Solubility and Thermodynamic Analysis of Isotretinoin in Different (DMSO + Water) Mixtures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solid-State Characterization and Experimental Solubility Data of ITN
2.2. Determination of Hansen Solubility Parameters (HSPs)
2.3. Ideal Solubility and Molecular Interactions
2.4. Correlation of ITN Solubility Data
2.5. Thermodynamic Parameters for ITN Dissolution
2.6. Enthalpy–Entropy Compensation Analysis
3. Materials and Methods
3.1. Materials
3.2. Determination of ITN (3) Solubility in {DMSO (1) + H2O (2)} Mixes
3.3. HSPs of ITN and Numerous {DMSO (1) + H2O (2)} Combinations
3.4. ITN Ideal Solubility and Molecular Interactions
3.5. Correlation of ITN Solubility with Computational Models
3.6. Thermodynamic Parameters
3.7. Enthalpy–Entropy Compensation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Berbenni, V.; Marini, A.; Bruni, G.; Cardini, A. Thermoanalytical and spectroscopic characterization of solid-state retinoic acid. Int. J. Pharm. 2001, 221, 123–141. [Google Scholar] [CrossRef]
- Ghorab, M.M.; Babiker, M.E. Formulation and in-vitro evaluation of isotretinoin tablets. J. Chem. Pharm. Res. 2012, 4, 2817–2831. [Google Scholar]
- Ascenso, A.; Guedes, R.; Bernardino, R.; Diogo, H.; Carvalho, F.A.; Santos, N.C.; Silva, A.M.; Marques, H.C. Complexation and full characterization of the tretinoin and dimethyl-βeta-cyclodextrin complex. AAPS PharmSciTech 2011, 12, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Muccio, D.D.; Brouillette, W.J.; Alam, M.; Vaezi, M.F.; Sani, B.P.; Venepally, P.; Reddy, L.; Li, E.; Norris, A.W.; Simpson-Herren, L.; et al. Conformationally defined 6-s-trans-retinoic acid analogs. 3. Structure–activity relationships for nuclear receptor binding, transcriptional activity, and cancer chemopreventive activity. J. Med. Chem. 1996, 39, 3625–3635. [Google Scholar] [CrossRef]
- Muccio, D.D.; Brouillette, W.J.; Breritman, T.R.; Taimi, M.; Emanuel, P.D.; Zhang, X.; Chen, G.; Sani, B.P.; Venepally, P.; Reddy, L.; et al. Conformationally defined retinoic acid analogues. 4. Potential new agents for acute promyelocytic and juvenile myelomonocytic leukemias. J. Med. Chem. 1998, 41, 1679–1687. [Google Scholar] [CrossRef]
- Levin, A.H.; Bos, M.E.; Zusi, F.C.; Nair, X.; Whiting, G.; Bouquin, P.; Tetrault, G.; Carrol, F.I. Evaluation of retinoids as therapeutic agents in dermatology. Pharm. Res. 1994, 11, 192–200. [Google Scholar]
- Anadolu, R.Y.; Sen, T.; Tarimci, N.; Birol, A.; Erdem, C. Improved efficacy and tolerability of retinoic acid in acne vulgaris: A new topical formulation with cyclodextrin complex psi. Eur. J. Acad. Dermatol. Venereol. 2004, 18, 416–421. [Google Scholar] [CrossRef]
- Loveday, S.M.; Singh, H. Recent advances in technologies for vitamin A protection in foods. Trends Food Sci. Technol. 2008, 19, 657–668. [Google Scholar] [CrossRef]
