Enhancement of Electromagnetic Wave Shielding Effectiveness by the Incorporation of Carbon Nanofibers–Carbon Microcoils Hybrid into Commercial Carbon Paste for Heating Films
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schulz, R.B.; Plantz, V.C.; Brush, D.R. Shielding theory and practice. Inst. Electr. Electron. Eng. 1988, 30, 187–201. [Google Scholar] [CrossRef]
- Chung, D.L. Materials for Electromagnetic Interference Shielding. J. Mater. Eng. Perform. 2000, 9, 350–354. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Electromagnetic Interference Shielding Mechanisms of CNT/polymer Composites. Carbon 2009, 47, 1738–1746. [Google Scholar] [CrossRef]
- Simon, R.M. Emi Shielding Through Conductive Plastics. Polym.-Plast. Technol. Eng. 1981, 17, 1–10. [Google Scholar] [CrossRef]
- Chung, D.L. Electromagnetic Interference Shielding Effectiveness of Carbon Materials. Carbon 2001, 39, 279–285. [Google Scholar] [CrossRef]
- Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W. Novel carbon, nanotube polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 2005, 5, 2131–2134. [Google Scholar] [CrossRef]
- Ameli, A.; Nofar, M.; Wang, S.; Park, C.B. Lightweight polypropylene/stainless steel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2014, 6, 11091–11100. [Google Scholar] [CrossRef]
- Ling, J.; Zhai, W.; Feng, W.; Shen, B.; Zhang, J.; Zheng, W. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684. [Google Scholar] [CrossRef]
- Zeng, Z.; Jin, H.; Chen, M.; Li, W.; Zhou, L.; Xue, X. Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multi walled carbon nanotube/polymer composites. Small 2017, 13, 1701388. [Google Scholar] [CrossRef]
- Arjmand, M.; Sundararaj, U. Electromagnetic interference shielding of nitrogen-doped and undoped carbon nanotube/polyvinylidene fluoride Nanocomposites: A Comparative Study. Compos. Sci. Technol. 2015, 118, 257–263. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Y.; Huang, Y.; Ma, Y.; Liu, Z. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009, 47, 922–925. [Google Scholar] [CrossRef]
- Rahman, M.J.; Mieno, T. Conductive Cotton Textile from Safely Functionalized Carbon Nanotubes. J. Nanomater. 2015, 2015, 978484. [Google Scholar] [CrossRef]
- Tarek, R.; Cemal, B. Joule heating in single-walled carbon nanotubes. J. Appl. Phys. 2009, 106, 063705. [Google Scholar]
- Ren, J.; Wang, C.; Zhang, X.; Carey, T.; Chen, K.; Yin, Y.; Torrisi, F. Environmentally friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 2017, 111, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Jalil, M.A.; Hossain, M.M.; Moniruzzaman, M.; Adak, B.; Islam, M.T.; Parvez, M.S. PEDOT: PSS and graphene-clad smart textile-based wearable electronic joule heater with high thermal stability. J. Mater. Chem. C 2020, 8, 16204–16215. [Google Scholar] [CrossRef]
- Koçanalı, A.; Apaydın Varol, E. An Experimental study on the electrical and thermal performance of reduced graphene oxide coated cotton fabric. Int. J. Energy Res. 2021, 45, 12915–12927. [Google Scholar] [CrossRef]
- Pereira, P.; Ferreira, D.P.; Araújo, J.C.; Ferreira, A.; Fangueiro, R. The potential of graphene nanoplatelets in the development of smart and multifunctional eco-composites. Polymers 2020, 12, 2189. [Google Scholar] [CrossRef]
- Moreira, I.P.; Sanivada, U.K.; Bessa, J.; Cunha, F.; Fangueiro, R. A review of multiple scale fibrous and composite systems for heating applications. Molecules 2021, 26, 3686. [Google Scholar] [CrossRef]
- Chungjae, L.E.E. A Film Heater Having Offsetted Electron of Wave. Korean Patent KR102075870, 2020. [Google Scholar]
