alkylation of Lactams/Amides via Amide Activation: Application to the Concise Syntheses of Bioactive Alkaloids (±)-Bgugaine, (±)-Coniine, (+)-Preussin, and (−)-Cassine. Chem. Eur. J. 2010, 16, 12792–12796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, R.T.; Padgett, H.C.; Rapoport, H. A high yield regiospecific preparation of iminium salts. J. Am. Chem. Soc. 1976, 98, 7448–7449. [Google Scholar] [CrossRef]
- Vedejs, E.; Arco, M.J.; Powell, D.W.; Renga, J.M.; Singer, S.P. Ring expansion of 2-vinyl derivatives of thiane, N-benzylpiperidine, and thiepane by [2,3] sigmatropic shift. J. Org. Chem. 1978, 43, 4831–4837. [Google Scholar] [CrossRef]
- Laupheimer, S.; Kurzweil, L.; Proels, R.; Unsicker, S.B.; Stark, T.D.; Dawid, C.; Hückelhoven, R. Volatile-mediated signalling in barley induces metabolic reprogramming and resistance against the biotrophic fungus Blumeria hordei. Plant Biol. 2023, 25, 72–84. [Google Scholar]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, T.; Mukherji, A.; Kancharla, P.K. Influence of Anion-Binding Schreiner’s Thiourea on DMAP Salts: Synergistic Catalysis toward the Stereoselective Dehydrative Glycosylation from 2-Deoxyhemiacetals. J. Org. Chem. 2021, 86, 1253–1261. [Google Scholar] [CrossRef]
- Štrukil, V.; Igrc, M.D.; Eckert-Maksić, M.; Friščić, T. Click Mechanochemistry: Quantitative Synthesis of “Ready to Use” Chiral Organocatalysts by Efficient Two-Fold Thiourea Coupling to Vicinal Diamines. Chem. Eur. J. 2012, 18, 8464–8473. [Google Scholar] [CrossRef]
- Kon, Y.; Nakashima, T.; Fujitani, T.; Murayama, T.; Ueda, W. Dehydrative Allylation of Amine with Allyl Alcohol by Titanium Oxide Supported Molybdenum Oxide Catalyst. Synlett 2019, 30, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Ding, G.; Lu, W.; Yang, L.; Wang, J.; Zhang, Y.; Xie, X.; Zhang, Z. Nickel-Catalyzed Hydrosilylation of Terminal Alkenes with Primary Silanes via Electrophilic Silicon–Hydrogen Bond Activation. Org. Lett. 2021, 23, 1434–1439. [Google Scholar] [CrossRef]
- Xie, Y.; Hu, J.; Wang, Y.; Xia, C.; Huang, H. Palladium-Catalyzed Vinylation of Aminals with Simple Alkenes: A New Strategy To Construct Allylamines. J. Am. Chem. Soc. 2012, 134, 20613–20616. [Google Scholar] [CrossRef]
- Tafazolian, H.; Schmidt, J.A.R. Cationic [(Iminophosphine)Nickel(Allyl)]+ Complexes as the First Example of Nickel Catalysts for Direct Hydroamination of Allenes. Chem. Eur. J. 2017, 23, 1507–1511. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.; Xie, H.; Jiang, H.; Zeng, W. Visible-Light-Mediated Sulfonylimination of Tertiary Amines with Sulfonylazides Involving Csp3–Csp3 Bond Cleavage. Org. Lett. 2019, 21, 2804–2807. [Google Scholar] [CrossRef] [PubMed]
- Henderson, M.A.; Luo, J.; Oliver, A.; McIndoe, J.S. The Pauson-Khand Reaction: A Gas-Phase and Solution-Phase. Organometallics 2011, 30, 5471–5479. [Google Scholar] [CrossRef]
- Bell, L.; Brookings, D.C.; Dawson, G.J. Whitby, Asymmetric Ethylmagnesiation of Alkenes Using a Novel Zirconium Catalyst. Tetrahedron 1998, 54, 14617–14634. [Google Scholar] [CrossRef]
- Radlauer, M.R.; Buckley, A.K.; Henling, L.M.; Agapie, T. Bimetallic Coordination Insertion Polymerization of Unprotected Polar Monomers: Copolymerization of Amino Olefins and Ethylene by Dinickel Bisphenoxyiminato Catalysts. J. Am. Chem. Soc. 2013, 135, 3784–3787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, G.E.; Raw, S.A.; Marsden, S.P. Iron-Catalysed Direct Aromatic Amination with N-Chloroamines. Eur. J. Org. Chem. 2019, 2019, 5508–5514. [Google Scholar] [CrossRef]
- Zhou, J.; Li, L.; Wang, S.; Yan, M.; Wei, W. Catalyst-free photodecarbonylation of ortho-amino benzaldehyde. Green Chem. 2020, 22, 3421–3426. [Google Scholar] [CrossRef]
- Wang, T.; Kehr, G.; Liu, L.; Grimme, S.; Daniliuc, C.G.; Erker, G. Selective Oxidation of an Active Intramolecular Amine/Borane Frustrated Lewis Pair with Dioxygen. J. Am. Chem. Soc. 2016, 138, 4302–4305. [Google Scholar] [CrossRef]
