Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review
Abstract
:1. Introduction
2. The Application of Fe-MOFs in Photocatalytic Removal of Organic Pollutants
2.1. Dyestuffs Treatment
2.2. Antibiotics Removal
2.3. Photo-Fenton System
2.4. Hexavalent Chromium Removal
2.5. Other Water Pollutants
2.6. Simultaneous Removal of Multiple Water Pollutants
3. The Application of Fe-MOF Photocatalytic Removal and Conversion of Gaseous Substances
3.1. CO2 Removal
3.2. NOx Removal and Nitrogen Fixation
3.3. VOCs Removal
4. Strengths and Challenges
- (1)
- Fe-MOFs exhibit a wide spectral response, enabling them to catalyze chemical reactions within the visible light spectrum. This characteristic enhances their applicability. Fe-MOFs find applications in photocatalytic processes focused on degrading organic pollutants, converting CO2 through photocatalysis, nitrogen fixation, and degrading of gaseous organic pollutants.
- (2)
- Featuring uniform, stable, and infinitely elongated structural composition units, Fe-MOFs allow for precise structural regulation of composite materials by adjusting the structural composition of MOFs.
- (3)
- Fe-MOFs possess high porosity, an intricate pore structure, and an extremely large internal specific surface area. Additionally, the pore size is controllable, providing ideal conditions for introducing other precursors into the pore structure.
- (4)
- Fe-MOFs exhibit a soft nature and can be modified by altering external conditions during the synthesis process. Factors such as temperature, pressure, acidity, and alkalinity can be adjusted to tailor the material’s properties as needed.
- (1)
- While Fe-MOF photocatalytic materials have found applications in water pollutants and atmospheric treatment, the current study focus has primarily been on novel MOF photocatalysts and the effect of ligand variations on the photocatalytic activity of MOFs. There exists a notable gap in systematic research concerning the photocatalytic mechanism of MOF materials and the relationship between photocatalytic performance and material structure. Future research efforts should prioritize strengthening and enhancing our understanding in these areas.
- (2)
- Fe-MOFs encounter challenges related to stability, high production cost, complex preparation processes, and limited photocatalytic activity. While some auxiliary methods have shown promise in shortening the synthesis time of Fe-MOF photocatalytic materials and improving their catalytic activity, many of these studies remain in the experimental stage. It is crucial to further develop and scale up these techniques to facilitate their industrial application.
- (3)
- Current research has placed relatively less emphasis on the effective methods of separating used catalysts from the reactants. To enhance the practical industrial application of these materials, it is essential to explore approaches such as imparting magnetic properties to the materials or converting them into loaded catalysts. How to combine the good photocatalytic degradation function with recyclability and low cost remains a challenging yet crucial issue to address.
- (4)
- Utilizing advanced fine structure analysis and density functional theory calculations, researchers can delve deeper into the conformational relationship between the microstructure and macroscopic performance of the catalysts. This approach allows for a more profound understanding of the interfacial electron transfer mechanism, guiding the design and regulation of catalysts with improved catalytic activity.
- (5)
- The synergistic removal of various pollutants in complex environment settings should be further emphasized to maximize the excellent catalytic performance of Fe-MOF composite catalysts when addressing real-world challenges.
