Aspects of Applied Chemistry Related to Future Goals of Safety and Efficiency in Materials Development for Nuclear Energy
Abstract
:1. Introduction
2. Relations between Microstructures and Alloys Performance of Future Generation of Nuclear Reactors
2.1. Zirconium Alloys in a New Concept of Safety
2.2. Austenitic Steel for Better Performance in Generation IV Reactors
- The selection of the best performing materials from among those already available;
- The development of new materials with better characteristics than the existing ones (ODS—steels hardened by oxide dispersion);
- The modification of the existing materials in order to improve their characteristics or performance through various surface coating methods.
- The capability to coat or treat full-length cladding tube/table with the desired microstructure and an acceptable cost;
- Relatively low fabrication temperature to avoid changing the microstructure of the underlying based alloy;
- No or little negative effect on neutron economics;
- Good thermal properties;
- Good corrosion and irradiation resistance under normal operating conditions;
- Good mechanical properties;
- Improved resistance to high-temperature steam or air under accident conditions.
3. High Entropy Alloys—Materials for Future Nuclear Reactors
3.1. Selection of Alloys Composition
3.2. Irradiation Damage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roussak, O.V.; Gesser, H.D. Applied Chemistry; Springer: Boston, MA, USA, 2013; ISBN 978-1-4614-4261-5. [Google Scholar]
- Saito, Y.; Robine, J.-M.; Crimmins, E.M. The methods and materials of health expectancy. Stat. J. IAOS 2014, 30, 209–223. [Google Scholar] [CrossRef]
- Younger, M.; Morrow-Almeida, H.R.; Vindigni, S.M.; Dannenberg, A.L. The Built Environment, Climate Change, and Health. Am. J. Prev. Med. 2008, 35, 517–526. [Google Scholar] [CrossRef]
- Pan, M.; Lednicky, J.A.; Wu, C.-Y. Collection, particle sizing and detection of airborne viruses. J. Appl. Microbiol. 2019, 127, 1596–1611. [Google Scholar] [CrossRef] [Green Version]
- Dickson, T.; Pavía, S. Energy performance, environmental impact and cost of a range of insulation materials. Renew. Sustain. Energy Rev. 2021, 140, 110752. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- IAEA—International Atomic Energy Agency. The Fukushima Daiichi Nuclear Accident; Springer: Japan, Tokyo, 2015; ISBN 978-4-431-55159-1. [Google Scholar]
- Totea, G.; Ionita, D.; Demetrescu, I.; Mitache, M. In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood. Open Chem. 2014, 12, 796–803. [Google Scholar] [CrossRef]
- Romonti, D.E.; Gomez Sanchez, A.V.; Milošev, I.; Demetrescu, I.; Ceré, S. Effect of anodization on the surface characteristics and electrochemical behaviour of zirconium in artificial saliva. Mater. Sci. Eng. C 2016, 62, 458–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statista. Electricity Generation in the European Union (EU) in 2021, by fuel. Available online: https://www.statista.com/statistics/800217/eu-power-production-by-fuel (accessed on 29 October 2022).
- Malerba, L.; Al Mazouzi, A.; Bertolus, M.; Cologna, M.; Efsing, P.; Jianu, A.; Kinnunen, P.; Nilsson, K.-F.; Rabung, M.; Tarantino, M. Materials for sustainable nuclear energy: A european strategic research and innovation agenda for all reactor generations. Energies 2022, 15, 1845. [Google Scholar] [CrossRef]
- US Department of Energy. Nuclear Safety Research and Development (NSR&D) Program. Available online: https://www.energy.gov/ehss/nuclear-safety-research-and-development-nsrd-program (accessed on 29 October 2022).
- Nartita, R.; Ionita, D.; Demetrescu, I. Sustainable coatings on metallic alloys as a nowadays challenge. Sustainability 2021, 13, 10217. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Nuclear Power in a Clean Energy System. Available online: https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system (accessed on 29 October 2022).
- Gottardo, S.; Mech, A.; Drbohlavová, J.; Małyska, A.; Bøwadt, S.; Riego Sintes, J.; Rauscher, H. Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials. NanoImpact 2021, 21, 100297. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Fishman, T.; Plank, B.; Miatto, A.; Lauk, C.; Haas, W.; Haberl, H.; Krausmann, F. Prospects for a saturation of humanity’s resource use? An analysis of material stocks and flows in nine world regions from 1900 to 2035. Glob. Environ. Chang. 2021, 71, 102410. [Google Scholar] [CrossRef]
- Szustak, G.; Dąbrowski, P.; Gradoń, W.; Szewczyk, Ł. The relationship between energy production and GDP: Evidence from selected european economies. Energies 2021, 15, 50. [Google Scholar] [CrossRef]
- Corwin, W.R.; Burchell, T.D.; Katoh, Y.; McGreevy, T.E.; Nanstad, R.K.; Ren, W.; Snead, L.L.; Wilson, D.F. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2008. [Google Scholar]
- Yvon, P. Structural Materials for Generation IV Nuclear Reactors, 1st ed.; Yvon, P., Ed.; Woodhead Publishing: Sawston, UK, 2016; ISBN 9780081009062. [Google Scholar]
- Stanculescu, A. Worldwide status of advanced reactors (GEN IV) research and technology development. In Encyclopedia of Nuclear Energy; Greenspan, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 478–489. ISBN 9780128197325. [Google Scholar]
- Allen, T.R.; Sridharan, K.; Tan, L.; Windes, W.E.; Cole, J.I.; Crawford, D.C.; Was, G.S. Materials challenges for generation IV nuclear energy systems. Nucl. Technol. 2008, 162, 342–357. [Google Scholar] [CrossRef]
- Li, F.; Fuetterer, M.; De Groot, S.; Sadhankar, R.; Carre, F.; Tachibana, Y.; Kim, Y.W.; Pouchon, M.A.; Sink, C. Very High Temperature Reactor (VHTR) System. In Proceedings of the GIF Sympsium; GIF Symposium Proceedings: San Diego, CA, USA, 2013; pp. 57–62. [Google Scholar]
- Guo, S.; Zhang, J.; Wu, W.; Zhou, W. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Prog. Mater. Sci. 2018, 97, 448–487. [Google Scholar] [CrossRef]
- Ding, H.; Tong, J.; Wang, Y.; Zhang, L. Development of emergency planning zone for high temperature gas-cooled reactor. Ann. Nucl. Energy 2018, 111, 347–353. [Google Scholar] [CrossRef]
- Cheng, S.; Xu, R. Molten-Pool Mobility. In Safety of Sodium-Cooled Fast Reactors; Springer: Singapore, 2021; p. 32. ISBN 978-981-16-6115-0. [Google Scholar]
- Petrescu, D.; Fulger, M.; Golgovici, F.; Demetrescu, I. Addresing some issues encountered in liquid lead corrosion tests of candidate materials for future nuclear reactors. U.P.B. Sci. Bull. Ser. B 2022, 84, 89–97. [Google Scholar]