- Gollnick, H.; Zouboulis, C.C. Not all acne is acne vulgaris. Dtsch. Aerztebl. Int. 2014, 111, 301–312. [Google Scholar] [CrossRef]
- Espinosa, N.I.; Cohen, P.R. Acne vulgaris: A patient and physician’s experience. Dermatol. Ther. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fallah, H.; Rademaker, M. Isotretenoin for acne vulgaris—An update on adverse effects and laboratory monitoring. J. Dermatol. Treat. 2022, 33, 2414–2424. [Google Scholar] [CrossRef] [PubMed]
- Alwhaibi, A.; Alenazi, M.; Almadi, B.; Alotaibi, A.; Alshehri, S.M.; Shakeel, F. A practical method for oral administration of pediatric oncology patient: A case study of neuroblastoma. J. Oncol. Pharm. Pract. 2023, 29, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Meltzer, N.; Lindebaum, S. Solid-state stability studies of 13-cis-retinoic acid and all-trans-retinoic acid using microcalorimetry and HPLC analysis. Pharm. Res. 1992, 9, 1203–1208. [Google Scholar] [CrossRef]
- Yap, K.L.; Liu, X.; Thenmozhiyal, J.C.; Ho, P.C. Characterization of the 13-cis-retinoic acid/cyclodextrin inclusion complexes by phase solubility, photostability, physicochemical and computational analysis. Eur. J. Pharm. Sci. 2005, 25, 49–56. [Google Scholar] [CrossRef]
- Di, L.; Fish, P.V.; Mano, T. Bridging solubility between drug discovery and development. Drug Discov. Today 2012, 17, 486–495. [Google Scholar] [CrossRef]
- Rezaei, H.; Rahimpour, E.; Zhao, H.; Martinez, F.; Barzegar-Jalali, M.; Jouyban, A. Solubility of baclofen in some neat and mixed solvents at different temperatures. J. Mol. Liq. 2022, 347, E118352. [Google Scholar] [CrossRef]
- Barrett, J.A.; Yang, W.; Skolnik, S.M.; Belliveau, L.M.; Patros, K.M. Discovery solubility measurement and assessment of small molecules with drug development in mind. Drug Discov. Today 2022, 27, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.E.; Adewumi, A.T.; Akawa, O.B.; Subair, T.I.; Okunlola, F.O.; Akinsuku, A.E.; Khan, S. Simulation models for prediction of bioavailability of medicinal drugs-the interface between experiment and computation. AAPS PharmSciTech 2022, 23, E86. [Google Scholar] [CrossRef]
- Yadav, K.; Sachan, A.K.; Kumar, S.; Dubey, A. Techniques for increasing solubility: A review of conventional and new strategies. Asian J. Pharm. Res. Dev. 2022, 10, 144–153. [Google Scholar] [CrossRef]
- Jouyban, A. Review of the cosolvency models for predicting drug solubility in solvent mixtures: An update. J. Pharm. Pharm. Sci. 2019, 22, 466–485. [Google Scholar] [CrossRef]
- Bolla, G.; Nangia, A. Pharmaceutical cocrystals: Walking the talk. Chem. Commun. 2016, 52, 8342–8360. [Google Scholar] [CrossRef] [PubMed]
- Bolla, G.; Sarma, B.; Nangia, A.K. Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs. Chem. Rev. 2022, 122, 11514–11603. [Google Scholar] [CrossRef] [PubMed]