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- He, M.; Xu, Z.; Hou, D.; Gao, B.; Cao, X.; Ok, Y.S.; Rinklebe, J.; Bolan, N.S.; Tsang, D.C.W. Waste-derived biochar for water pollution control and sustainable development. Nat. Rev. Earth Environ. 2022, 3, 444–460. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Pandey, S.; Makhado, E.; Kim, S.; Kang, M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater—A review. Environ. Res. 2023, 217, 114909. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Molavi, H.; Rezakazemi, M.; Tajahmadi, S.; Bahi, A.; Ko, F.; Aminabhavi, T.M.; Li, J.-R.; Arjmand, M. UiO-66 metal–organic frameworks in water treatment: A critical review. Prog. Mater. Sci. 2022, 125, 100904. [Google Scholar] [CrossRef]
- Choi, W.S.; Lee, H.J. Nanostructured Materials for Water Purification: Adsorption of Heavy Metal Ions and Organic Dyes. Polymers 2022, 14, 2183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, X.; Zhang, P.; Wang, Y.; Lu, W. Synthesis of porphyrin porous organic polymers and their application of water pollution treatment: A review. Environ. Technol. Innov. 2023, 29, 102972. [Google Scholar] [CrossRef]
- Sun, P.; Wang, Z.; An, S.; Zhao, J.; Yan, Y.; Zhang, D.; Wu, Z.; Shen, B.; Lyu, H. Biochar-supported nZVI for the removal of Cr(VI) from soil and water: Advances in experimental research and engineering applications. J. Environ. Manag. 2022, 316, 115211. [Google Scholar] [CrossRef]
- Jaison, A.; Mohan, A.; Lee, Y.-C. Recent Developments in Photocatalytic Nanotechnology for Purifying Air Polluted with Volatile Organic Compounds: Effect of Operating Parameters and Catalyst Deactivation. Catalysts 2023, 13, 407. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Gao, F.; Tan, X.; Cai, Y.; Hu, B.; Huang, Q.; Fang, M.; Wang, X. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem 2022, 4, 100078. [Google Scholar] [CrossRef]
- Ajmal, Z.; Haq, M.U.; Naciri, Y.; Djellabi, R.; Hassan, N.; Zaman, S.; Murtaza, A.; Kumar, A.; Al-Sehemi, A.G.; Algarni, H.; et al. Recent advancement in conjugated polymers based photocatalytic technology for air pollutants abatement: Cases of CO2, NOx, and VOCs. Chemosphere 2022, 308, 136358. [Google Scholar] [CrossRef]
- Sharma, V.K.; Feng, M. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review. J. Hazard. Mater. 2019, 372, 3–16. [Google Scholar] [CrossRef]
- Hu, J.; Song, J.; Han, X.; Wen, Q.; Yang, W.; Pan, W.; Jian, S.; Jiang, S. Fabrication of Ce-La-MOFs for defluoridation in aquatic systems: A kinetics, thermodynamics and mechanisms study. Sep. Purif. Technol. 2023, 314, 123562. [Google Scholar] [CrossRef]
- Song, J.; Yang, W.; Han, X.; Jiang, S.; Zhang, C.; Pan, W.; Jian, S.; Hu, J. Performance of Rod-Shaped Ce Metal–Organic Frameworks for Defluoridation. Molecules 2023, 28, 3492. [Google Scholar] [CrossRef] [PubMed]
- Musadiq Anis, S.; Habibullah Hashemi, S.; Nasri, A.; Sajjadi, M.; Eslamipanah, M.; Jaleh, B. Decorated ZrO2 by Au nanoparticles as a potential nanocatalyst for the reduction of organic dyes in water. Inorg. Chem. Commun. 2022, 141, 109489. [Google Scholar] [CrossRef]
- Nisa, M.U.; Abid, A.G.; Gouadria, S.; Munawar, T.; Alrowaili, Z.A.; Abdullah, M.; Al-Buriahi, M.S.; Iqbal, F.; Ehsan, M.F.; Ashiq, M.N. Boosted electron-transfer/separation of SnO2/CdSe/Bi2S3 heterostructure for excellent photocatalytic degradation of organic dye pollutants under visible light. Surf. Interfaces 2022, 31, 102012. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, J.; Wang, L.; Hu, Z.; Rao, W.; Liu, Y.; Xie, Y.; Yu, C. Amino-modified magnetic glucose-based carbon composites for efficient Cr(VI) removal. J. Taiwan Inst. Chem. Eng. 2022, 136, 104419. [Google Scholar] [CrossRef]