- Rahman, M.M.; Dongxu, J.; Jahan, N.; Salvatores, M.; Zhao, J. Design concepts of supercritical water-cooled reactor (SCWR) and nuclear marine vessel: A review. Prog. Nucl. Energy 2020, 124, 103320. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Zhang, R. Application and development progress of Cr-based surface coatings in nuclear fuel element: I. Selection, preparation, and characteristics of coating materials. Coatings 2020, 10, 808. [Google Scholar] [CrossRef]
- Karoutas, Z.; Brown, J.; Atwood, A.; Hallstadius, L.; Lahoda, E.; Ray, S.; Bradfute, J. The maturing of nuclear fuel: Past to accident tolerant fuel. Prog. Nucl. Energy 2018, 102, 68–78. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Busby, J.T. Structural materials for fission & fusion energy. Mater. Today 2009, 12, 12–19. [Google Scholar] [CrossRef]
- Azevedo, C.R.F. Selection of fuel cladding material for nuclear fission reactors. Eng. Fail. Anal. 2011, 18, 1943–1962. [Google Scholar] [CrossRef]
- Motta, A.T.; Couet, A.; Comstock, R.J. Corrosion of zirconium alloys used for nuclear fuel cladding. Annu. Rev. Mater. Res. 2015, 45, 311–343. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Yang, H.; Satoh, Y.; Murakami, K.; Kano, S.; Zhao, Z.; Shen, J.; Abe, H. Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl. Eng. Des. 2017, 316, 131–150. [Google Scholar] [CrossRef]
- Sun, C.; Yang, Z.; Wu, Z. Study on corrosion resistance of N36 zirconium alloy in LiOH aqueous solution. World J. Nucl. Sci. Technol. 2018, 8, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Stueber, M.; Seifert, H.J.; Steinbrueck, M. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings. Corros. Rev. 2017, 35, 141–165. [Google Scholar] [CrossRef]
- Alam, T.; Khan, M.K.; Pathak, M.; Ravi, K.; Singh, R.; Gupta, S.K. A review on the clad failure studies. Nucl. Eng. Des. 2011, 241, 3658–3677. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Terrani, K.A.; Gehin, J.C.; Ott, L.J.; Snead, L.L. Accident tolerant fuels for LWRs: A perspective. J. Nucl. Mater. 2014, 448, 374–379. [Google Scholar] [CrossRef]
- Diniasi, D.; Golgovici, F.; Marin, A.H.; Negrea, A.D.; Fulger, M.; Demetrescu, I. Long-term corrosion testing of Zy-4 in a LiOH solution under high pressure and temperature conditions. Materials 2021, 14, 4586. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, P.; Xu, T.; Gui, M.; Shan, J. Performance evaluation of accident tolerant fuel under station blackout accident in PWR nuclear power plant by improved ISAA code. Nucl. Eng. Technol. 2022, 54, 2475–2490. [Google Scholar] [CrossRef]
- Rebak, R. Accident-Tolerant Materials for Light Water Reactor Fuels, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128175033. [Google Scholar]
- Chen, S.-L.; He, X.-J.; Yuan, C.-X. Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors. Nucl. Sci. Tech. 2020, 31, 32. [Google Scholar] [CrossRef]
- Nuclear Energy Agency (NEA). State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels; Nuclear Science; NEA—7317; Nuclear Energy Agency OECD: Paris, France, October 2018; ISBN 9789264308343. [Google Scholar]
- Geelhood, K.; Luscher, W. Degradation and Failure Phenomena of Accident Tolerant Fuel Concepts Chromium Coated Zirconium Alloy Cladding; PNNL-28437; Pacific Northwest National Laboratory: Richland, WA, USA, January 2019. [Google Scholar]
- Bragg-Sitton, S.M.; Todosow, M.; Montgomery, R.; Stanek, C.R.; Montgomery, R.; Carmack, W.J. Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel. Nucl. Technol. 2016, 195, 111–123. [Google Scholar] [CrossRef]
- Terrani, K.A. Accident tolerant fuel cladding development: Promise, status, and challenges. J. Nucl. Mater. 2018, 501, 13–30. [Google Scholar] [CrossRef]
- Bragg-Sitton, S. Update on Development of Enhanced Accident Tolerant Fuel for Light Water Reactors in the United States in the Start-Up Meeting of the OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs; Nuclear Energy Agency: Paris, France, 2014. [Google Scholar]
- Forgeron, T.; Guedeney, P.; Brachet, J.; Michaux, A. ATF R&D status and perspectives. In Proceedings of the Start-up Meeting of the OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs, Paris, France, 28–29 April 2014. [Google Scholar]
- Koo, Y.; Yang, J.; Kim, H. Accident tolerant fuel (ATF) development: KAERI’s R&D status. In Proceedings of the Start-Up Meeting of the OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs, Paris, France, 28–29 April 2014. [Google Scholar]
- Kurata, M. Overview on ATF R&D in Japan. In Proceedings of the Start-Up Meeting of the OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs, Paris, France, 28–29 April 2014. [Google Scholar]
- Birks, N.; Meier, G.H.; Pettit, F.S. Introduction to the High Temperature Oxidation of Metals, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006; ISBN 9780521480420. [Google Scholar]
- Young, D. High Temperature Oxidation and Corrosion of Metals, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780081001011. [Google Scholar]
- Sarrazin, P.; Galerie, A.; Fouletier, J.; Evans, H. Mechanisms of High Temperature Corrosion: A Kinetic Approach; Trans Tech Publications: Uetikon, Zuerich, Switzerland, 2008. [Google Scholar]
- Brachet, J.-C.; Idarraga-Trujillo, I.; Flem, M.L.; Saux, M.L.; Vandenberghe, V.; Urvoy, S.; Rouesne, E.; Guilbert, T.; Toffolon-Masclet, C.; Tupin, M.; et al. Early studies on Cr-coated zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors. J. Nucl. Mater. 2019, 517, 268–285. [Google Scholar] [CrossRef]
- Guanghai, B.; Zhilin, C.; Yanwei, Z.; Erwei, L.; Jiaxiang, X.; Weiwei, Y.; Rongshan, W.; Rui, L.; Tong, L. Research progress of coating on zirconium alloy for nuclear fuel cladding. Rare Met. Mater. Eng. 2017, 46, 2035–2040. [Google Scholar]
- Zhang, W.; Tang, R.; Yang, Z.B.; Liu, C.H.; Chang, H.; Yang, J.J.; Liao, J.L.; Yang, Y.Y.; Liu, N. Preparation, structure, and properties of high-entropy alloy multilayer coatings for nuclear fuel cladding: A case study of AlCrMoNbZr/(AlCrMoNbZr)N. J. Nucl. Mater. 2018, 512, 15–24. [Google Scholar] [CrossRef]
