Electrolyte Design Strategies for Non-Aqueous High-Voltage Potassium-Based Batteries
Abstract
:1. Introduction
2. Design Strategies for High-Voltage Organic Electrolytes
2.1. High Concentration
2.2. Localized High Concentration/Weakly Solvating Strategy
2.3. Multi-Ion Strategy
2.4. High-Voltage Additive
3. Adoption of Other Electrolyte Systems
3.1. Ionic Liquids
3.2. Solid-State Electrolyte
4. Summary and Perspectives
- (1)
- Designing new high-voltage potassium salts. Due to the large size of K+ and its low Lewis acidity, the solubility of potassium salts is usually limited in most used carbonates. Even when utilizing high-concentration or multi-ion strategies, there are only a few choices stemming from that solubility limit, as summarized in Table 3. Therefore, adopting those with effective CEI-forming capabilities seems rather important. Lu et al. synthesized a new potassium salt based on cyclic anion hexafluoropropane-1,3-disulfonimide (HFDF−) [68]. By ingeniously incorporating three -CF2- groups in a single anion, the newly formed KHFDF facilitates the formation of thin, uniform, and F-abundant CEI together with a high oxidation resistance against Al up to 4.7 V (illustrated in Figure 6). This trial offers considerable inspiration for the development of high-voltage potassium salts.
- (2)
- Developing high-voltage solvents. Solvents are indispensable components setting the keynote of EWs for traditional organic liquid electrolytes. There are many high-voltage candidate solvents for LIBs, such as sulfone, nitrile, and fluorinated esters, which serve as significant references for the screening of proper solvents for potassium-based systems [69,70,71,72,73,74]. Among those, employing fluorinated solvents could be a promising way. One of the frequently fluorinated carbonates, FEC, possesses a higher anti-oxidative capability and is effective in forming robust F-abundant CEI when serving as the solvent for high-voltage PIBs. Moreover, the searching circle could be extended outside esters and ethers. For example, recently, a glyoxal-based electrolyte with an oxidative limit of 5.0 V has been reported for PIBs [75].
- (3)
- Modification of high-voltage battery components. Current collectors and cell cases are non-negligible factors affecting batteries’ reversibility, CE, and life when cycling in a wide range of EW. Some scientists have devoted themselves to understanding the formation mechanisms and compositions of passivation layers on typical current collectors, such as Cu, Al, and stainless steel [76]. Still, the dissolution and corrosion of current collectors cannot be fully eliminated. To ensure the long life of battery components, especially for stationary energy storage configurations, innovative modification methods for effective passivation are needed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Zhao, H.; Wu, Z.; Yue, L.; Liang, J.; Liu, Q.; Luo, Y.; Gao, S.; Lu, S.; Chen, G.; et al. Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Mater. 2021, 34, 483–507. [Google Scholar] [CrossRef]