- Almaie, S.; Vatanpour, V.; Rasoulifard, M.H.; Koyuncu, I. Volatile organic compounds (VOCs) removal by photocatalysts: A review. Chemosphere 2022, 306, 135655. [Google Scholar] [CrossRef]
- Yang, R.-G.; Fu, Y.-M.; Wang, H.-N.; Zhang, D.-P.; Zhou, Z.; Cheng, Y.-Z.; Meng, X.; He, Y.-O.; Su, Z.-M. ZIF-8/covalent organic framework for enhanced CO2 photocatalytic reduction in gas-solid system. Chem. Eng. J. 2022, 450, 138040. [Google Scholar] [CrossRef]
- Li, S.; Shan, S.; Chen, S.; Li, H.; Li, Z.; Liang, Y.; Fei, J.; Xie, L.; Li, J. Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. J. Environ. Chem. Eng. 2021, 9, 105967. [Google Scholar] [CrossRef]
- Jian, S.; Cheng, Y.; Ma, X.; Guo, H.; Hu, J.; Zhang, K.; Jiang, S.; Yang, W.; Duan, G. Excellent fluoride removal performance by electrospun La–Mn bimetal oxide nanofibers. New J. Chem. 2022, 46, 490–497. [Google Scholar] [CrossRef]
- Wei, Q.; Xue, S.; Wu, W.; Liu, S.; Li, S.; Zhang, C.; Jiang, S. Plasma Meets MOFs: Synthesis, Modifications, and Functionalities. Chem. Rec. 2023, 23, e202200263. [Google Scholar] [CrossRef]
- Ren, X.; Gao, Z.; Wu, G. Tunable nano-effect of Cu clusters derived from MOF-on-MOF hybrids for electromagnetic wave absorption. Compos. Commun. 2022, 35, 101292. [Google Scholar] [CrossRef]
- Peng, X.; Chen, L.; Li, Y. Ordered macroporous MOF-based materials for catalysis. Mol. Catal. 2022, 529, 112568. [Google Scholar] [CrossRef]
- Jo, Y.M.; Jo, Y.K.; Lee, J.H.; Jang, H.W.; Hwang, I.S.; Yoo, D.J. MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities. Adv. Mater. 2022, 2206842. [Google Scholar] [CrossRef]
- Luo, Y.; Bag, S.; Zaremba, O.; Cierpka, A.; Andreo, J.; Wuttke, S.; Friederich, P.; Tsotsalas, M. MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning. Angew. Chem. Int. Ed. Engl. 2022, 61, e202200242. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, C.; Na, J.; Hossain, M.S.A.; Yan, X.; Zhang, H.; Amin, M.A.; Qi, J.; Yamauchi, Y.; Li, J. Macroscopic MOF Architectures: Effective Strategies for Practical Application in Water Treatment. Small 2022, 18, e2104387. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Yang, B.; Wang, F.; Yan, Y.; Hong, X.; Xu, H.; Xia, M.; Wang, F. Green synthesis of MOF-808 with modulation of particle sizes and defects for efficient phosphate sequestration. Sep. Purif. Technol. 2022, 300, 121825. [Google Scholar] [CrossRef]
- Jian, S.; Chen, Y.; Shi, F.; Liu, Y.; Jiang, W.; Hu, J.; Han, X.; Jiang, S.; Yang, W. Template-Free Synthesis of Magnetic La-Mn-Fe Tri-Metal Oxide Nanofibers for Efficient Fluoride Remediation: Kinetics, Isotherms, Thermodynamics and Reusability. Polymers 2022, 14, 5417. [Google Scholar] [CrossRef]
- Alikhani, N.; Hekmati, M.; Karmakar, B.; Veisi, H. Green synthesis of gold nanoparticles (Au NPs) using Rosa canina fruit extractand evaluation of its catalytic activity in the degradation of organic dye pollutants of water. Inorg. Chem. Commun. 2022, 139, 109351. [Google Scholar] [CrossRef]
- Beydaghdari, M.; Saboor, F.H.; Babapoor, A.; Asgari, M. Recent Progress in Adsorptive Removal of Water Pollutants by Metal-Organic Frameworks. ChemNanoMat 2021, 8, e202100400. [Google Scholar] [CrossRef]
- He, D.; Jiang, L.; Yuan, K.; Zhang, J.; Zhang, J.; Fan, Q.; Liu, H.; Song, S. Synthesis and study of low-cost nitrogen-rich porous organic polyaminals for efficient adsorption of iodine and organic dye. Chem. Eng. J. 2022, 446, 137119. [Google Scholar] [CrossRef]