- Kim, J.S.; Kim, D.A.; Park, S.T.; Kang, M.S. The Product Method of Heating Film for Electro Magnetic Shielding. Korean Patent KR101620503, 2016. [Google Scholar]
- Kang, S.; Choi, H.; Lee, S.B.; Park, S.C.; Park, J.B.; Lee, S.; Kim, Y.; Hong, B.H. Efficient heat generation in large-area graphene films by electromagnetic wave absorption. 2D Mater. 2017, 4, 025037. [Google Scholar] [CrossRef]
- Lin, C.-L.; Li, J.-W.; Chen, Y.-F.; Chen, J.-X.; Cheng, C.-C.; Chiu, C.-W. Graphene Nanoplatelet/Multiwalled Carbon Nanotube/Polypyrrole Hybrid Fillers in Polyurethane Nanohybrids with 3D Conductive Networks for EMI Shielding. ACS Omega 2022, 7, 45697–45707. [Google Scholar] [CrossRef]
- Wang, M.; Tang, X.H.; Cai, J.-H.; Wu, H.; Shen, J.-B.; Guo, S.-Y. Fabrication, mechanisms and perspectives of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402. [Google Scholar] [CrossRef]
- Davis, W.R.; Slawson, R.J.; Rigby, G.R. An Unusual form of carbon. Nature 1953, 171, 756. [Google Scholar] [CrossRef]
- Motojima, S.; Hoshiya, S.; Hishikawa, Y. Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands. Carbon 2003, 41, 2658–2660. [Google Scholar] [CrossRef]
- Motojima, S.; Noda, Y.; Hoshiya, S.; Hishikawa, Y. Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region. J. Appl. Phys. 2003, 94, 2325. [Google Scholar] [CrossRef]
- Zhao, D.L.; Shen, Z.M. Preparation and microwave absorption properties of carbon nanocoils. Mater. Lett. 2008, 62, 3704–3706. [Google Scholar] [CrossRef]
- Kang, G.-H.; Kim, S.-H. Electromagnetic wave shielding effectiveness based on carbon microcoil-polyurethane composites. J. Nanomater. 2014, 2014, 727024. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Kim, S.-H.; Park, S. Effects of the carbon fiber-carbon microcoil hybrid formation on the effectiveness of electromagnetic wave shielding on carbon fibers-based fabrics. Materials 2018, 11, 2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, G.-H.; Kim, S.-H.; Park, S. Enhancement of shielding effectiveness for electromagnetic wave radiation using carbon nanocoil-carbon microcoil hybrid materials. Appl. Surf. Sci. 2019, 447, 264–270. [Google Scholar] [CrossRef]
- Pothupitiya, G.S.J.; Yang, K.; Braveenth, R.; Raagulan, K.; Kim, H.S.; Lee, Y.S.; Yang, C.-M.; Moon, J.J.; Chai, K.Y. MWCNT coated free-standing carbon fiber fabric for enhanced performance in EMI shielding with a higher absolute EMI SE. Materials 2017, 10, 1350. [Google Scholar] [CrossRef] [Green Version]
- Smits, F. Measurement of Sheet Resistivities with the Four-Point Probe. Bell Syst. Tech. J. 1958, 37, 711–718. [Google Scholar] [CrossRef]
- Shuying, Y.; Karen, L.; Azalia, L.; Heinrich, D.F.; Robert, J. Electromagnetic Interference Shielding Effectiveness of Carbon Nanofiber/LCP Composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 691–697. [Google Scholar]
- Pütz, J.; Heusing, S.; Aegerter, M.A. Characterization of Electrical Properties. In Handbook of Sol-Gel Science and Technology; Kluwer Academic Publishers: Amesterdam, The Netherlands, 2016. [Google Scholar]
- Song, W.L.; Cao, M.S.; Lu, M.M.; Bi, S.; Wang, C.Y.; Liu, J.; Yuan, J.; Fan, L.Z. Flexible Graphene/Polymer Composite Films in Sandwich Structures for Effective Electromagnetic Interference Shielding. Carbon 2014, 66, 67–76. [Google Scholar] [CrossRef]
- Song, W.L.; Wang, J.; Fan, L.Z.; Li, Y.; Wang, C.Y.; Cao, M.S. Interfacial Engineering of Carbon Nanofiber@Graphene@Carbon Nanofiber Heterojunctions in Flexible Lightweight Electromagnetic Shielding Networks. ACS Appl. Mater. Interface 2014, 6, 10516–10523. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.S.; Song, W.L.; Hou, Z.L.; Wen, B.; Yuan, J. The Effects of Temperature and Frequency on the Dielectric Properties, Electromagnetic Interference Shielding and Microwave-Absorption of Short Carbon Fiber/Silica Composites. Carbon 2010, 48, 788–796. [Google Scholar] [CrossRef]