- Duggirala, N.K.; Perry, M.L.; Almarsson, O.; Zaworotko, M.J. Pharmaceutical cocrystals: Along with the path to improve medicines. Chem. Commun. 2016, 52, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Paus, R.; Hart, E.; Ji, Y.; Sadowski, G. Solubility and caloric properties of cinnarizine. J. Chem. Eng. Data 2015, 60, 2256–2261. [Google Scholar] [CrossRef]
- Ruether, F.; Sadowski, G. Modeling the solubility of pharmaceuticals in pure solvents and solvent mixtures for drug process design. J. Pharm. Sci. 2009, 98, 4205–4215. [Google Scholar] [CrossRef]
- Alyamani, M.; Alshehri, S.; Alam, P.; Wani, S.U.D.; Ghoneim, M.M.; Shakeel, F. Solubility and solution thermodynamics of raloxifene hydrochloride in various (DMSO + water) compositions. Alexand. Eng. J. 2022, 61, 9119–9128. [Google Scholar] [CrossRef]
- Guimarãesa, C.A.; Mena, F.; Mena, B.; Quenca-Guillena, J.S.; Matos, J.D.R.; Mercuri, L.P.; Braz, A.B.; Rossetti, F.C.; Kedor-Hackmann, E.R.M.; Santoro, M.I.R.M. Comparative physical–chemical characterization of encapsulated lipid-based isotretinoin products assessed by particle size distribution and thermal behavior analyses. Thermochim. Acta 2010, 505, 73–78. [Google Scholar] [CrossRef]
- Patel, M.R.; Patel, R.B.; Parikh, J.R.; Patel, B.G. HPTLC method for estimation of isotretinoin in topical formulations, equilibrium solubility screening, and in vitro permeation study. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 1783–1799. [Google Scholar] [CrossRef]
- Patel, M.R.; Patel, R.B.; Parikh, J.R.; Patel, B.G. Improving the isotretinoin photostability by incorporating in microemulsion matrix. ISRN Pharm. 2011, 2011, E838016. [Google Scholar] [CrossRef]
- Patel, M.R.; Patel, R.B.; Parikh, J.R.; Patel, B.G. Novel isotretinoin microemulsion-based gel for targeted topical therapy of acne: Formulation consideration, skin retention and skin irritation studies. Appl. Nanosci. 2016, 6, 539–553. [Google Scholar] [CrossRef]
- Chavda, H.; Patel, J.; Chavada, D.; Dave, S.; Patel, A.; Patel, C. Self-nanoemulsifying powder of isotretinoin: Preparation and characterization. J. Powder Technol. 2013, 2013, E108569. [Google Scholar] [CrossRef]
- Hosny, K.M.; Al Nahyah, K.S.; Alhakamy, N.A. Self-nanoemulsion loaded with a combination of isotretinoin, an antiacne drug, and quercetin: Preparation, optimization, and in vivo assessment. Pharmaceutics 2021, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, F.; Haq, N.; Mahdi, W.A.; Alsarra, I.A.; Alshehri, S.; Alenazi, M.; Alwhaibi, A. Solubilization and thermodynamic analysis of isotretinoin in eleven different green solvents at different temperatures. Materials 2023, 15, 8274. [Google Scholar] [CrossRef] [PubMed]
- Alsenz, J.; Kansy, M. High throughput solubility measurement in drug discovery and development. Adv. Drug Deliv. Rev. 2007, 59, 546–567. [Google Scholar] [CrossRef]