- Yin, H.; Han, C.; Liu, Q.; Wu, F.; Zhang, F.; Tang, Y. Recent Advances and Perspectives on the Polymer Electrolytes for Sodium/Potassium-Ion Batteries. Small 2021, 17, 2006627. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Didwal, P.N.; Hwang, J.Y.; Park, C.J. Recent Progress in Electrolyte Development and Design Strategies for Next-Generation Potassium-Ion Batteries. Batter. Supercaps 2021, 4, 1428–1450. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.C.; Bianchini, M.; Seo, D.H.; Rodriguez-Garcia, J.; Ceder, G. Recent Progress and Perspective in Electrode Materials for K-Ion Batteries. Adv. Energy Mater. 2018, 8, 1702384. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liu, Y.; Guo, Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Bai, P.; Ji, X.; Yang, J.; Wang, C.; Xu, Y. Electrolytes and Interphases in Potassium Ion Batteries. Adv. Mater. 2021, 33, 2003741. [Google Scholar] [CrossRef]
- Pham, T.A.; Kweon, K.E.; Samanta, A.; Lordi, V.; Pask, J.E. Solvation and Dynamics of Sodium and Potassium in Ethylene Carbonate from ab Initio Molecular Dynamics Simulations. J. Phys. Chem. C 2017, 121, 21913–21920. [Google Scholar] [CrossRef]
- Jian, Z.; Luo, W.; Ji, X. Carbon Electrodes for K-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569. [Google Scholar] [CrossRef]
- Li, L.; Zhao, S.; Hu, Z.; Chou, S.L.; Chen, J. Developing better ester- And ether-based electrolytes for potassium-ion batteries. Chem. Sci. 2021, 12, 2345–2356. [Google Scholar] [CrossRef]
- Xu, S.; Chen, Y.; Wang, C. Emerging organic potassium-ion batteries: Electrodes and electrolytes. J. Mater. Chem. A 2020, 8, 15547–15574. [Google Scholar] [CrossRef]
- Huang, J.; Lin, X.; Tan, H.; Zhang, B. Bismuth Microparticles as Advanced Anodes for Potassium-Ion Battery. Adv. Energy Mater. 2018, 8, 1703496. [Google Scholar] [CrossRef]
- Du, X.; Gao, Y.; Zhang, B. Building Elastic Solid Electrolyte Interphases for Stabilizing Microsized Antimony Anodes in Potassium Ion Batteries. Adv. Funct. Mater. 2021, 31, 2102562. [Google Scholar] [CrossRef]
- Gao, Y.; Hou, Z.; Zhou, R.; Wang, D.; Guo, X.; Zhu, Y.; Zhang, B. Critical Roles of Mechanical Properties of Solid Electrolyte Interphase for Potassium Metal Anodes. Adv. Funct. Mater. 2022, 32, 2112399. [Google Scholar] [CrossRef]
- Kim, H.; Seo, D.; Bianchini, M.; Clément, R.J.; Kim, H.; Kim, J.C.; Tian, Y.; Shi, T.; Yoon, W.; Ceder, G. A New Strategy for High-Voltage Cathodes for K-Ion Batteries: Stoichiometric KVPO4F. Adv. Energy Mater. 2018, 8, 1801591. [Google Scholar] [CrossRef] [Green Version]
- Chihara, K.; Katogi, A.; Kubota, K.; Komaba, S. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 2017, 53, 5208–5211. [Google Scholar] [CrossRef]
- Wang, M.; Tang, Y. A Review on the Features and Progress of Dual-Ion Batteries. Adv. Energy Mater. 2018, 8, 1703320. [Google Scholar] [CrossRef]
- Song, W.; Scholtis, E.S.; Sherrell, P.C.; Tsang, D.K.H.; Ngiam, J.; Lischner, J.; Fearn, S.; Bemmer, V.; Mattevi, C.; Klein, N.; et al. Electronic structure influences on the formation of the solid electrolyte interphase. Energy Environ. Sci. 2020, 13, 4977–4989. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Guo, K.; Qi, S.; Wang, H.; Huang, J.; Wu, M.; Yang, Y.; Li, X.; Ren, Y.; Ma, J. High-Voltage Electrolyte Chemistry for Lithium Batteries. Small Sci. 2022, 2, 2100107. [Google Scholar] [CrossRef]
- Kim, H.J.; Voronina, N.; Yashiro, H.; Myung, S.T. High-Voltage Stability in KFSI Nonaqueous Carbonate Solutions for Potassium-Ion Batteries: Current Collectors and Coin-Cell Components. ACS Appl. Mater. Interfaces 2020, 12, 42723–42733. [Google Scholar] [CrossRef]
- Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 11503–11618. [Google Scholar] [PubMed]