- Huang, H.D.; Liu, C.Y.; Zhou, D.; Jiang, X.; Zhong, G.J. Cellulose Composite Aerogel for Highly Efficient Electromagnetic Interference Shielding. J. Mater. Chem. A 2015, 3, 4983–4991. [Google Scholar] [CrossRef]
- Kang, G.-H.; Kim, S.-H.; Park, S. Controllable synthesis of carbon-nanocoil—carbon-microcoil hybrid materials. Mater. Des. 2016, 116, 42–50. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kang, G.-H.; Kim, S.-H.; Park, S. Enhancement in Electromagnetic Wave Shielding Effectiveness through the Formation of Carbon Nanofiber Hybrids on Carbon-Based Nonwoven Fabrics. Nanomaterials 2021, 11, 2910. [Google Scholar] [CrossRef]
- Zhu, S.; Su, C.H.; Lehoczky, S.L.; Muntele, I.; Ila, D. Carbon nanotube growth on carbon fibers, Diam. Relat. Mater. 2003, 12, 1825–1828. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Ci, L.J.; Cheng, H.M.; Bai, J.B. The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers. Carbon 2005, 43, 651–673. [Google Scholar] [CrossRef]
- Shaikjee, A.; Coville, N.J. The synthesis, properties and uses of carbon materials with helical morphology. J. Adv. Res. 2012, 3, 195–223. [Google Scholar] [CrossRef] [Green Version]
- Nishino, T.; Naito, H.; Nakamura, K.; Nakamae, K. X-ray diffraction studies on the stress transfer of transversely loaded carbon fibre reinforced composite. Compos. Part A 2000, 31, 1225–1230. [Google Scholar] [CrossRef]
- Qiu, T.; Yang, J.-G.; Bai, X.-J.; Wang, Y.-L. The preparation of synthetic graphite materials with hierarchical pores from lignite by one-step impregnation and their characterization as dye absorbents. RSC Adv. 2019, 9, 12737. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.-H.; Bae, M.-K.; Kim, S.-H. Formation of noble-shaped carbon nanostructures. J. Incl. Phenom. Macrocycl. Chem. 2015, 82, 179–186. [Google Scholar] [CrossRef]
- Anisha, C.; Saroj, K.; Rajeev, K. Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper with Exceptional Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2016, 8, 16. [Google Scholar]
- Al-Saleh, M.H.; Saadeh, W.H.; Sundararaj, U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon 2013, 60, 146–156. [Google Scholar] [CrossRef]
- Lv, X.; Yang, S.; Jin, J. Preparation and electromagnetic properties of carbon nanofiber/epoxy composites. J. Macromol. Sci. B 2010, 49, 355–365. [Google Scholar] [CrossRef]
- Nidhi, A.; Kuntal, C. Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv. 2015, 5, 43765–43771. [Google Scholar]
- Das, N.C.; Khastgir, D.; Chaki, T.K.; Chakraborty, A. Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos. Part A 2000, 31, 1069–1081. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, D.; Yuan, Y.; Wang, Y.; Cheng, Z.; Liu, Y.; Xie, Z. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122696. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kang, D.; Oh, I.-K. Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon 2017, 111, 248–257. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, B.; Wang, Q.; Yu, J.; Dai, J.; Song, R.; Pu, Z.; He, D. Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness. Small 2018, 14, e1704332. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P.C. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Lett. 2006, 6, 1141–1145. [Google Scholar] [CrossRef] [PubMed]
The Coated PET Films and Type of Carbon Paste | Thickness t (mm) | Electrical Resistivity ρ(Ω·m) | Electrical Conductivity σ (S/m) | Correction Factor * F (F/w) |
---|---|---|---|---|