- Wernersson, S.; Birgersson, S.; Akke, M. Cosolvent dimethyl sulfoxide influences protein-ligand binding kinetics via solvent viscosity effects: Revealing the success rate of complex formation following diffusive protein−ligand encounter. Biochemistry 2023, 62, 44–52. [Google Scholar] [CrossRef]
- Novales, N.A.; Schwans, J.P. Comparing the effects of organic cosolvents on acetylcholinesterase and butyrylcholinesterase activity. Anal. Biochem. 2022, 654, E114796. [Google Scholar] [CrossRef]
- Stenstrom, O.; Diehl, C.; Modig, K.; Nilsson, U.J.; Akke, M. Mapping the energy landscape of protein−ligand binding via linear free energy relationships determined by protein NMR relaxation dispersion. RSC Chem. Biol. 2021, 2, 259–265. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Salem-Bekhit, M.M.; Raish, M. Solubility and dissolution thermodynamics of sinapic acid in (DMSO + water) binary solvent mixtures at different temperatures. J. Mol. Liq. 2017, 225, 833–839. [Google Scholar] [CrossRef]
- Shakeel, F.; Alshehri, S.; Imran, M.; Haq, N.; Alanazi, A.; Anwer, M.K. Experimental and computational approaches for solubility measurement of pyridazinone derivative in binary (DMSO + water) systems. Molecules 2019, 25, 171. [Google Scholar] [CrossRef]
- Alshahrani, S.M.; Shakeel, F. Solubility data and computational modeling of baricitinib in various (DMSO + water) mixtures. Molecules 2020, 26, 2124. [Google Scholar] [CrossRef]
- Tinjaca, D.A.; Martinez, F.; Almanza, O.A.; Pena, M.A.; Jouyban, A.; Acree, W.E., Jr. Increasing the equilibrium solubility of meloxicam in aqueous media by using dimethyl sulfoxide as a cosolvent: Correlation, dissolution thermodynamics and preferential solvation. Liquids 2022, 2, 161–182. [Google Scholar] [CrossRef]
- Yao, X.; Wang, Z.; Geng, Y.; Zhao, H.; Rahimpour, E.; Acree, W.E., Jr.; Jouyban, A. Hirshfeld surface and electrostatic potential surface analysis of clozapine and its solubility and molecular interactions in aqueous blends. J. Mol. Liq. 2022, 360, E119328. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Yu, Y.; Zhao, S.; Song, H.; Chen, A.; Shang, Z. Preparation and characterization of vanillin cross-linked chitosan microspheres of pterostilbene. Int. J. Polym. Anal. Charact. 2014, 19, 83–93. [Google Scholar] [CrossRef]
- Mohammadian, E.; Rahimpour, E.; Martinez, F.; Jouyban, A. Budesonide solubility in polyethylene glycol 400+ water at different temperatures: Experimental measurement and mathematical modelling. J. Mol. Liq. 2019, 274, 418–425. [Google Scholar] [CrossRef]
- Apelblat, A.; Manzurola, E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic and p-toluic acid and magnesium-DL-aspartate in water from T = (278–348) K. J. Chem. Thermodyn. 1999, 31, 85–91. [Google Scholar] [CrossRef]
- Manzurola, E.; Apelblat, A. Solubilities of L-glutamic acid, 3-nitrobenzoic acid, acetylsalicylic, p-toluic acid, calcium-L-lactate, calcium gluconate, magnesium-DL-aspartate, and magnesium-L-lactate in water. J. Chem. Thermodyn. 2002, 34, 1127–1136. [Google Scholar] [CrossRef]