- Kashkarov, E.B.; Sidelev, D.V.; Pushilina, N.S.; Yang, J.; Tang, C.; Steinbrueck, M. Influence of coating parameters on oxidation behavior of Cr-coated zirconium alloy for accident tolerant fuel claddings. Corros. Sci. 2022, 203, 110359. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Syrtanov, M.S.; Ruchkin, S.E.; Pirozhkov, A.V.; Kashkarov, E.B. Protection of Zr alloy under high-temperature air oxidation: A multilayer coating approach. Coatings 2021, 11, 227. [Google Scholar] [CrossRef]
- Kashkarov, E.; Afornu, B.; Sidelev, D.; Krinitcyn, M.; Gouws, V.; Lider, A. recent advances in protective coatings for accident tolerant Zr-based fuel claddings. Coatings 2021, 11, 557. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Ruchkin, S.E.; Shelepov, I.A.; Saburov, N.S.; Malgin, A.G.; Polunin, K.K.; Stoykov, K.V.; Mokrushin, A.A. Protective Cr coatings with ZrO2/Cr multilayers for zirconium fuel claddings. Coatings 2022, 12, 1409. [Google Scholar] [CrossRef]
- Terrani, K.A.; Parish, C.M.; Shin, D.; Pint, B.A. Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure. J. Nucl. Mater. 2013, 438, 64–71. [Google Scholar] [CrossRef]
- Zhong, W.; Mouche, P.A.; Han, X.; Heuser, B.J.; Mandapaka, K.K.; Was, G.S. Performance of iron–chromium–aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions. J. Nucl. Mater. 2016, 470, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Park, D.J.; Kim, H.G.; Jung, Y.I.; Park, J.H.; Yang, J.H.; Koo, Y.H. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions. J. Nucl. Mater. 2016, 482, 75–82. [Google Scholar] [CrossRef]
- Maier, B.; Yeom, H.; Johnson, G.; Dabney, T.; Walters, J.; Romero, J.; Shah, H.; Xu, P.; Sridharan, K. Development of cold spray coatings for accident-tolerant fuel cladding in light water reactors. JOM 2018, 70, 198–202. [Google Scholar] [CrossRef]
- Van Nieuwenhove, R.; Andersson, V.; Balak, J.; Oberländer, B. In-pile testing of CrN, TiAlN, and AlCrN coatings on Zircaloy cladding in the halden reactor. In Zirconium in the Nuclear Industry: 18th International Symposium; ASTM International: West Conshohocken, PA, USA, 2018; pp. 965–982. [Google Scholar]
- Daub, K.; Van Nieuwenhove, R.; Nordin, H. Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4. J. Nucl. Mater. 2015, 467, 260–270. [Google Scholar] [CrossRef]
- Roberts, D.A. Magnetron Sputtering and Corrosion of Ti-Al-C and Cr-Al-C coatings for Zr-alloy Nuclear Fuel Cladding. Masters Thesis, University of Tennessee, Knoxville, TN, USA, May 2016. [Google Scholar]
- Ang, C.; Silva, C.; Shih, C.; Koyanagi, T.; Katoh, Y.; Zinkle, S.J. Anisotropic swelling and microcracking of neutron irradiated Ti3AlC2–Ti5Al2C3 materials. Scr. Mater. 2016, 114, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Ang, C.; Zinkle, S.; Shih, C.; Silva, C.; Cetiner, N.; Katoh, Y. Phase stability, swelling, microstructure and strength of Ti3SiC2-TiC ceramics after low dose neutron irradiation. J. Nucl. Mater. 2017, 483, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Tunes, M.A.; Harrison, R.W.; Donnelly, S.E.; Edmondson, P.D. A Transmission Electron Microscopy study of the neutron-irradiation response of Ti-based MAX phases at high temperatures. Acta Mater. 2019, 169, 237–247. [Google Scholar] [CrossRef]
- Wang, C.; Han, Z.; Su, R.; Gao, J.; Shi, L. Effects of irradiation damage on the structure in Cr2AlC thin film. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 450, 286–290. [Google Scholar] [CrossRef]
- Imtyazuddin, M.; Mir, A.H.; Tunes, M.A.; Vishnyakov, V.M. Radiation resistance and mechanical properties of magnetron-sputtered Cr2AlC thin films. J. Nucl. Mater. 2019, 526, 151742. [Google Scholar] [CrossRef]
- Pantano, M.; Avincola, A.; De Seze, P.A.; McKrell, T.; Kazimi, M.H. High temperature steam oxidation performance of max phase (Ti2AlC) coated ZIRLO. In Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP), Charlotte, NC, USA, 6–9 April 2014. [Google Scholar]
- Yeom, H.; Hauch, B.; Cao, G.; Garcia-Diaz, B.; Martinez-Rodriguez, M.; Colon-Mercado, H.; Olson, L.; Sridharan, K. Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate. Thin Solid Film. 2016, 615, 202–209. [Google Scholar] [CrossRef]
- Tang, C.; Steinbrueck, M.; Stueber, M.; Grosse, M.; Yu, X.; Ulrich, S.; Seifert, H.J. Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4. Corros. Sci. 2018, 135, 87–98. [Google Scholar] [CrossRef]
- Kim, H.-G.; Kim, I.-H.; Jung, Y.-I.; Park, D.-J.; Park, J.-Y.; Koo, Y.-H. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating. J. Nucl. Mater. 2015, 465, 531–539. [Google Scholar] [CrossRef]
- Kim, H.G.; Jung, Y.I.; Park, D.J.; Yang, J.H.; Koo, Y.H.; Kim, I.H. Development of surface modified Zr cladding by coating technology for ATF. In Proceedings of the Top Fuel, Boise, ID, USA, 1 July 2016. [Google Scholar]
- Bischoff, J.; Delafoy, C.; Vauglin, C.; Barberis, P.; Roubeyrie, C.; Perche, D.; Duthoo, D.; Schuster, F.; Brachet, J.-C.; Schweitzer, E.W.; et al. AREVA NP’s enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding. Nucl. Eng. Technol. 2018, 50, 223–228. [Google Scholar] [CrossRef]
- Krejci, J.; Sevecek, M.; Kabatova, J.; Manoch, F.; Koci, J.; Bublikova, P.; Halodova, P.; Namburi, H.K. Experimental behaviour of chromium-based coatings. In Proceedings of the Top Fuel; Prague, Czech Republic, 30 September–4 October 2018. [Google Scholar]
- Wei, T.; Zhang, R.; Yang, H.; Liu, H.; Qiu, S.; Wang, Y.; Du, P.; He, K.; Hu, X.; Dong, C. Microstructure, corrosion resistance and oxidation behavior of Cr-coatings on Zircaloy-4 prepared by vacuum arc plasma deposition. Corros. Sci. 2019, 158, 108077. [Google Scholar] [CrossRef]
- Brachet, J.-C.; Le Saux, M.; Le Flem, M.; Urvoy, S.; Rouesne, E.; Guilbert, T.; Cobac, C.; Lahogue, F.; Rousselot, J.; Tupin, M.; et al. On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWRs fuel. In Proceedings of the Top Fuel, Zurich, Switzerland, 13–17 September 2015. [Google Scholar]
- Wu, A.; Ribis, J.; Brachet, J.-C.; Clouet, E.; Leprêtre, F.; Bordas, E.; Arnal, B. HRTEM and chemical study of an ion-irradiated chromium/zircaloy-4 interface. J. Nucl. Mater. 2018, 504, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Kuprin, A.S.; Belous, V.A.; Voyevodin, V.N.; Vasilenko, R.L.; Ovcharenko, V.D.; Tolstolutskaya, G.D.; Kopanets, I.E.; Kolodiy, I.V. Irradiation resistance of vacuum arc chromium coatings for zirconium alloy fuel claddings. J. Nucl. Mater. 2018, 510, 163–167. [Google Scholar] [CrossRef]
- Maier, B.R.; Yeom, H.; Johnson, G.; Dabney, T.; Hu, J.; Baldo, P.; Li, M.; Sridharan, K. In situ TEM investigation of irradiation-induced defect formation in cold spray Cr coatings for accident tolerant fuel applications. J. Nucl. Mater. 2018, 512, 320–323. [Google Scholar] [CrossRef]