Commercial carbon paste | 0.6 (±0.04) | 2.42 (±0.15) × 10−4 | 4.13 (±0.08) × 103 | 0.98 |
30 wt% sample E-incorporated carbon paste | 0.6 (±0.07) | 5.43 (±1.22) × 10−4 | 1.84 (±0.46) × 103 | 0.79 |
30 wt% sample J-incorporated carbon paste | 0.6 (±0.05) | 4.61 (±0.65) × 10−4 | 2.17 (±0.23) × 103 | 0.79 |
Carbon-Based Materials | Thickness (mm) | Electrical Conductivity or Resistivity | Operating Frequency (GHz) | SE (dB) | SE/Thickness (dB/mm) | Ref. |
---|---|---|---|---|---|---|
CNT/*MCMB | 0.15–0.6 | 1100 S/m | 8.2–12.4 | 31–56 | 93–206 | [47] |
15 wt% *CNF/*ABS | 1.1 | 1.5 ± 0.1 Ω·cm | 35 | 31.8 | [48] | |
15 wt% CNT/*ABS | 0.81 ± 0.05 Ω·cm | 51 | 46.4 | |||
*CNF/epoxy | 2.1 | - | 5–34 | 2.4–16.2 | [49] | |
GNP/*PEDOT:PSS | 0.8 | 684 S/m | 70 | 88 | [50] | |
*SCF/*EVA | 3.5 | - | 8–12 | 29.5–34.1 | 8.4–9.7 | [51] |
*MX/*RGO | 3 | 1000 S/m | 51 | 17 | [52] | |
*3D G–CNT–Fe2O3 | 0.6 | 22,781 S/m | 130–134 | 216–223 | [53] | |
*GN/Cu | 0.009 (±0.0015) | 5.88 (±0.29) × 106 S/m | 1–18 | 52–63 | 5777–7000 | [54] |
*SWCNT/epoxy | 1.5 | 20 S/m | 0.01-1.5 | 15–49 | 10–32.6 | [55] |
The coated PET film using 30 wt% sample E-incorporated carbon paste | 0.6 | 1840 S/m | 1.5~40 | 12–24 | 20–40 | This work |
The coated PET film using 30 wt% sample J-incorporated carbon paste | 0.6 | 2170 S/m | 24–56 | 40.0–93.3 |
Sample | C2H2Flow Rate (sccm) | H2 Flow Rate (sccm) | SF6 Flow Rate (sccm) | SF6Flow Injection Time (min) | No. of SF6 Flow On/Off cycles | Total Reaction Time (min) | Total Gas Pressure (Torr) | Substrate Temp. (°C) | Remarks |
---|---|---|---|---|---|---|---|---|---|
A | 500 | - | 20 | 5 | - | 60 | 100 | 750 | Without cyclic process |
B | 500 | - | 20 | 15 | - | 60 | 100 | 750 | Without cyclic process |
C | 500 | - | 20 | 30 | - | 60 | 100 | 750 | Without cyclic process |
D | 500 | - | 50 | 5 | - | 60 | 100 | 750 | Without cyclic process |
E | 500 | - | 50 | 15 | - | 60 | 100 | 750 | Without cyclic process |
F | 500 | - | 50 | 30 | - | 60 | 100 | 750 | Without cyclic process |
G | 500 | - | 100 | 5 | - | 60 | 100 | 750 | Without cyclic process |
H | 500 | - | 100 | 15 | - | 60 | 100 | 750 | Without cyclic process |
I | 500 | - | 100 | 30 | - | 60 | 100 | 750 | Without cyclic process |
J | 500 | 60 | 50 | 15 | 5 | 60 | 100 | 750 | With cyclic process of SF6 flow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, G.-H.; Kim, S.-H.; Kang, J.-H.; Lim, J.; Yoo, M.H.; Kim, Y.T. Enhancement of Electromagnetic Wave Shielding Effectiveness by the Incorporation of Carbon Nanofibers–Carbon Microcoils Hybrid into Commercial Carbon Paste for Heating Films. Molecules 2023, 28, 870. https://doi.org/10.3390/molecules28020870
Kang G-H, Kim S-H, Kang J-H, Lim J, Yoo MH, Kim YT. Enhancement of Electromagnetic Wave Shielding Effectiveness by the Incorporation of Carbon Nanofibers–Carbon Microcoils Hybrid into Commercial Carbon Paste for Heating Films. Molecules. 2023; 28(2):870. https://doi.org/10.3390/molecules28020870
Chicago/Turabian StyleKang, Gi-Hwan, Sung-Hoon Kim, Ji-Hun Kang, Junwoo Lim, Myeong Ho Yoo, and Yi Tae Kim. 2023. "Enhancement of Electromagnetic Wave Shielding Effectiveness by the Incorporation of Carbon Nanofibers–Carbon Microcoils Hybrid into Commercial Carbon Paste for Heating Films" Molecules 28, no. 2: 870. https://doi.org/10.3390/molecules28020870
APA StyleKang, G. -H., Kim, S. -H., Kang, J. -H., Lim, J., Yoo, M. H., & Kim, Y. T. (2023). Enhancement of Electromagnetic Wave Shielding Effectiveness by the Incorporation of Carbon Nanofibers–Carbon Microcoils Hybrid into Commercial Carbon Paste for Heating Films. Molecules, 28(2), 870. https://doi.org/10.3390/molecules28020870