- Ibrahim, I.; Belessiotis, G.V.; Antoniadou, M.; Kaltzoglou, A.; Sakellis, E.; Katsaros, F.; Sygellou, L.; Arfanis, M.K.; Salama, T.M.; Falaras, P. Silver decorated TiO2/g-C3N4 bifunctional nanocomposites for photocatalytic elimination of water pollutants under UV and artificial solar light. Results Eng. 2022, 14, 100470. [Google Scholar] [CrossRef]
- Du, C.; Zhang, Y.; Zhang, Z.; Zhou, L.; Yu, G.; Wen, X.; Chi, T.; Wang, G.; Su, Y.; Deng, F.; et al. Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: A review. Chem. Eng. J. 2022, 431, 133932. [Google Scholar] [CrossRef]
- Zhu, R.; Cai, M.; Fu, T.; Yin, D.; Peng, H.; Liao, S.; Du, Y.; Kong, J.; Ni, J.; Yin, X. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics 2023, 15, 1599. [Google Scholar] [CrossRef]
- Dong, J.; Wen, L.; Yang, H.; Zhao, J.; He, C.; Hu, Z.; Peng, L.; Hou, C.; Huo, D. Catalytic Hairpin Assembly-Driven Ratiometric Dual-Signal Electrochemical Biosensor for Ultrasensitive Detection of MicroRNA Based on the Ratios of Fe-MOFs and MB-GA-UiO-66-NH2. Anal. Chem. 2022, 94, 5846–5855. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Acharya, D.; Pathak, I.; Muthurasu, A.; Bhattarai, R.M.; Kim, T.; Ko, T.H.; Saidin, S.; Chhetri, K.; Kim, H.Y. In situ transmogrification of nanoarchitectured Fe-MOFs decorated porous carbon nanofibers into efficient positrode for asymmetric supercapacitor application. J. Energy Storage 2023, 63, 106992. [Google Scholar] [CrossRef]
- Liang, X.; Wang, C.; Yu, M.; Yao, Z.; Zhang, Y. Fe-MOFs derived porous Fe4N@carbon composites with excellent broadband electromagnetic wave absorption properties. J. Alloys Compd. 2022, 910, 164844. [Google Scholar] [CrossRef]
- Gallareta-Olivares, G.; Rivas-Sanchez, A.; Cruz-Cruz, A.; Hussain, S.M.; Gonzalez-Gonzalez, R.B.; Cardenas-Alcaide, M.F.; Iqbal, H.M.N.; Parra-Saldivar, R. Metal-doped carbon dots as robust nanomaterials for the monitoring and degradation of water pollutants. Chemosphere 2023, 312, 137190. [Google Scholar] [CrossRef]
- Saghir, S.; Pu, C.; Fu, E.; Wang, Y.; Xiao, Z. Synthesis of high surface area porous biochar obtained from pistachio shells for the efficient adsorption of organic dyes from polluted water. Surf. Interfaces 2022, 34, 102357. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, X.; Zhou, X.; Xiao, J.; Li, Z. Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons. Chem. Eng. J. 2019, 355, 679–686. [Google Scholar] [CrossRef]
- Cai, J.; Li, D.; Jiang, L.; Yuan, J.; Li, Z.; Li, K. Review on CeO2-Based Photocatalysts for Photocatalytic Reduction of CO2: Progresses and Perspectives. Energy Fuels 2023, 37, 4878–4897. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Zhao, X.; Chen, L.; Peng, S.; Ma, C.; Duan, G.; Liu, Z.; Wang, H.; Yuan, Y.; et al. A poly(amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater. e-Polymers 2022, 22, 399–410. [Google Scholar] [CrossRef]
- Li, X.; Guo, W.; Liu, Z.; Wang, R.; Liu, H. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A. J. Hazard. Mater. 2017, 324, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Madima, N.; Kefeni, K.K.; Mishra, S.B.; Mishra, A.K. TiO2-modified g-C3N4 nanocomposite for photocatalytic degradation of organic dyes in aqueous solution. Heliyon 2022, 8, e10683. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Xu, J.; Wang, B.; Xie, J.; Ying, G.; Li, J.; Cheng, Z.; Li, J.; Chen, K. Highly efficient and rapid purification of organic dye wastewater using lignin-derived hierarchical porous carbon. J. Colloid. Interface Sci. 2022, 625, 158–168. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Joseph, J.; Iftekhar, S.; Srivastava, V.; Fallah, Z.; Zare, E.N.; Sillanpaa, M. Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. Chemosphere 2021, 284, 131171. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, T.; Pan, N.; Wang, S.; Zhang, B.; Zhu, X.; Hao, Y.; Wang, X.; Song, L.; Zhang, M. Surface functionalization of carbon cloth with conductive Ni/Fe-MOFs for highly efficient oxygen evolution. Surf. Interfaces 2022, 33, 102294. [Google Scholar] [CrossRef]