- Tan, S.; Ji, Y.J.; Zhang, Z.R.; Yang, Y. Recent progress in research on high-voltage electrolytes for lithium-ion batteries. ChemPhysChem 2014, 15, 1956–1969. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, Y.; Yang, B.; Liu, L.; Li, J.; Yan, X.; He, D. A Dual Carbon-Based Potassium Dual Ion Battery with Robust Comprehensive Performance. Small 2018, 14, 1801836. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, F.; Wu, N.; Tang, Y. A Dual-Carbon Battery Based on Potassium-Ion Electrolyte. Adv. Energy Mater. 2017, 7, 1700920. [Google Scholar] [CrossRef]
- Münster, P.; Heckmann, A.; Nölle, R.; Winter, M.; Beltrop, K.; Placke, T. Enabling High Performance Potassium-Based Dual-Graphite Battery Cells by Highly Concentrated Electrolytes. Batter. Supercaps 2019, 2, 992–1006. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Zhang, W.; Zhang, Q.; Huang, S. Tuning anion chemistry enables high-voltage and stable potassium-based tellurium-graphite batteries. Nano Energy 2022, 92, 106744. [Google Scholar] [CrossRef]
- Yu, D.; Wang, H.; Zhang, W.; Dong, H.; Zhu, Q.; Yang, J.; Huang, S. Unraveling the role of ion-solvent chemistry in stabilizing small-molecule organic cathode for potassium-ion batteries. Energy Storage Mater. 2021, 43, 172–181. [Google Scholar] [CrossRef]
- Tan, H.; Zhai, D.; Kang, F.; Zhang, B. Synergistic PF6− and FSI− intercalation enables stable graphite cathode for potassium-based dual ion battery. Carbon 2021, 178, 363–370. [Google Scholar] [CrossRef]
- Ou, X.; Li, J.; Tong, X.; Zhang, G.; Tang, Y. Highly concentrated and nonflammable electrolyte for high energy density K-based dual-ion battery. ACS Appl. Energy Mater. 2020, 3, 10202–10208. [Google Scholar] [CrossRef]
- Wu, X.; Qiu, S.; Liu, Y.; Xu, Y.; Jian, Z.; Yang, J.; Ji, X.; Liu, J. The Quest for Stable Potassium-Ion Battery Chemistry. Adv. Mater. 2022, 34, 2106876. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Xie, H.; Peng, J.; Fan, L.; Zhou, J.; Lu, B. Weak Cation–Solvent Interactions in Ether-Based Electrolytes Stabilizing Potassium-ion Batteries. Angew. Chem. 2020, 134, e202208291. [Google Scholar]
- Xu, W.; Wang, H.; Hu, J.; Zhang, H.; Zhang, B.; Kang, F.; Zhai, D. A highly concentrated electrolyte for high-efficiency potassium metal batteries. Chem. Commun. 2021, 57, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, H.; Gao, Y.; Wei, Y.; Zhang, H.; Gao, C.; Kang, F.; Zhai, D. A localized high concentration electrolyte for 4 V-class potassium metal batteries. Energy Adv. 2020, 1, 191–196. [Google Scholar] [CrossRef]
- Kravchyk, K.V.; Bhauriyal, P.; Piveteau, L.; Guntlin, C.P.; Pathak, B.; Kovalenko, M.V. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun. 2018, 9, 4469. [Google Scholar] [CrossRef] [Green Version]
- Hosaka, T.; Matsuyama, T.; Kubota, K.; Tatara, R.; Komaba, S. KFSA/glyme electrolytes for 4 V-class K-ion batteries. J. Mater. Chem. A 2020, 8, 23766–23771. [Google Scholar] [CrossRef]
- Hosaka, T.; Kubota, K.; Kojima, H.; Komaba, S. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chem. Commun. 2018, 54, 8387–8390. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Xiao, N.; Zheng, J.; Lei, Y.; Zhai, D.; Wu, Y. Localized High-Concentration Electrolytes Boost Potassium Storage in High-Loading Graphite. Adv. Energy Mater. 2019, 9, 1902618. [Google Scholar] [CrossRef]
- Yao, Y.X.; Chen, X.; Yan, C.; Zhang, X.Q.; Cai, W.L.; Huang, J.Q.; Zhang, Q. Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly Solvating Electrolyte. Angew. Chem.—Int. Ed. 2021, 60, 4090–4097. [Google Scholar] [CrossRef]
- Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery. Joule 2020, 4, 1776–1789. [Google Scholar] [CrossRef]