- Idarraga-Trujillo, I.; Le Flem, M.; Brachet, J.-C.; Le Saux, M.; Hamon, D.; Muller, S.; Vandenberghe, V.; Tupin, M.; Papin, E.; Billard, A.; et al. Assessment at CEA of coated nuclear fuel cladding for LWRs with increasing margins in LOCA and beyond LOCA conditions. In Proceedings of the Top Fuel, Charlotte, NC, USA, 15 September 2013. [Google Scholar]
- Brachet, J.-C.; Guilbert, T.; Le Saux, M.; Rousselot, J.; Nony, G.; Michau, A.; Schuster, F.; Palancher, H.; Toffolon-Masclet, C.; Bischoff, J.; et al. Behaviour of Cr-coated M5 claddings during and after high temperature steam oxidation from 800 C up to 1500 C. In Proceedings of the Top Fuel, Prague, Czech Republlic, 30 September 2018. [Google Scholar]
- Brachet, J.-C.; Le Saux, M.; Lezaud-Chaillioux, V.; Dumerval, M.; Houmaire, Q.; Lomello, F.; Schuster, F.; Monsifrot, E.; Bischoff, J.; Pouillier, E. Behaviour under LOCA conditions of enhanced accident tolerant chromium coated zircalo-4 claddings. In Proceedings of the Top Fuel 2016-Light Water Reactor (LWR) Fuel Performance Meeting, Boise, ID, USA, 11 September 2016. [Google Scholar]
- Brachet, J.-C.; Dumerval, M.; Lezaud-Chaillioux, V.; Le Saux, M.; Rouesne, E.; Hamon, D.; Urvoy, S.; Guilbert, T.; Houmaire, Q.; Cobac, C.; et al. Behaviour of chromium coated M5TM claddings under LOCA conditions. In Proceedings of the Water Reactor Fuel Performance Meeting, Jeju Island, Korea, 10–14 September 2017. [Google Scholar]
- Kim, H.-G.; Yang, J.-H.; Kim, W.-J.; Koo, Y.-H. Development Status of Accident-tolerant Fuel for Light Water Reactors in Korea. Nucl. Eng. Technol. 2016, 48, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-G.; Kim, I.-H.; Jung, Y.-I.; Park, D.-J.; Park, J.-H.; Choi, B.-K.; Lee, Y.-H. Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs. J. Nucl. Mater. 2018, 510, 93–99. [Google Scholar] [CrossRef]
- Kim, H.-G.; Kim, I.-H.; Jung, Y.-I.; Park, D.J.; Park, J.H.; Yang, J.H.; Koo, Y.-H. Progress of surface modified Zr cladding development for ATF in Korea. In Proceedings of the Water Reactor Fuel Performance Meeting, Jeju Island, Korea, 10–14 September 2017. [Google Scholar]
- Sun, C.; Hui, R.; Qu, W.; Yick, S. Progress in corrosion resistant materials for supercritical water reactors. Corros. Sci. 2009, 51, 2508–2523. [Google Scholar] [CrossRef]
- Hui, R.; Cook, W.; Sun, C.; Xie, Y.; Yao, P.; Miles, J.; Olive, R.; Li, J.; Zheng, W.; Zhang, L. Deposition, characterization and performance evaluation of ceramic coatings on metallic substrates for supercritical water-cooled reactors. Surf. Coatings Technol. 2011, 205, 3512–3519. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Guzonas, D. Characterization of Ni–20Cr–5Al model alloy in supercritical water. J. Nucl. Mater. 2014, 445, 298–307. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Xu, B.; Zhang, J.; Sun, M.; Li, D. Research progress on preparation technology of oxide dispersion strengthened steel for nuclear energy. Int. J. Extrem. Manuf. 2021, 3, 032001. [Google Scholar] [CrossRef]
- Liu, C.L. Development status and trend of global nuclear power. Glob. Sci. Technol. Econ. Outlook 2017, 32, 67–76. [Google Scholar]
- Rong, J.; Liu, Z. Development and prospect of advanced nuclear energy technology. At. Energy Sci. Technol. 2020, 54, 1638–1643. [Google Scholar]
- Xu, S.; Chen, L.Z.; Cao, S.G.; Jia, H.D.; Zhou, Z.J. Research progress on microstructure design and control of ODS steels applied to advanced nuclear energy systems. Mater. Rep. 2019, 33, 78–89. [Google Scholar]
- Wang, J.Q.; Dai, Z.M.; Xu, H.J. Research status and prospect of comprehensive utilization of nuclear energy. Bull. Chin. Acad. Sci. 2019, 34, 460–468. [Google Scholar]
- DoE, U.S. A Technology Roadmap for Generation IV Nuclear Energy Systems. In Proceedings of the Nuclear Energy Research Advisory Committee and the Generation IV International Forum, Oakville, ON, USA, 5 May 2022. [Google Scholar]
- Hosemann, P.; Vujić, J. Material issues for current and advanced designs. Contemp. Mater. 2014, 5. [Google Scholar] [CrossRef]
- Hoffelner, W. Damage assessment in structural metallic materials for advanced nuclear plants. J. Mater. Sci. 2010, 45, 2247–2257. [Google Scholar] [CrossRef]
- Murty, K.L.; Charit, I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 2008, 383, 189–195. [Google Scholar] [CrossRef]
- Kurtz, R.J.; Odette, G.R. Overview of Reactor Systems and Operational Environments for Structural Materials in Fusion Reactors. In Structural Alloys for Nuclear Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 51–102. [Google Scholar]
- Tunes, M.A.; Greaves, G.; Kremmer, T.M.; Vishnyakov, V.M.; Edmondson, P.D.; Donnelly, S.E.; Pogatscher, S.; Schön, C.G. Thermodynamics of an austenitic stainless steel (AISI-348) under in situ TEM heavy ion irradiation. Acta Mater. 2019, 179, 360–371. [Google Scholar] [CrossRef]
- Was, G.S.; Taller, S.; Jiao, Z.; Monterrosa, A.M.; Woodley, D.; Jennings, D.; Kubley, T.; Naab, F.; Toader, O.; Uberseder, E. Resolution of the carbon contamination problem in ion irradiation experiments. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2017, 412, 58–65. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Maziasz, P.J.; Stoller, R.E. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel. J. Nucl. Mater. 1993, 206, 266–286. [Google Scholar] [CrossRef]
- Agency, I.A.E.A. Status of Research and Technology Development for Supercritical Water Cooled Reactors; International Atomic Energy Agency: Vienna, Austria, 2019. [Google Scholar]
- Baindur, S. Materials challenges for the Supercritical Water-Cooled Reactor (SCWR). Can. Nucl. Soc. Bull. 2008, 29, 32–38. [Google Scholar]
- Buongiorno, J.; MacDonald, P.E. Supercritical Water Reactor (SCWR)-Progress Report for the FY-03 Generation-IV R&D Activities for the Development of the SCWR in the U.S.; INEEL/EXT-03-01210; Idaho National Engineering and Environmental Laboratory: Idaho Falls, ID, USA, 2003. [Google Scholar]
- Gupta, G.; Ampornrat, P.; Ren, X.; Sridharan, K.; Allen, T.R.; Was, G.S. Role of grain boundary engineering in the SCC behavior of ferritic–martensitic alloy HT-9. J. Nucl. Mater. 2007, 361, 160–173. [Google Scholar] [CrossRef]