- Krishnan, P.; Wu, M.; Chiang, M.; Li, Y.; Leung, P.-H.; Pullarkat, S.A. N-Heterocyclic Carbene C,S Palladium(II) π-Allyl Complexes: Synthesis, Characterization, and Catalytic Application In Allylic Amination Reactions. Organometallics 2013, 32, 2389–2397. [Google Scholar] [CrossRef]
- Niu, Z.-J.; Li, L.-H.; Li, X.-S.; Liu, H.-C.; Shi, W.-Y.; Liang, Y.-M. Formation of o-Allyl- and Allenyl-Modified Amides via Intermolecular Claisen Rearrangement. Org. Lett. 2021, 23, 1315–1320. [Google Scholar] [CrossRef]
- Seastram, A.C.; Hareram, M.D.; Knight, T.M.B.; Morrill, L.C. Electrochemical alkene azidocyanation via 1,4-nitrile migration. Chem. Commun. 2022, 58, 8658–8661. [Google Scholar] [CrossRef]
- Spiegel, J.; Cromm, P.M.; Itzen, A.; Goody, R.S.; Grossmann, T.N.; Waldmann, H. Direct Targeting of Rab-GTPase–Effector Interactions. Angew. Chem. Int. Ed. 2014, 53, 2498–2503. [Google Scholar]
- Xing, X.; O’Connor, N.R.; Stoltz, B.M. Palladium(II)-Catalyzed Allylic C–H Oxidation of Hindered Substrates Featuring Tunable Selectivity Over Extent of Oxidation. Angew. Chem. Int. Ed. 2015, 54, 11186–11190. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.J.; Burley, G.A.; Talbot, E.P.A. Transition-Metal-Free Amine Oxidation: A Chemoselective Strategy for the Late-Stage Formation of Lactams. Org. Lett. 2017, 19, 870–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, C.; Hernández, J.G.; Bolm, C. Electro-Mechanochemical Atom Transfer Radical Cyclizations using Piezoelectric BaTiO3. Angew. Chem. Int. Ed. 2020, 59, 16357–16360. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, R.; Liu, X.; Yang, F.; Yang, Y.; Li, X.; Shi, X.; Yuan, T.; Fang, L.; Du, G.; et al. Discovery of Novel N-Substituted Prolinamido Indazoles as Potent Rho Kinase Inhibitors and Vasorelaxation Agents. Molecules 2017, 22, 1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, P.; Widenhoefer, R.A. Gold(I)-Catalyzed Intramolecular Amination of Allylic Alcohols With Alkylamines. Org. Lett. 2011, 13, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
Entry a | Equiv. (1a) | Base (equiv.) | t [min] | Y (3aa) [%] b |
---|---|---|---|---|
1 | 1.2 | - | 60 | 3 |
2 | 1.2 | K2CO3 (1.0) | 60 | - |
3 | 1.2 | Cs2CO3 (1.0) | 60 | - |
4 | 1.2 | LiOH | 60 | 9 |
5 | 1.2 | NEt3 | 60 | 11 |
6 | 1.2 | DBU | 60 | - |
7 | 1.2 | DIPEA (1.0) | 60 | 35 (40) c |
8 | 1.2 | DIPEA (0.5) | 60 | 34 (1) d |
9 | 1.2 | DIPEA (1.0) | 60 | 33 (6) d |
10 | 1.2 | DIPEA (1.5) | 60 | 18 (4) d |
11 | 1.2 | DIPEA (1.0) | 15 | 27 |
12 | 1.2 | DIPEA (1.0) | 30 | 58 |
13 | 1.2 | DIPEA (1.0) | 120 | 42 |
14 | 1.2 | DIPEA (1.0) | 60 | 24 e |
15 | 1.0 | DIPEA (1.0) | 30 | 20 |
16 | 1.5 | DIPEA (1.0) | 30 | 69 |
17 | 2.0 | DIPEA (1.0) | 30 | 67 |
18 | 1.5 | DIPEA (1.0) | 30 | 51 f |
19 | 1.5 | DIPEA (1.0) | 30 | 77 g |
20 | 1.5 | DIPEA (1.0) | 30 | 76 h 80 h (84) i |
21 j | 1.5 | DIPEA (1.0) | 30 | – (6) k |
22 l | 1.5 | DIPEA (1.0) | 30 | 82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumacher, C.; Fritz, L.; Hanek, L.M.; Sidorin, V.; Brüx, D.; Bolm, C. Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements. Molecules 2023, 28, 807. https://doi.org/10.3390/molecules28020807
Schumacher C, Fritz L, Hanek LM, Sidorin V, Brüx D, Bolm C. Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements. Molecules. 2023; 28(2):807. https://doi.org/10.3390/molecules28020807
Chicago/Turabian StyleSchumacher, Christian, Lieselotte Fritz, Lena M. Hanek, Vitali Sidorin, Daniel Brüx, and Carsten Bolm. 2023. "Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements" Molecules 28, no. 2: 807. https://doi.org/10.3390/molecules28020807
APA StyleSchumacher, C., Fritz, L., Hanek, L. M., Sidorin, V., Brüx, D., & Bolm, C. (2023). Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements. Molecules, 28(2), 807. https://doi.org/10.3390/molecules28020807