- Ronda-Leal, M.; Osman, S.M.; Won Jang, H.; Shokouhimehr, M.; Romero, A.A.; Luque, R. Selective hydrogenation of furfural using TiO2-Fe2O3/C from Ti-Fe-MOFs as sacrificial template: Microwave vs Continuous flow experiments. Fuel 2023, 333, 126221. [Google Scholar] [CrossRef]
- Sun, C.; Li, C.; Guo, M.; Yang, X.; Luo, Y.; Chen, L.; Zheng, H.; Zhao, S.; Li, F. Fabrication and optimization of paper chips from calcinated Fe-MOFs for rapid and in situ visual detection of tetracyclines in water environments. J. Hazard. Mater. 2023, 458, 131946. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, G.; Zhang, G.; Zhang, Y.; Wang, H.; Cao, W.; Li, T.; Wei, Q. An electrochemical aptasensor based on gold-modified MoS2/rGO nanocomposite and gold-palladium-modified Fe-MOFs for sensitive detection of lead ions. Sens. Actuators B Chem. 2020, 319, 128313. [Google Scholar] [CrossRef]
- Wan, Y.; Wan, J.; Ma, Y.; Wang, Y.; Luo, T. Sustainable synthesis of modulated Fe-MOFs with enhanced catalyst performance for persulfate to degrade organic pollutants. Sci. Total Environ. 2020, 701, 134806. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Wang, H.; Huang, B.; Yuan, X.; Zhang, J.; Zhang, J.; Jiang, L.; Xiong, T.; Zeng, G. State-of-the-Art Advances and Challenges of Iron-Based Metal Organic Frameworks from Attractive Features, Synthesis to Multifunctional Applications. Small 2019, 15, e1803088. [Google Scholar] [CrossRef]
- Xie, A.D.; Hu, M.-G.; Luo, Y.-H.; Zhu, X.-G.; Wang, Z.-H.; Geng, W.-Y.; Zhang, H.; Zhang, D.-E.; Zhang, H. Synthesis of a stable iron(iii)–organic framework for a visible light induced simultaneous photocatalytic reduction of Cr(vi) and the degradation of organic dyes in water. New J. Chem. 2021, 45, 13406–13414. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, Y.-N.; Cao, Y.-N.; Tong, Z.; Dong, B.; Chai, Y.-M. Advances and Challenges of Fe-MOFs Based Materials as Electrocatalysts for Water Splitting. Appl. Mater. Today 2020, 20, 100692. [Google Scholar] [CrossRef]
- Wang, K.; Huang, X.; Zhou, T.; Wang, H.; Xie, H.; Ren, Y. Boosted electrochemical properties of porous Li2FeSiO4/C based on Fe-MOFs precursor for lithium ion batteries. Vacuum 2020, 171, 108997. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, A.; Zhang, H.; Zhao, Y.; Su, X.; Wang, L.; Wu, R.; Yang, C. Urchin-like hybrid nanostructures of CuOx/Fe2O3 from Cu-mediated pyrolysis of Fe-MOFs for catalytic reduction of organic pollutants. Nanoscale 2022, 14, 1826–1833. [Google Scholar] [CrossRef]
- Cheng, H.; Zang, C.; Bian, F.; Jiang, Y.; Yang, L.; Dong, F.; Jiang, H. Boosting free radical type photocatalysis over Pd/Fe-MOFs by coordination structure engineering. Catal. Sci. Technol. 2021, 11, 5543–5552. [Google Scholar] [CrossRef]
- Jin, X.; Tang, T.; Tao, X.; Huang, L.; Shang, S. Regulating N content to anchor Fe in Fe-MOFs: Obtaining multiple active sites as efficient photocatalysts. J. Taiwan Inst. Chem. Eng. 2022, 132, 104133. [Google Scholar] [CrossRef]