- Selvig, A.; Huang, X.; Guzonas, D. Microstructural Evaluation of Stressed IN625 and NiCrAlY Coated IN625 Tested in High and Low Density SCW. In Proceedings of the Annual Conference of the Canadian Nuclear Society, Saskatoon, Saskatchewan, 10–13 June 2012. [Google Scholar]
- Fulger, M.; Mihalache, M.; Velciu, L.; Pantaru, M.; Valeca, S.; Venescu, R. Assessment of oxidation behavior in supercritical water of alloys with different chromium content. In Proceedings of the Annual International Conference on Sustainable Development Through Nuclear Research and Education; Institute for Nuclear Research: Pitesti, Romania, May 2014. [Google Scholar]
- Griffiths, M. Effect of Neutron Irradiation on the Mechanical Properties, Swelling and Creep of Austenitic Stainless Steels. Materials 2021, 14, 2622. [Google Scholar] [CrossRef] [PubMed]
- Simnad, M.T. A brief history of power reactor fuels. J. Nucl. Mater. 1981, 100, 93–107. [Google Scholar] [CrossRef]
- Lucas, G.E. The evolution of mechanical property change in irradiated austenitic stainless steels. J. Nucl. Mater. 1993, 206, 287–305. [Google Scholar] [CrossRef]
- Tavassoli, A.A. Assessment of austenitic stainless steels. Fusion Eng. Des. 1995, 29, 371–390. [Google Scholar] [CrossRef]
- Şahin, S.; Übeyli, M. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors. J. Fusion Energy 2008, 27, 271–277. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; Honeycombe, R.W.K. Steels: Microstructure and Properties, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2006; ISBN 9780750680844. [Google Scholar]
- Sourmail, T. Precipitation in creep resistant austenitic stainless steels. Mater. Sci. Technol. 2001, 17, 1–14. [Google Scholar] [CrossRef]
- Barcellini, C.; Harrison, R.W.; Dumbill, S.; Donnelly, S.E.; Jimenez-Melero, E. Evolution of radiation-induced lattice defects in 20/25 Nb-stabilised austenitic stainless steel during in-situ proton irradiation. J. Nucl. Mater. 2019, 514, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Barcellini, C.; Harrison, R.W.; Dumbill, S.; Donnelly, S.E.; Jimenez-Melero, E. Local chemical instabilities in 20Cr 25Ni Nb-stabilised austenitic stainless steel induced by proton irradiation. J. Nucl. Mater. 2019, 518, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Sencer, B.H.; Bond, G.M.; Hamilton, M.L.; Garner, F.A.; Maloy, S.A.; Sommer, W.F. Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons. J. Nucl. Mater. 2001, 296, 112–118. [Google Scholar] [CrossRef]
- Sencer, B.H.; Maloy, S.A.; Hamilton, M.L.; Garner, F.A. Microstructural evolution of both as-irradiated and subsequently deformed microstructures of 316L stainless steel irradiated at 30–160 °C at LANSCE. J. Nucl. Mater. 2005, 345, 136–145. [Google Scholar] [CrossRef]
- Schwind, M.; Källqvist, J.; Nilsson, J.-O.; Ågren, J.; Andrén, H.-O. σ-phase precipitation in stabilized austenitic stainless steels. Acta Mater. 2000, 48, 2473–2481. [Google Scholar] [CrossRef]
- Erneman, J.; Schwind, M.; Liu, P.; Nilsson, J.-O.; Andrén, H.-O.; Ågren, J. Precipitation reactions caused by nitrogen uptake during service at high temperatures of a niobium stabilised austenitic stainless steel. Acta Mater. 2004, 52, 4337–4350. [Google Scholar] [CrossRef]
- Chandra, K.; Kain, V.; Bhutani, V.; Raja, V.S.; Tewari, R.; Dey, G.K.; Chakravartty, J.K. Low temperature thermal aging of austenitic stainless steel welds: Kinetics and effects on mechanical properties. Mater. Sci. Eng. A 2012, 534, 163–175. [Google Scholar] [CrossRef]
- Masumura, T.; Nakada, N.; Tsuchiyama, T.; Takaki, S.; Koyano, T.; Adachi, K. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels. Acta Mater. 2015, 84, 330–338. [Google Scholar] [CrossRef]
- Timm, M.M.; Oyarzabal, Í.M.; Tatsch, F.; Amaral, L.; Fichtner, P.F.P. Au and Ag ion irradiation effects on the carbide precipitation and Ar bubble formation in solubilized AISI 316L alloys. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 458, 174–178. [Google Scholar] [CrossRef]
- Oyarzabal, Í.M.; de Timm, M.M.; Pasini, W.M.; de Oliveira, F.S.M.; Tatsch, F.; Amaral, L.; Fichtner, P.F.P. Influence of Ar Implantation on the Precipitation in Au Ion Irradiated AISI 316L Solution Annealed Alloy. MRS Adv. 2018, 3, 1799–1805. [Google Scholar] [CrossRef]
- Jiao, Z.; Was, G.S. Novel features of radiation-induced segregation and radiation-induced precipitation in austenitic stainless steels. Acta Mater. 2011, 59, 1220–1238. [Google Scholar] [CrossRef]
- Klok, O. Influence of oxygen concentration on the initiation of dissolution corrosion on 316L austenitic stainless steel at 450 °C. In Proceedings of the 25th International Conference on Nuclear Engineering, Shanghai, China, 2–6 July 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017. [Google Scholar]
- Al-Mangour, B. Powder metallurgy of stainless steel: State-of-the art, challenges, and development. In Stainless Steel: Microstructure, Mechanical Properties and Methods of Application; Pramanik, A., Basak, A.K., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 37–41. [Google Scholar]
- Corrosion Handbook. APV (SPX Corporation). Available online: http://www.apvhemisan.com/urunler/dokumantasyon (accessed on 29 October 2022).
- Baldev, R.; Kamachi Mudali, U.; Vijayalakshmi, M.; Mathew, M.D.; Bhaduri, A.K.; Chellapandi, P.; Venugopal, S.; Sundar, C.S.; Rao, B.P.C.; Venkatraman, B. development of stainless steels in nuclear industry: With emphasis on sodium cooled fast spectrum reactors history, technology and foresight. Adv. Mater. Res. 2013, 794, 3–25. [Google Scholar] [CrossRef]
- Garner, F.A. Radiation-Induced Damage in Austenitic Structural Steels Used in Nuclear Reactors. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 57–168. [Google Scholar]
- Porollo, S.I.; Shulepin, S.V.; Konobeev, Y.V.; Garner, F.A. Influence of silicon on swelling and microstructure in Russian austenitic stainless steel EI-847 irradiated to high neutron doses. J. Nucl. Mater. 2008, 378, 17–24. [Google Scholar] [CrossRef]
- Maziasz, P.J.; Busby, J.T. Properties of Austenitic Steels for Nuclear Reactor Applications. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 267–283. [Google Scholar]
- Seifert, H.P.; Ritter, S.; Leber, H.J. Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions. Corros. Sci. 2012, 55, 61–75. [Google Scholar] [CrossRef]
- C.O.S.A.B. Practical guidelines for the fabrication of high performance austenitic stainless steels. Available online: https://www.outokumpu.com/ (accessed on 29 October 2022).