- Choi, J.; Jeong, H.; Jang, J.; Jeon, A.R.; Kang, I.; Kwon, M.; Hong, J.; Lee, M. Weakly Solvating Solution Enables Chemical Prelithiation of Graphite-SiOx Anodes for High-Energy Li-Ion Batteries. J. Am. Chem. Soc. 2021, 143, 9169–9176. [Google Scholar] [CrossRef]
- Pham, T.D.; Lee, K.K. Simultaneous Stabilization of the Solid/Cathode Electrolyte Interface in Lithium Metal Batteries by a New Weakly Solvating Electrolyte. Small 2021, 17, 2100133. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, H.; Jiang, C.; Tang, Y. Multi-ion strategies towards emerging rechargeable batteries with high performance. Energy Storage Mater. 2019, 23, 566–586. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, T.; He, B.; Feng, S.; Wang, X.; Wei, L.; Mai, L. Recent advances and perspectives in aqueous potassium-ion batteries. Energy Environ. Sci. 2022, 1, 3750–3774. [Google Scholar] [CrossRef]
- Chen, S.; Lan, R.; Humphreys, J.; Tao, S. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 2020, 28, 205–215. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Qin, B.; Passerini, S. Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. J. Power Sources 2020, 449, 227594. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.; Deng, W.; Li, C.; Yuan, X.; Hu, J.; Zhang, M.; Chen, H.; Li, R. A Superconcentrated Water-in-Salt Hydrogel Electrolyte for High-Voltage Aqueous Potassium-Ion Batteries. ChemElectroChem 2021, 8, 1451–1454. [Google Scholar] [CrossRef]
- Dong, Y.; Di, S.; Zhang, F.; Bian, X.; Wang, Y.; Xu, J.; Wang, L.; Cheng, F.; Zhang, N. Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries. J. Mater. Chem. A 2020, 8, 3252–3261. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Z.; Zhou, L.; Liu, G.; Park, G.T.; Cavallo, L.; Wang, L.; Alshareef, H.N.; Sun, Y.K.; Ming, J. Model-Based Design of Graphite-Compatible Electrolytes in Potassium-Ion Batteries. ACS Energy Lett. 2020, 5, 2651–2661. [Google Scholar] [CrossRef]
- Hosaka, T.; Matsuyama, T.; Kubota, K.; Yasuno, S.; Komaba, S. Development of KPF6/KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 34873–34881. [Google Scholar] [CrossRef]
- Wang, H.; Dong, J.; Guo, Q.; Xu, W.; Zhang, H.; Lau, K.C.; Wei, Y.; Hu, J.; Zhai, D.; Kang, F. Highly stable potassium metal batteries enabled by regulating surface chemistry in ether electrolyte. Energy Storage Mater. 2021, 42, 526–532. [Google Scholar] [CrossRef]
- Chen, H.; Chen, J.; Zhang, W.; Xie, Q.; Che, Y.; Wang, H.; Xing, L.; Xu, K.; Li, W. Enhanced cycling stability of high-voltage lithium metal batteries with a trifunctional electrolyte additive. J. Mater. Chem. A 2020, 8, 22054–22064. [Google Scholar] [CrossRef]
- Yan, C.; Yao, Y.-X.; Chen, X.; Cheng, X.-B.; Zhang, X.-Q.; Huang, J.-Q.; Zhang, Q. Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries. Angew. Chem. 2018, 130, 14251–14255. [Google Scholar] [CrossRef]
- Nikitina, V.A.; Kuzovchikov, S.M.; Fedotov, S.S.; Khasanova, N.R.; Abakumov, A.M.; Antipov, E.V. Effect of the electrode/electrolyte interface structure on the potassium-ion diffusional and charge transfer rates: Towards a high voltage potassium-ion battery. Electrochim. Acta 2017, 258, 814–824. [Google Scholar] [CrossRef]
- Ells, A.W.; May, R.; Marbella, L.E. Potassium fluoride and carbonate lead to cell failure in potassium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 53841–53849. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Yin, X.; Sun, Y.; Yang, W.; Yu, F.; Liu, X.; Fu, L.; Chen, Y.; Wu, Y. Optimal utilization of fluoroethylene carbonate in potassium ion batteries. Chem. Commun. 2021, 57, 1607–1610. [Google Scholar] [CrossRef]