- Ksiazczak, A.; Moorthi, K.; Nagata, I. Solid-solid transition and solubility of even n-alkanes. Fluid Phase Equilib. 1994, 95, 15–29. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, Z.; Yang, E.; Pan, B.; Jiang, J.; Dang, P.; Wei, H. Determination and correlation of solubility and solution thermodynamics of ethenzamide in different pure solvents. Fluid Phase Equilib. 2016, 427, 549–556. [Google Scholar] [CrossRef]
- Shakeel, F.; Alshehri, S. Solubilization, Hansen solubility parameters, solution thermodynamics and solvation behavior of flufenamic acid in (Carbitol + water) mixtures. Processes 2020, 8, 1204. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; Roseman, T.J. Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs; Yalkowsky, S.H., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1981; pp. 91–134. [Google Scholar]
- Jouyban, A.; Acree, W.E., Jr. Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures. J. Mol. Liq. 2018, 256, 541–547. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase-solubility techniques. Adv. Anal. Chem. Instr. 1965, 4, 117–122. [Google Scholar]
- Haq, N.; Alshehri, S.; Alsarra, I.A.; Alenazi, M.; Alwhaibi, A.; Shakeel, F. Environmentally friendly stability-indicating HPLC method for the determination of isotretinoin in commercial products and solubility samples. Heliyon 2023, 9, E18405. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.N.; Wang, Q.; Hu, Y.B.; Abliz, X. Practical determination of the solubility parameters of 1-alkyl-3-methylimidazolium bromide ([CnC1im]Br, n = 5, 6, 7, 8) ionic liquids by inverse gas chromatography and the Hansen solubility parameter. Molecules 2019, 24, 1346. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; He, H.; Huang, Z.; Zhang, P.; Sha, J.; Li, T.; Ren, B. Solubility, thermodynamic modeling and Hansen solubility parameter of 5-norbornene-2,3-dicarboximide in three binary solvents (methanol, ethanol, ethyl acetate + DMF) from 278.15 K to 323.15 K. J. Mol. Liq. 2020, 300, E112097. [Google Scholar] [CrossRef]
- Ruidiaz, M.A.; Delgado, D.R.; Martínez, F.; Marcus, Y. Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures. Fluid Phase Equilib. 2010, 299, 259–265. [Google Scholar] [CrossRef]
- Hildebrand, J.H.; Prausnitz, J.M.; Scott, R.L. Regular and Related Solutions; Van Nostrand Reinhold: New York, NY, USA, 1970. [Google Scholar]
- Manrique, Y.J.; Pacheco, D.P.; Martínez, F. Thermodynamics of mixing and solvation of ibuprofen and naproxen in propylene glycol + water cosolvent mixtures. J. Sol. Chem. 2008, 37, 165–181. [Google Scholar] [CrossRef]
- Shakeel, F.; Bhat, M.A.; Haq, N.; Fathi-Azarbayjani, A.; Jouyban, A. Solubility and thermodynamic parameters of a novel anti-cancer drug (DHP-5) in polyethylene glycol 400 + water mixtures. J. Mol. Liq. 2017, 229, 241–245. [Google Scholar] [CrossRef]