- Jin, X.; Tang, T.; Tao, X.; Huang, L.; Xu, D. A novel dual-ligand Fe-based MOFs synthesized with dielectric barrier discharge (DBD) plasma as efficient photocatalysts. J. Mol. Liq. 2021, 340, 117290. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Tao, X.; Huang, L.; Yang, Z.; Guo, Q. Novel dielectric barrier discharge (DBD) plasma method for preparation of Fe-MOFs@Fe2O3 composites to treat waste polyethylene terephthalate (PET). J. Environ. Chem. Eng. 2023, 11, 109281. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, C.; Niu, Y.; Chen, J.; Zhao, Y.; Zhang, Y.; Gao, R.; He, J. Target triggered cleavage effect of DNAzyme: Relying on Pd-Pt alloys functionalized Fe-MOFs for amplified detection of Pb2+. Biosens. Bioelectron. 2018, 101, 297–303. [Google Scholar] [CrossRef]
- Yao, J.; Xie, Z.; Zeng, X.; Wang, L.; Yue, T. Bimetallic Eu/Fe-MOFs ratiometric fluorescent nanoenzyme for selective cholesterol detection in biological serum: Synthesis, characterization, mechanism and DFT calculations. Sens. Actuators B Chem. 2022, 354, 130760. [Google Scholar] [CrossRef]
- Geng, N.; Chen, W.; Xu, H.; Ding, M.; Lin, T.; Wu, Q.; Zhang, L. Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: Efficiency, kinetics and mechanism. Ultrason. Sonochem. 2021, 72, 105411. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, S.; Li, Y.; Yao, L.; Zhang, H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Appl. Catal. B Environ. 2017, 202, 165–174. [Google Scholar] [CrossRef]
- Tran, K.N.T.; Tran, T.B.; Do, S.T.; Nguyen, K.O.T.; Lam, T.V. Synthesis of Mn-Doped Fe-MOFs with Different Ratios and Its Application for Photocatalytic Degradation of Rhodamine B Dye. Indones. J. Chem. 2022, 22, 96–104. [Google Scholar] [CrossRef]
- Ma, Y.; Lu, Y.; Hai, G.; Dong, W.; Li, R.; Liu, J.; Wang, G. Bidentate carboxylate linked TiO2 with NH2-MIL-101(Fe) photocatalyst: A conjugation effect platform for high photocatalytic activity under visible light irradiation. Sci. Bull. 2020, 65, 658–669. [Google Scholar] [CrossRef]
- Brahmi, C.; Benltifa, M.; Vaulot, C.; Michelin, L.; Dumur, F.; Gkaniatsou, E.; Sicard, C.; Airoudj, A.; Morlet-Savary, F.; Bousselmi, L.; et al. New Hybrid Fe-based MOFs/Polymer Composites for the Photodegradation of Organic Dyes. ChemistrySelect 2021, 6, 8120–8132. [Google Scholar] [CrossRef]
- Ngan Tran, T.K.; Ho, H.L.; Nguyen, H.V.; Tran, B.T.; Nguyen, T.T.; Thi Bui, P.Q.; Bach, L.G. Photocatalytic degradation of Rhodamine B in aqueous phase by bimetallic metal-organic framework M/Fe-MOF (M = Co, Cu, and Mg). Open Chem. 2022, 20, 52–60. [Google Scholar] [CrossRef]
- Mousavi, S.E.; Younesi, H.; Bahramifar, N.; Tamunaidu, P.; Karimi-Maleh, H. A novel route to the synthesis of alpha-Fe2O3@C@SiO2/TiO2 nanocomposite from the metal-organic framework as a photocatalyst for water treatment. Chemosphere 2022, 297, 133992. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, L.; Wang, X.; Jia, X.; Xu, P.; Zhao, M.; Dai, R. Simultaneous efficient adsorption and photocatalytic degradation of methylene blue over iron(III)-based metal–organic frameworks: A comparative study. Transit. Met. Chem. 2019, 44, 789–797. [Google Scholar] [CrossRef]
- Gong, Q.; Liu, Y.; Dang, Z. Core-shell structured Fe3O4@GO@MIL-100(Fe) magnetic nanoparticles as heterogeneous photo-Fenton catalyst for 2,4-dichlorophenol degradation under visible light. J. Hazard. Mater. 2019, 371, 677–686. [Google Scholar] [CrossRef]
- Li, S.; Wu, F.; Lin, R.; Wang, J.; Li, C.; Li, Z.; Jiang, J.; Xiong, Y. Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization. Chem. Eng. J. 2022, 429, 132217. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, X.; Ye, Y.; Guo, C.; Xu, X.; Zhou, J.; Wang, B. Enhanced photocatalytic hydrogen evolution with a Mixed-Valence iron Metal-Organic framework. Chem. Eng. J. 2023, 456, 140939. [Google Scholar] [CrossRef]