- Nieuwenhove, R. Van Investigation of coatings, applied by PVD, for the corrosion protection of materials in supercritical water. In Proceedings of the 6th International Conference on Supercritical Water Reactors, Shenzhen, Guangdong, 3–7 March 2013. [Google Scholar]
- Nieuwenhove, R.V.; Balak, J.; Ejenstam, J.; Szakalos, P. Investigation of CrN and AlCrN coatings, applied by PVD, for the corrosion protection of metals in liquid lead at 550 °C. In Proceedings of the NUMAT (Nuclear Materials), Clearwater, FL, USA, 27 –30 October 2014. [Google Scholar]
- Diniasi, D.; Golgovici, F.; Anghel, A.; Fulger, M.; Surdu-Bob, C.C.; Demetrescu, I. Corrosion Behavior of Chromium Coated Zy-4 Cladding under CANDU Primary Circuit Conditions. Coatings 2021, 11, 1417. [Google Scholar] [CrossRef]
- Ruden-Muñoz, A.; Restrepo-Para, E.; Sequeda, F. CrN coatings deposited by magnetron sputtering: Mechanical and tribological properties. DYNA 2015, 82, 147–155. [Google Scholar] [CrossRef]
- Huang, X.; Yang, Q.; Guzonas, D. Performance of Chemical Vapor Deposition and Plasma Spray-Coated Stainless Steel 310 in Supercritical Water. J. Nucl. Eng. Radiat. Sci. 2016, 2. [Google Scholar] [CrossRef]
- Kumar, D.; Dryepondt, S.; Zhang, Y.; Haynes, J.A.; Pint, B.A.; Armstrong, B.L.; Shyam, A.; Lara-Curzio, E. Performance of Diffusion Aluminide Coatings Applied on Alloy CF8C-Plus at 800 °C. In Proceedings of the CORROSION 2011, Houston, TX, USA, 13–17 March 2011. [Google Scholar]
- Pérez, F.J.; Castañeda, S.I. TG–mass spectrometry studies in coating design for supercritical steam turbines. Mater. Corros. 2008, 59, 409–413. [Google Scholar] [CrossRef]
- Agüero, A.; Muelas, R.; Gutiérrez, M.; Van Vulpen, R.; Osgerby, S.; Banks, J.P. Cyclic oxidation and mechanical behaviour of slurry aluminide coatings for steam turbine components. Surf. Coatings Technol. 2007, 201, 6253–6260. [Google Scholar] [CrossRef]
- Agüero, A.; Gutiérrez, M.; Muelas, R. Steam oxidation testing of coatings for next generation steam power plant components. Mater. Sci. Forum 2006, 522, 205–212. [Google Scholar] [CrossRef]
- Zhang, Y.; Pint, B.A.; Haynes, J.A.; Tortorelli, P.F. The effect of water vapor on the oxidation behavior of cvd iron-aluminide coatings. Oxid. Met. 2004, 62, 103–120. [Google Scholar] [CrossRef]
- Tudose, A.E.; Demetrescu, I.; Golgovici, F.; Fulger, M. Oxidation behavior of an austenitic steel (Fe, Cr and Ni), the 310 H, in a deaerated supercritical water static system. Metals 2021, 11, 571. [Google Scholar] [CrossRef]
- Tudose, A.E.; Golgovici, F.; Anghel, A.; Fulger, M.; Demetrescu, I. Corrosion testing of CrNx-coated 310 H stainless steel under simulated supercritical water conditions. Materials 2022, 15, 5489. [Google Scholar] [CrossRef]
- Tudose, A.E.; Golgovici, F.; Demetrescu, I.; Fulger, M.; Anghel, A.; Brincoveanu, O. Influence of chromium nitride ceramic layers thicknesses developed onto 310 H stainless steel on the corrosion resistance. U.P.B. Sci. Bull. Ser. B 2022, 84, 191–202. [Google Scholar]
- Barshilia, H.C.; Selvakumar, N.; Deepthi, B.; Rajam, K.S. A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings. Surf. Coatings Technol. 2006, 201, 2193–2201. [Google Scholar] [CrossRef]
- Wan, X.S.; Zhao, S.S.; Yang, Y.; Gong, J.; Sun, C. Effects of nitrogen pressure and pulse bias voltage on the properties of Cr–N coatings deposited by arc ion plating. Surf. Coatings Technol. 2010, 204, 1800–1810. [Google Scholar] [CrossRef]
- Ruden, A.; Restrepo-Parra, E.; Paladines, A.U.; Sequeda, F. Corrosion resistance of CrN thin films produced by dc magnetron sputtering. Appl. Surf. Sci. 2013, 270, 150–156. [Google Scholar] [CrossRef]
- Escobar Galindo, R.; van Veen, A.; Schut, H.; Janssen, G.C.A.M.; Hoy, R.; de Hosson, J.T.M. Adhesion behaviour of CrNx coatings on pre-treated metal substrates studied in situ by PBA and ESEM after annealing. Surf. Coatings Technol. 2005, 199, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.Y.; Kang, M.C.; Kwon, D.H.; Shin, D.W.; Kim, K.H. Comparative studies on microstructure and mechanical properties of CrN, Cr–C–N and Cr–Mo–N coatings. J. Mater. Process. Technol. 2007, 187–188, 566–570. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Lukaszkowicz, K. Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate. J. Mater. Process. Technol. 2004, 157–158, 317–323. [Google Scholar] [CrossRef]
- Gåhlin, R.; Bromark, M.; Hedenqvist, P.; Hogmark, S.; Håkansson, G. Properties of TiN and CrN coatings deposited at low temperature using reactive arc-evaporation. Surf. Coatings Technol. 1995, 76–77, 174–180. [Google Scholar] [CrossRef]
- Ürgen, M.; Çakir, A.F. The effect of heating on corrosion behavior of TiN- and CrN-coated steels. Surf. Coatings Technol. 1997, 96, 236–244. [Google Scholar] [CrossRef]
- Lai, F.D.; Wu, J.K. High temperature and corrosion properties of cathodic-arc-plasma-deposited CrN coatings. Surf. Coatings Technol. 1994, 64, 53–57. [Google Scholar] [CrossRef]
- Gavrilov, S.; Coen, G.; Van den Bosch, J. Mechanical Properties of Structural Materials in HLM. In Proceedings of the SEARCH Meeting, Pisa, Italy, 20–26 2012. [Google Scholar]
- Tarantino, M.; Angiolini, M.; Bassini, S.; Cataldo, S.; Ciantelli, C.; Cristalli, C.; Del Nevo, A.; Di Piazza, I.; Diamanti, D.; Eboli, M.; et al. Overview on lead-cooled fast reactor design and related technologies development in ENEA. Energies 2021, 14, 5157. [Google Scholar] [CrossRef]
- Duchon, J.; Halodova, P.; Lorincink, J.; Di Gabriele, F.; Hojna, A. Characterization of oxides by advanced techniques. Acta Metall. Slovaca 2018, 24, 13. [Google Scholar] [CrossRef]
- Kondo, M.; Takahashi, M.; Suzuki, T.; Ishikawa, K.; Hata, K.; Qiu, S.; Sekimoto, H. Metallurgical study on erosion and corrosion behaviors of steels exposed to liquid lead–bismuth flow. J. Nucl. Mater. 2005, 343, 349–359. [Google Scholar] [CrossRef]
- Del Giacco, M.; Weisenburger, A.; Mueller, G. Fretting corrosion of steels for lead alloys cooled ADS. J. Nucl. Mater. 2014, 450, 225–236. [Google Scholar] [CrossRef]
- Van den Bosch, J.; Coen, G.; Hosemann, P.; Maloy, S.A. On the LME susceptibility of Si enriched steels. J. Nucl. Mater. 2012, 429, 105–112. [Google Scholar] [CrossRef]
- Jianu, A.; Müller, G.; Weisenburger, A.; Heinzel, A.; Fazio, C.; Markov, V.G.; Kashtanov, A.D. Creep-to-rupture tests of T91 steel in flowing Pb–Bi eutectic melt at 550 °C. J. Nucl. Mater. 2009, 394, 102–108. [Google Scholar] [CrossRef]
- Fazio, C.; Balbaud, F. Corrosion phenomena induced by liquid metals in Generation IV reactors. In Structural Materials for Generation IV Nuclear Reactors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–74. [Google Scholar]