- Cong, Y.; Du, C.; Xing, K.; Bian, Y.; Li, X.; Wang, M. Research on dissolution of actarit in aqueous mixtures: Solubilitydetermination and correlation, preferential solvation, solvent effectand thermodynamics. J. Mol. Liq. 2022, 355, E119141. [Google Scholar] [CrossRef]
- Tinjaca, D.A.; Martinez, F.; Almanza, O.A.; Jouyban, A.; Acree, W.E., Jr. Solubility, correlation, dissolution thermodynamics and preferential solvation of meloxicam in aqueous mixtures of 2-propanol. Pharm. Sci. 2022, 28, 130–144. [Google Scholar] [CrossRef]
- Krug, R.R.; Hunter, W.G.; Grieger, R.S. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistic effect. J. Phys. Chem. 1976, 80, 2341–2351. [Google Scholar] [CrossRef]
- Holguín, A.R.; Rodríguez, G.A.; Cristancho, D.M.; Delgado, D.R.; Martínez, F. Solution thermodynamics of indomethacin in propylene glycol + water mixtures. Fluid Phase Equilib. 2012, 314, 134–139. [Google Scholar] [CrossRef]
- Behboudi, E.; Soleymani, J.; Martinez, F.; Jouyban, A. Solubility of amlodipine besylate in binary mixtures of polyethylene glycol 400 + water at various temperatures: Measurement and modelling. J. Mol. Liq. 2022, 347, E118394. [Google Scholar] [CrossRef]
- Mohammadian, E.; Foroumadi, A.; Hasanvand, Z.; Rahimpour, E.; Zhao, H.; Jouyban, A. Simulation of mesalazine solubility in the binary solvents at various temperatures. J. Mol. Liq. 2022, 357, E119160. [Google Scholar] [CrossRef]
m a | xe b | ||||
---|---|---|---|---|---|
T = 298.2 K | T = 303.2 K | T = 308.2 K | T = 313.2 K | T = 318.2 K | |
0.0 | 3.10 (0.07) × 10−7 | 4.60 (0.15) × 10−7 | 7.50 (0.18) × 10−7 | 1.10 (0.02) × 10−6 | 1.50 (0.03) × 10−6 |
0.1 | 1.12 (0.02) × 10−6 | 1.59 (0.03) × 10−6 | 2.45 (0.05) × 10−6 | 3.47 (0.06) × 10−6 | 4.61 (0.11) × 10−6 |
0.2 | 3.83 (0.08) × 10−6 | 5.28 (0.17) × 10−6 | 7.87 (0.21) × 10−6 | 1.10 (0.01) × 10−5 | 1.42 (0.02) × 10−5 |
0.3 | 1.36 (0.01) × 10−5 | 1.82 (0.03) × 10−5 | 2.57 (0.04) × 10−5 | 3.43 (0.06) × 10−5 | 4.29 (0.07) × 10−5 |
0.4 | 4.68 (0.07) × 10−5 | 6.06 (0.08) × 10−5 | 8.23 (0.10) × 10−5 | 1.08 (0.01) × 10−4 | 1.32 (0.02) × 10−4 |
0.5 | 1.65 (0.04) × 10−4 | 2.05 (0.05) × 10−4 | 2.69 (0.06) × 10−4 | 3.31 (0.07) × 10−4 | 3.96 (0.08) × 10−4 |
0.6 | 5.70 (0.10) × 10−4 | 6.88 (0.12) × 10−4 | 8.57 (0.17) × 10−4 | 1.08 (0.01) × 10−3 | 1.22 (0.02) × 10−3 |
0.7 | 2.02 (0.03) × 10−3 | 2.33 (0.05) × 10−3 | 2.79 (0.06) × 10−3 | 3.24 (0.07) × 10−3 | 3.66 (0.08) × 10−3 |
0.8 | 6.97 (0.10) × 10−3 | 7.81 (0.12) × 10−3 | 8.96 (0.20) × 10−3 | 1.02 (0.01) × 10−2 | 1.15 (0.01) × 10−2 |
0.9 | 2.44 (0.02) × 10−2 | 2.66 (0.03) × 10−2 | 2.86 (0.03) × 10−2 | 3.19 (0.04) × 10−2 | 3.39 (0.05) × 10−2 |
1.0 | 8.47 (0.10) × 10−2 | 8.88 (0.11) × 10−2 | 9.31 (0.12) × 10−2 | 9.80 (0.13) × 10−2 | 1.02 (0.01) × 10−1 |
xidl | 4.28 (0.03) × 10−2 | 4.43 (0.04) × 10−2 | 4.58 (0.05) × 10−2 | 4.73 (0.06) × 10−2 | 4.88 (0.07) × 10−2 |