- Yoon, S.U.; Kim, H.; Jin, H.J.; Yun, Y.S. Effects of fluoroethylene carbonate-induced solid-electrolyte-interface layers on carbon-based anode materials for potassium ion batteries. Appl. Surf. Sci. 2021, 547, 149193. [Google Scholar] [CrossRef]
- Yamamoto, T.; Matsumoto, K.; Hagiwara, R.; Nohira, T. Physicochemical and Electrochemical Properties of K[N(SO2F)2]-[N-Methyl-N-propylpyrrolidinium][N(SO2F)2] Ionic Liquids for Potassium-Ion Batteries. J. Phys. Chem. C 2017, 121, 18450–18458. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, H.; Wang, J.; Sun, H.; Wang, J.; Huang, W. Quinone Electrode for Long Lifespan Potassium-Ion Batteries Based on Ionic Liquid Electrolytes. ACS Appl. Mater. Interfaces 2022, 14, 38887–38894. [Google Scholar] [CrossRef]
- Beltrop, K.; Beuker, S.; Heckmann, A.; Winter, M.; Placke, T. Alternative electrochemical energy storage: Potassium-based dual-graphite batteries. Energy Environ. Sci. 2017, 10, 2090–2094. [Google Scholar] [CrossRef]
- Yoshii, K.; Masese, T.; Kato, M.; Kubota, K.; Senoh, H.; Shikano, M. Sulfonylamide-Based Ionic Liquids for High-Voltage Potassium-Ion Batteries with Honeycomb Layered Cathode Oxides. ChemElectroChem 2019, 6, 3901–3910. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Chen, C.Y.; Kubota, K.; Matsumoto, K.; Hagiwara, R. Potassium Single Cation Ionic Liquid Electrolyte for Potassium-Ion Batteries. J. Phys. Chem. B 2020, 124, 6341–6347. [Google Scholar] [CrossRef] [PubMed]
- Trano, S.; Corsini, F.; Pascuzzi, G.; Giove, E.; Fagiolari, L.; Amici, J.; Francia, C.; Turri, S.; Bodoardo, S.; Griffini, G.; et al. Lignin as Polymer Electrolyte Precursor for Stable and Sustainable Potassium Batteries. ChemSusChem 2022, 15, e202200294. [Google Scholar] [CrossRef] [PubMed]
- Manarin, E.; Corsini, F.; Trano, S.; Fagiolari, L.; Amici, J.; Francia, C.; Bodoardo, S.; Turri, S.; Bella, F.; Griffini, G. Cardanol-Derived Epoxy Resins as Biobased Gel Polymer Electrolytes for Potassium-Ion Conduction. ACS Appl. Polym. Mater. 2022, 4, 3855–3865. [Google Scholar] [CrossRef]
- Hamada, M.; Tatara, R.; Kubota, K.; Kumakura, S.; Komaba, S. All-Solid-State Potassium Polymer Batteries Enabled by the Effective Pretreatment of Potassium Metal. ACS Energy Lett. 2022, 7, 2244–2246. [Google Scholar] [CrossRef]
- Zhang, Y.; Bahi, A.; Ko, F.; Liu, J. Polyacrylonitrile-Reinforced Composite Gel Polymer Electrolytes for Stable Potassium Metal Anodes. Small 2022, 18, 2107186. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xue, L.; Xin, S.; Goodenough, J.B. A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode. Angew. Chem. 2018, 130, 5547–5551. [Google Scholar] [CrossRef]
- Kang, S.; Jeon, B.; Hong, S.T.; Lee, H. A sulfone-based crystalline organic electrolyte for 5 V solid-state potassium batteries. Chem. Eng. J. 2022, 443, 136403. [Google Scholar] [CrossRef]
- Hu, Y.; Fan, L.; Rao, A.M.; Yu, W.; Zhuoma, C.; Feng, Y.; Qin, Z.; Zhou, J.; Lu, B. Cyclic-anion salt for high-voltage stable potassium-metal batteries. Natl. Sci. Rev. 2022, 9, nwac134. [Google Scholar] [CrossRef]
- Wang, X.; Xue, W.; Hu, K.; Li, Y.; Li, Y.; Huang, R. Adiponitrile as Lithium-Ion Battery Electrolyte Additive: A Positive and Peculiar Effect on High-Voltage Systems. ACS Appl. Energy Mater. 2018, 1, 5347–5354. [Google Scholar] [CrossRef]
- Su, C.C.; He, M.; Shi, J.; Amine, R.; Zhang, J.; Guo, J.; Amine, K. Superior long-term cycling of high-voltage lithium-ion batteries enabled by single-solvent electrolyte. Nano Energy 2021, 89, 106299. [Google Scholar] [CrossRef]