- Asher, R.C.; Davies, D.; Beetham, S.A. Some observations on the compatibility ofstructural materials with molten lead. Corros. Sci. 1977, 17, 545–557. [Google Scholar] [CrossRef]
- Savale, P.A. Physical Vapor Deposition (PVD) Methods for Synthesis of Thin Films: A Comparative Study. Arch. Appl. Sci. Res. 2016, 8, 1–8. [Google Scholar]
- Chocholousek, M.; Rozumova, L.; Spirit, Z.; Gabriele, F. Di Coatings on Steels T91 and 316L in Lead-Bismuth Eutectic Environment. IOP Conf. Ser. Mater. Sci. Eng. 2018, 461, 012028. [Google Scholar] [CrossRef]
- Ferré, F.G.; Mairov, A.; Iadicicco, D.; Vanazzi, M.; Bassini, S.; Utili, M.; Tarantino, M.; Bragaglia, M.; Lamastra, F.R.; Nanni, F.; et al. Corrosion and radiation resistant nanoceramic coatings for lead fast reactors. Corros. Sci. 2017, 124, 80–92. [Google Scholar] [CrossRef]
- Muromskiy, S.M.; Evsin, A.E.; Kondratiev, I.E.; Ayrapetov, A.A.; Grunin, A.V.; Dovganyuk, S.S.; Begrambekov, L.B. Effect of Fe-Cr-Al sublayer on the efficiency of aluminum oxide protective coating in a molten lead flow. J. Phys. Conf. Ser. 2021, 2036, 012031. [Google Scholar] [CrossRef]
- Nuclear Energy Agency (NEA). Corrosion protection in lead and lead-bismuth eutectic at elevated temperatures. In Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies; NEA—7268; Nuclear Energy Agency: Paris, France, 2015; pp. 631–632. [Google Scholar]
- Huang, X. Developing Corrosion Prevention Coating Solutions for the Canadian SCWR Concept. JOM 2016, 68, 480–484. [Google Scholar] [CrossRef]
- Liu, L.; Fan, C.; Sun, H.; Chen, F.; Guo, J.; Huang, T. Research progress of alumina-forming austenitic stainless steels: A review. Materials 2022, 15, 3515. [Google Scholar] [CrossRef]
- Vogt, J.-B.; Proriol Serre, I. A Review of the Surface Modifications for Corrosion Mitigation of Steels in Lead and LBE. Coatings 2021, 11, 53. [Google Scholar] [CrossRef]
- Schlissel, D.; Biewald, B. Nuclear Power Plant Construction Costs; Synapse Energy Economics Inc.: Cambridge, MA, USA, 2008. [Google Scholar]
- Nuclear Energy Agency (NEA). Unlocking Reductions in the Construction Costs of Nuclear: A Practical Guide for Stakeholders; Nuclear Energy Agency: Paris, France, 2020. [Google Scholar]
- Cantor, B. Multicomponent and high entropy alloys. Entropy 2014, 16, 4749–4768. [Google Scholar] [CrossRef] [Green Version]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, W.; Chen, Z.; Wen, H.; Lavernia, E.J. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al 0.6 CoNiFe alloy. Mater. Sci. Eng. A 2014, 619, 137–145. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Yeh, J.-W. Recent Progress in High-entropy Alloys. Ann. Chim. Sci. Mater. 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Li, R.; Huang, T.; Zhang, J.; Jiang, C.; Zhang, Y.; Liaw, P.K. Microstructures, Mechanical Behavior, and Radiation Damage of (TiVCr)x-(TaW)1-x Binary System High-Entropy Alloy Films. Metals 2022, 12, 772. [Google Scholar] [CrossRef]
- Tsai, M.H.; Yeh, J.W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Castro, D.; Jaeger, P.; Baptista, A.C.; Oliveira, J.P. An Overview of High-Entropy Alloys as Biomaterials. Metals 2021, 11, 648. [Google Scholar] [CrossRef]
- Dewangan, S.K.; Mangish, A.; Kumar, S.; Sharma, A.; Ahn, B.; Kumar, V. A review on high-temperature applicability: A milestone for high entropy alloys. Eng. Sci. Technol. Int. J. 2022, 35, 101211. [Google Scholar] [CrossRef]
- Patel, D. Development of Novel Low Activation Refractory High Entropy Alloys for Nuclear Fusion Applications. Ph.D. Thesis, University of Sheffield, Sheffield, UK, September 2021. [Google Scholar]
- Sharma, A. High Entropy Alloy Coatings and Technology. Coatings 2021, 11, 372. [Google Scholar] [CrossRef]
- Hilhorst, A.; Leclerc, J.; Pardoen, T.; Jacques, P.J.; Noels, L.; Nguyen, V. Ductile fracture of high entropy alloys: From the design of an experimental campaign to the development of a micromechanics-based modeling framework. Eng. Fract. Mech. 2022, 275, 108844. [Google Scholar] [CrossRef]
- Melia, M.A.; Whetten, S.R.; Puckett, R.; Jones, M.; Heiden, M.J.; Argibay, N.; Kustas, A.B. High-throughput additive manufacturing and characterization of refractory high entropy alloys. Appl. Mater. Today 2020, 19, 100560. [Google Scholar] [CrossRef]
- Rodriguez, S.; Kustas, A.; Monroe, G. Metal Alloy and RHEA Additive Manufacturing for Nuclear Energy and Aerospace Applications; SAND 2020-7244; Sandia National Laboratories: Albuquerque, New Mexico, 2020. [Google Scholar]
- Čížek, J.; Kalivodová, J.; Janeček, M.; Stráský, J.; Srba, O.; Macková, A. Advanced structural materials for gas-cooled fast reactors—A review. Metals 2021, 11, 76. [Google Scholar] [CrossRef]
- Veselkov, S.; Samoilova, O.; Shaburova, N.; Trofimov, E. High-temperature oxidation of high-entropic alloys: A review. Materials 2021, 14, 2595. [Google Scholar] [CrossRef] [PubMed]
- Al Kindi, A.A.; Aunedi, M.; Pantaleo, A.M.; Strbac, G.; Markides, C.N. Thermo-economic assessment of flexible nuclear power plants in future low-carbon electricity systems: Role of thermal energy storage. Energy Convers. Manag. 2022, 258, 115484. [Google Scholar] [CrossRef]
- Ostovari Moghaddam, A.; Cabot, A.; Trofimov, E.A. Does the pathway for development of next generation nuclear materials straightly go through high-entropy materials? Int. J. Refract. Met. Hard Mater. 2021, 97, 105504. [Google Scholar] [CrossRef]
- Allen, T.; Busby, J.; Meyer, M.; Petti, D. Materials challenges for nuclear systems. Mater. Today 2010, 13, 14–23. [Google Scholar] [CrossRef]
- Moschetti, M.; Burr, P.; Obbard, E.; Kruzic, J.J.; Hosemann, P.; Gludovatz, B. Design considerations for high entropy alloys in advanced nuclear applications. J. Nucl. Mater. 2022, 567, 153814. [Google Scholar] [CrossRef]
- Zhang, W.; Liaw, P.K.; Zhang, Y. A novel low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy 2018, 20, 951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghilaridjani, M.; Ayyagari, A.; Muskeri, S.; Hasannaeimi, V.; Salloom, R.; Chen, W.Y.; Mukherjee, S. Ion irradiation response and mechanical behavior of reduced activity high entropy alloy. J. Nucl. Mater. 2020, 529. [Google Scholar] [CrossRef]
- Ayyagari, A.; Salloom, R.; Muskeri, S.; Mukherjee, S. Low activation high entropy alloys for next generation nuclear applications. Materialia 2018, 4, 99–103. [Google Scholar] [CrossRef]
- Zinkle, S.J. Advanced Irradiation-Resistant Materials for Generation IV Nuclear Reactors; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780081009123. [Google Scholar]
- Li, C.; Hu, X.; Yang, T.; Kumar, N.K.; Wirth, B.D.; Zinkle, S.J. Neutron Irradiation Response of a Co-free High Entropy Alloy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 527, ISBN 0022311519309. [Google Scholar]