m | γi | ||||
---|---|---|---|---|---|
T = 298.2 K | T = 303.2 K | T = 308.2 K | T = 313.2 K | T = 318.2 K | |
0.0 | 1,366,467 | 972,627.0 | 611,320.0 | 441,076.0 | 326,128.0 |
0.1 | 384,000.0 | 278,000.0 | 187,000.0 | 136,000.0 | 106,000.0 |
0.2 | 111,979.0 | 83,952.80 | 58,249.00 | 43,099.10 | 34,943.20 |
0.3 | 31,441.80 | 24,298.30 | 17,811.50 | 13,802.30 | 11,402.70 |
0.4 | 9161.740 | 7310.360 | 5568.540 | 4372.740 | 3713.1570 |
0.5 | 2602.340 | 2166.250 | 1703.980 | 1429.250 | 1233.060 |
0.6 | 751.8650 | 644.3650 | 534.7140 | 438.6560 | 399.5110 |
0.7 | 211.8050 | 189.9250 | 164.4500 | 146.1890 | 133.4190 |
0.8 | 61.48640 | 56.71900 | 51.11100 | 46.46460 | 42.45130 |
0.9 | 17.59830 | 16.68020 | 16.02050 | 14.83990 | 14.41810 |
1.0 | 5.057310 | 4.988350 | 4.918850 | 4.828590 | 4.790800 |
m | a | b | R2 | Overall RMSD (%) |
---|---|---|---|---|
0.0 | 10.402 (0.34) | −7568.3 (512.12) | 0.9966 | |
0.1 | 9.3196 (0.32) | −6865.0 (432.41) | 0.9971 | |
0.2 | 8.8695 (0.30) | −6364.6 (402.15) | 0.9967 | |
0.3 | 7.4104 (0.27) | −5549.1 (321.27) | 0.9969 | |
0.4 | 6.9041 (0.22) | −5031.7 (301.43) | 0.9968 | |
0.5 | 5.5507 (0.17) | −4252.5 (284.81) | 0.9967 | 1.87 |
0.6 | 5.1279 (0.16) | −3757.5 (253.58) | 0.9940 | |
0.7 | 3.4432 (0.10) | −2877.3 (194.29) | 0.9978 | |
0.8 | 3.1037 (0.09) | −2408.9 (180.21) | 0.9988 | |
0.9 | 1.6606 (0.05) | −1603.6 (64.29) | 0.9948 | |
1.0 | 0.52410 (0.01) | −892.54 (28.41) | 0.9992 |
m | A | B | C | R2 | Overall RMSD (%) |
---|---|---|---|---|---|
0.0 | 454.09 (31.12) | −27954 (182.26) | −65.877 (6.71) | 0.9969 | |
0.1 | 563.01 (34.58) | −32298 (203.31) | −82.214 (8.45) | 0.9978 | |
0.2 | 512.95 (32.81) | −29519 (188.16) | −74.847 (7.71) | 0.9974 | |
0.3 | 521.99 (33.10) | −29183 (183.24) | −76.408 (7.93) | 0.9979 | |
0.4 | 436.22 (29.82) | −24751 (174.34) | −63.746 (6.94) | 0.9977 | |
0.5 | 344.90 (26.24) | −19840 (121.63) | −50.388 (5.13) | 0.9974 | 1.69 |
0.6 | 347.63 (26.31) | −19489 (119.06) | −50.857 (5.16) | 0.9951 | |
0.7 | 126.23 (6.13) | −8521.8 (64.31) | −18.230 (1.57) | 0.9980 | |
0.8 | −148.36 (7.21) | 4553.4 (44.12) | 22.479 (1.77) | 0.9994 | |
0.9 | 44.494 (2.84) | −3574.5 (38.84) | −6.3581 (0.76) | 0.9950 | |
1.0 | 11.915 (1.01) | −1418.1 (22.89) | −1.6901 (0.10) | 0.9992 |
m | λ | h | Overall RMSD (%) |
---|---|---|---|
0.0 | 5.3156 (0.86) | 1423.8 (31.23) | |
0.1 | 4.8451 (0.83) | 1416.9 (30.62) | |
0.2 | 4.1898 (0.75) | 1519.0 (33.18) | |
0.3 | 3.8473 (0.66) | 1442.3 (32.51) | |
0.4 | 3.2108 (0.51) | 1567.0 (34.21) | |
0.5 | 2.8430 (0.42) | 1495.8 (32.91) | 3.15 |
0.6 | 2.1723 (0.27) | 1729.7 (38.44) | |
0.7 | 1.9127 (0.12) | 1504.3 (33.61) | |
0.8 | 1.2176 (0.10) | 1978.4 (41.18) | |
0.9 | 0.88170 (0.01) | 1818.7 (39.42) | |
1.0 | 0.44750 (0.02) | 1994.4 (42.12) |
m | log xYal | Overall RMSD (%) | ||||
---|---|---|---|---|---|---|
T = 298.2 K | T = 303.2 K | T = 308.2 K | T = 313.2 K | T = 318.2 K | ||