- Yu, Z.; Yu, W.; Chen, Y.; Mondonico, L.; Xiao, X.; Zheng, Y.; Liu, F.; Hung, S.T.; Cui, Y.; Bao, Z. Tuning Fluorination of Linear Carbonate for Lithium-Ion Batteries. J. Electrochem. Soc. 2022, 169, 040555. [Google Scholar] [CrossRef]
- Su, C.C.; He, M.; Cai, M.; Shi, J.; Amine, R.; Rago, N.D.; Guo, J.; Rojas, T.; Ngo, A.T.; Amine, K. Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries. Nano Energy 2022, 92, 106720. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, T.; Ashirov, T.; Kazzi MEl Cancellieri, C.; Jeurgens, L.P.H.; Choi, J.W.; Coskun, A. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 2022, 13, 2575. [Google Scholar] [CrossRef]
- Xiao, P.; Zhao, Y.; Piao, Z.; Li, B.; Zhou, G.; Cheng, H.M. A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li||NCM811 cells with a wide temperature range of 100 °C. Energy Environ. Sci. 2022, 15, 2435–2444. [Google Scholar] [CrossRef]
- Liu, S.; Meyer, L.C.; Medenbach, L.; Balducci, A. Glyoxal-based electrolytes for potassium-ion batteries. Energy Storage Mater. 2022, 47, 534–541. [Google Scholar] [CrossRef]
- Kim, H.J.; Voronina, N.; Yashiro, H.; Myung, S.T. Highly concentrated electrolyte enabling high-voltage application of metallic components for potassium-ion batteries. J. Power Sources 2021, 510, 230436. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, Y.; Fan, X.; Ji, G.; Ji, X.; Wang, H.; Hou, S.; Zachariah, M.R.; Wang, C. Extremely Stable Antimony-Carbon Composite Anodes for Potassium-Ion Batteries. Energy Environ. Sci. 2019, 12, 615–623. [Google Scholar] [CrossRef]
Solvent | Structure 1 | η/cP (25 °C) | ε (25 °C) | Tm/Tb/Tf (°C) |
---|---|---|---|---|
EC | 1.09 (40 °C) | 89.78 | 36.4/248/160 | |
PC | 2.53 | 64.92 | −48.8/242/132 | |
DMC | 0.59 | 3.107 | 4.6/91/18 | |
DEC | 0.75 | 2.805 | −74.3/126/31 | |
EMC | 0.65 | 2.958 | −53/110/- | |
DME | 0.409 | 7.03 | −58/85/−2 |
Electrolytes | Examples | Working Electrodes | Oxidation Limit (vs. K+/K) | Ref. |
---|---|---|---|---|
Carbonates | 1.0 mol/L KFSI in EMC | Pt | 4.8 V | [25] |
0.8 mol/kg KFSI in EC-DMC (1:1 by vol.) | Al | 4.5 V | [26] | |
1.0 mol/L KFSI in EC-DEC (1:1 by vol.) | Al | 4.6 V | [27] | |
0.8 mol/L KFSI in EC-DMC-EMC (1:1:1 by wet.) | Tungsten (W) | 4.5 V | [28] | |
0.7 mol/L KPF6 in EC-DMC-EMC (1:1:1 by wet.) | W | 5.5 V | [28] | |
Phosphates | 0.8 mol/kg KFSI in TMP | Al | 4.3 V | [29] |
1.0 mol/L KFSI in TEP | C-coated Al | 4.4 V | [30] | |
Ethers | 1.0 mol/L KFSI in DME | Al | 4.5 V | [27] |
1.0 mol/L KFSI in DME | Al | 4.0 V | [31] | |
1.0 mol/L KFSI in DEGDME | Al | 4.2 V | [32] | |
1.0 mol/L KFSI in DEGDME | Al | 4.0 V | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.; Lin, X. Electrolyte Design Strategies for Non-Aqueous High-Voltage Potassium-Based Batteries. Molecules 2023, 28, 823. https://doi.org/10.3390/molecules28020823
Tan H, Lin X. Electrolyte Design Strategies for Non-Aqueous High-Voltage Potassium-Based Batteries. Molecules. 2023; 28(2):823. https://doi.org/10.3390/molecules28020823
Chicago/Turabian StyleTan, Hong, and Xiuyi Lin. 2023. "Electrolyte Design Strategies for Non-Aqueous High-Voltage Potassium-Based Batteries" Molecules 28, no. 2: 823. https://doi.org/10.3390/molecules28020823
APA StyleTan, H., & Lin, X. (2023). Electrolyte Design Strategies for Non-Aqueous High-Voltage Potassium-Based Batteries. Molecules, 28(2), 823. https://doi.org/10.3390/molecules28020823