- Tan, L.; Ali, K.; Ghosh, P.S.; Arya, A.; Zhou, Y.; Smith, R.; Goddard, P.; Patel, D.; Shahmir, H.; Gandy, A. design principles of low-activation high entropy alloys. J. Alloys Compd. 2022, 907, 164526. [Google Scholar] [CrossRef]
- Kareer, A.; Waite, J.C.; Li, B.; Couet, A.; Armstrong, D.E.J.; Wilkinson, A.J. Short communication: Low activation, refractory, high entropy alloys for nuclear applications. J. Nucl. Mater. 2019, 526, 151744. [Google Scholar] [CrossRef]
- Carruthers, A.W.; Li, B.S.; Rigby, M.; Raquet, L.C.; Mythili, R.; Ghosh, C.; Dasgupta, A.; Armstrong, D.E.J.; Gandy, A.S.; Pickering, E.J. Novel reduced-activation TiVCrFe based high entropy alloys. J. Alloys Compd. 2021, 856, 157399. [Google Scholar] [CrossRef]
- Huang, W.; Martin, P.; Zhuang, H.L. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 2019, 169, 225–236. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, M.; Wang, L.; Liu, C.H.; Chang, H.; Yang, J.J.; Liao, J.L.; Yang, Y.Y.; Liu, N. Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation. Appl. Surf. Sci. 2019, 485, 108–118. [Google Scholar] [CrossRef]
- Pickering, E.J.; Carruthers, A.W.; Barron, P.J.; Middleburgh, S.C.; Armstrong, D.E.J.; Gandy, A.S. High-entropy alloys for advanced nuclear applications. Entropy 2021, 23, 98. [Google Scholar] [CrossRef]
- Xing, Q.; Zhu, X.; Li, G.; Zhang, X.; Zhang, X.; Chen, Z. Microstructure and Mechanical Properties of Ni-Based Complex Concentrated Alloys under Radiation Environment. Crystals 2022, 12, 1322. [Google Scholar] [CrossRef]
- Cheng, Z.; Sun, J.; Gao, X.; Wang, Y.; Cui, J.; Wang, T.; Chang, H. Irradiation effects in high-entropy alloys and their applications. J. Alloys Compd. 2022, 930, 166768. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y. Functional properties and promising applications of high entropy alloys. Scr. Mater. 2020, 187, 188–193. [Google Scholar] [CrossRef]
- Nordlund, K.; Zinkle, S.J.; Sand, A.E.; Granberg, F.; Averback, R.S.; Stoller, R.; Suzudo, T.; Malerba, L.; Banhart, F.; Weber, W.J.; et al. Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Yu, Y. Simulations of irradiation resistance and mechanical properties under irradiation of high-entropy alloy NiCoCrFe. Mater. Today Commun. 2022, 33, 104308. [Google Scholar] [CrossRef]
- Chang, S.; Tseng, K.K.; Yang, T.Y.; Chao, D.S.; Yeh, J.W.; Liang, J.H. Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy. Mater. Lett. 2020, 272, 127832. [Google Scholar] [CrossRef]
- Zong, Y.; Hashimoto, N.; Oka, H. Study on irradiation effects of refractory bcc high-entropy alloy. Nucl. Mater. Energy 2022, 31, 101158. [Google Scholar] [CrossRef]
- IAEA, International Atomic Energy Agency. Advances in Small modular Reactors Technology Developments. In IAEA Advanced Reactors Information System (ARIS); International Atomic Energy Agency: Vienna, Austria, 2020. [Google Scholar]
- Vujić, J.; Bergmann, R.M.; Škoda, R.; Miletić, M. Small modular reactors: Simpler, safer, cheaper? Energy 2012, 45, 288–295. [Google Scholar] [CrossRef]
- Office of Nuclear Energy. Ultra Safe Nuclear Licenses New Method for 3D Printing Advanced Reactor Components. Available online: https://www.energy.gov/ne/articles/ultra-safe-nuclear-licenses-new-method-3d-printing-advanced-reactor-components (accessed on 9 January 2023).
- Lach, T.G.; Silva, C.M.; Zhou, Y.; Boldman, W.L.; Rack, P.D.; Weber, W.J.; Zhang, Y. Dynamic substrate reactions during room temperature heavy ion irradiation of CoCrCuFeNi high entropy alloy thin films. Mater. Degrad. 2022, 6, 1–15. [Google Scholar] [CrossRef]
Leading Institute | Agreed Research Directions |
---|---|
Oak Ridge National Laboratory | FeCrAl, SiCf/SiC, polycrystalline nanolaminates of ternary carbides and nitrides (MAX phases), coated Zr alloy |
Los Alamos National Laboratory | FeCrAl, Mo alloy |
Westinghouse Electric Corporation | Coated Zr alloy, SiCf/SiC |
General Electric Company | FeCrAl |
Electric Power Research Institute | Mo-alloy |
Framatome | Coated Zr alloy |
French Alternative Energies and Atomic Energy Commission | Coated Zr alloy, SiCf/SiC |
Korea Atomic Energy Research Institute | Coated Zr alloy, SiCf/SiC |
Japan Atomic Energy Agency | FeCrAl, SiCf/SiC |
Nuclear Power Institute of China | Coated Zr alloy, FeCrAl, SiCf/SiC |
Type | Coating | Mechanical Properties | Resistance to Corrosion |
---|---|---|---|
Metals | Cr, CrAl, AlTiCr, FeCrAl, 310 SS, high-entropy alloys | High temperature strength Creep resistance | Improved oxidation/corrosion resistance compared to Zr due to multiphase oxide formation |
Carbides | MAX phase carbides (Cr2AlC, Zr2AlC, Ti2AlC, Ti3SiC2), CrxCy, SiC | High melting point Low chemical reactivity | Can provide superior oxidation resistance, but unstable oxide growth and the formation of oxide scales were also observed |
Nitrides | CrN, AlCrN, TiAlN, TiAlCrN, TiAlSiN | Good coating adhesion Minimal coating spallation after deformation Improve the overall stiffness of the cladding | Overall improved resistance to corrosion, but cracking and formation of second phases or Ti-enriched zones with low oxidation resistance was also observed |
Silicides | ZrSi2 | Low density High melting point Linear thermal expansion coefficient and compositional compatibility with the substrate | Oxidation resistance increased two orders of magnitude compared to Zry-4 at 700 °C, for 20 h, without cracking |
Multilayer | Cr-Zr/Cr/CrN, CrN/Cr, Cr/CrAl, Cr/FeCrAl, Mo/FeCrAl, TiN/TiAlN | More resistant to cracking under high temperature ramps than single layers | Can provide increased corrosion resistance due to self-healing ability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golgovici, F.; Tudose, A.E.; Diniasi, D.; Nartita, R.; Fulger, M.; Demetrescu, I. Aspects of Applied Chemistry Related to Future Goals of Safety and Efficiency in Materials Development for Nuclear Energy. Molecules 2023, 28, 874. https://doi.org/10.3390/molecules28020874
Golgovici F, Tudose AE, Diniasi D, Nartita R, Fulger M, Demetrescu I. Aspects of Applied Chemistry Related to Future Goals of Safety and Efficiency in Materials Development for Nuclear Energy. Molecules. 2023; 28(2):874. https://doi.org/10.3390/molecules28020874
Chicago/Turabian StyleGolgovici, Florentina, Aurelia Elena Tudose, Diana Diniasi, Radu Nartita, Manuela Fulger, and Ioana Demetrescu. 2023. "Aspects of Applied Chemistry Related to Future Goals of Safety and Efficiency in Materials Development for Nuclear Energy" Molecules 28, no. 2: 874. https://doi.org/10.3390/molecules28020874
APA StyleGolgovici, F., Tudose, A. E., Diniasi, D., Nartita, R., Fulger, M., & Demetrescu, I. (2023). Aspects of Applied Chemistry Related to Future Goals of Safety and Efficiency in Materials Development for Nuclear Energy. Molecules, 28(2), 874. https://doi.org/10.3390/molecules28020874