0.1 | −5.96 | −5.80 | −5.61 | −5.46 | −5.34 | |
0.2 | −5.42 | −5.28 | −5.10 | −4.96 | −4.85 | |
0.3 | −4.87 | −4.75 | −4.59 | −4.47 | −4.37 | |
0.4 | −4.33 | −4.22 | −4.08 | −3.97 | −3.89 | 2.10 |
0.5 | −3.79 | −3.69 | −3.57 | −3.48 | −3.40 | |
0.6 | −3.24 | −3.16 | −3.06 | −2.98 | −2.92 | |
0.7 | −2.70 | −2.63 | −2.55 | −2.49 | −2.44 | |
0.8 | −2.15 | −2.10 | −2.04 | −1.99 | −1.95 | |
0.9 | −1.61 | −1.57 | −1.54 | −1.50 | −1.47 |
System | Jouyban-Acree | Jouyban-Acree-van’t Hoff |
---|---|---|
A1 0.52410 (0.01) B1 −892.54 (28.41) A2 10.402 (0.34) B2 −7568.3 (512.12) Ji 29,178 (532.41) 1.15 | ||
{DMSO (1) + H2O (2)} | Ji 30,624 (561.32) | |
RMSD (%) | 1.02 |
m | ΔsolH0/kJ mol−1 | ΔsolG0/kJ mol−1 | ΔsolS0/J mol−1 K−1 | R2 |
---|---|---|---|---|
0.0 | 63.00 (0.76) | 36.27 (0.43) | 86.78 (1.12) | 0.9966 |
0.1 | 57.15 (0.67) | 33.20 (0.41) | 77.75 (1.03) | 0.9971 |
0.2 | 52.98 (0.63) | 30.19 (0.39) | 73.99 (1.00) | 0.9967 |
0.3 | 46.19 (0.52) | 27.15 (0.37) | 61.83 (0.98) | 0.9969 |
0.4 | 41.89 (0.48) | 24.14 (0.36) | 57.59 (0.92) | 0.9968 |
0.5 | 35.40 (0.42) | 21.13 (0.30) | 46.31 (0.81) | 0.9967 |
0.6 | 31.28 (0.40) | 18.10 (0.26) | 42.78 (0.74) | 0.9940 |
0.7 | 23.95 (0.32) | 15.10 (0.24) | 28.74 (0.56) | 0.9978 |
0.8 | 20.05 (0.28) | 12.07 (0.20) | 25.90 (0.48) | 0.9989 |
0.9 | 13.35 (0.22) | 9.078 (0.14) | 13.87 (0.23) | 0.9948 |
1.0 | 7.430 (0.10) | 6.077 (0.09) | 4.392 (0.10) | 0.9992 |
Material | Molecular Formula | Molar Mass (g mol−1) | CAS RN | Purification Method | Mass Fraction Purity | Analysis Method | Source |
---|---|---|---|---|---|---|---|
ITN | C20H28O2 | 300.40 | 4759-48-2 | None | >0.98 | HPLC | BOC Sciences |
DMSO | C2H6OS | 78.13 | 67-68-5 | None | >0.99 | GC | Sigma Aldrich |
Water | H2O | 18.07 | 7732-18-5 | None | - | - | Milli-Q |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakeel, F.; Haq, N.; Alshehri, S.; Alenazi, M.; Alwhaibi, A.; Alsarra, I.A. Solubility and Thermodynamic Analysis of Isotretinoin in Different (DMSO + Water) Mixtures. Molecules 2023, 28, 7110. https://doi.org/10.3390/molecules28207110
Shakeel F, Haq N, Alshehri S, Alenazi M, Alwhaibi A, Alsarra IA. Solubility and Thermodynamic Analysis of Isotretinoin in Different (DMSO + Water) Mixtures. Molecules. 2023; 28(20):7110. https://doi.org/10.3390/molecules28207110
Chicago/Turabian StyleShakeel, Faiyaz, Nazrul Haq, Sultan Alshehri, Miteb Alenazi, Abdulrahman Alwhaibi, and Ibrahim A. Alsarra. 2023. "Solubility and Thermodynamic Analysis of Isotretinoin in Different (DMSO + Water) Mixtures" Molecules 28, no. 20: 7110. https://doi.org/10.3390/molecules28207110
APA StyleShakeel, F., Haq, N., Alshehri, S., Alenazi, M., Alwhaibi, A., & Alsarra, I. A. (2023). Solubility and Thermodynamic Analysis of Isotretinoin in Different (DMSO + Water) Mixtures. Molecules, 28(20), 7110. https://doi.org/10.3390/molecules28207110