- Dai, F.; Wang, Y.; Zhou, X.; Zhao, R.; Han, J.; Wang, L. ZnIn2S4 decorated Co-doped NH2-MIL-53(Fe) nanocomposites for efficient photocatalytic hydrogen production. Appl. Surf. Sci. 2020, 517, 146161. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Song, M.; Feng, H.; Yu, J.; Liu, B.; Ren, Q.; Yang, Z.; Xu, M.; He, Y. Non-noble copper ion anchored on NH2-MIL-101(Fe) as a novel cocatalyst with transient metal centers for efficient photocatalytic water splitting. J. Alloys Compd. 2022, 905, 164153. [Google Scholar] [CrossRef]
- He, W.; Li, Z.; Lv, S.; Niu, M.; Zhou, W.; Li, J.; Lu, R.; Gao, H.; Pan, C.; Zhang, S. Facile synthesis of Fe3O4@MIL-100(Fe) towards enhancing photo-Fenton like degradation of levofloxacin via a synergistic effect between Fe3O4 and MIL-100(Fe). Chem. Eng. J. 2021, 409, 128274. [Google Scholar] [CrossRef]
- Fu, J.; Wang, L.; Chen, Y.; Yan, D.; Ou, H. Enhancement of aqueous stability of NH2-MIL-101(Fe) by hydrophobic grafting post-synthetic modification. Environ. Sci. Pollut. Res. Int. 2021, 28, 68560–68571. [Google Scholar] [CrossRef]
- Yi, X.-H.; Ji, H.; Wang, C.-C.; Li, Y.; Li, Y.-H.; Zhao, C.; Wang, A.; Fu, H.; Wang, P.; Zhao, X.; et al. Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations. Appl. Catal. B Environ. 2021, 293, 120229. [Google Scholar] [CrossRef]
- Yan, D.; Hu, H.; Gao, N.; Ye, J.; Ou, H. Fabrication of carbon nanotube functionalized MIL-101(Fe) for enhanced visible-light photocatalysis of ciprofloxacin in aqueous solution. Appl. Surf. Sci. 2019, 498, 143836. [Google Scholar] [CrossRef]
- Du, C.; Zhang, Y.; Zhang, Z.; Song, D.; Cao, J.; Yu, H.; Yu, G.; Zhou, L.; Su, Y.; Lv, Y.; et al. Highly efficient removal of oxytetracycline using activated magnetic MIL-101(Fe)/gamma-Fe2O3 heterojunction catalyst. J. Environ. Manag. 2022, 317, 115327. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Long, X.; Bian, F.; Yang, C.; Liu, X.; Jiang, H. Efficient photocatalytic one-pot hydrogenation and N-alkylation of nitrobenzenes/benzonitriles with alcohols over Pd/MOFs: Effect of the crystal morphology & “quasi-MOF” structure. J. Catal. 2020, 389, 121–131. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.; Wu, J.; Li, Z.; Huang, W.; Zheng, Y.; Lei, J.; Zhang, X.; Tang, L. Magnetic Fe3O4@MIL-53(Fe) nanocomposites derived from MIL-53(Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation. Mater. Res. Bull. 2020, 132, 111000. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Y.; Wang, C.; Guo, R.; You, J.; Zhang, H. Optimizing the performance of Fe-based metal-organic frameworks in photo-Fenton processes: Mechanisms, strategies and prospects. Chemosphere 2023, 339, 139673. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Luo, P.; Wu, H.; Wei, C.; Hu, Y.; Qiu, G. Strategies for Improving the Performance and Application of MOFs Photocatalysts. ChemCatChem 2019, 11, 2978–2993. [Google Scholar] [CrossRef]
- Yi, J.; Wu, X.; Wu, H.; Guo, J.; Wu, K.; Zhang, L. Facile synthesis of novel NH2-MIL-53(Fe)/AgSCN heterojunction composites as a highly efficient photocatalyst for ciprofloxacin degradation and H2 production under visible-light irradiation. React. Chem. Eng. 2022, 7, 84–100. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Toyao, T.; Miyahara, K.; Zakary, L.; Van, D.D.; Kamata, Y.; Kim, T.H.; Lee, S.W.; Matsuoka, M. Visible-light-driven photocatalytic water oxidation catalysed by iron-based metal-organic frameworks. Chem. Commun. 2016, 52, 5190–5193. [Google Scholar] [CrossRef]
- Huang, W.; Shao, H.; Song, M.; Yang, Z.; Li, G.; Liao, X. Perylene diimides coated Fe-MOFs as acid-tolerant photo-Fenton catalyst for phenol removal. Appl. Surf. Sci. 2021, 547, 149222. [Google Scholar] [CrossRef]
- Xu, W.; Xue, W.; Huang, H.; Wang, J.; Zhong, C.; Mei, D. Morphology controlled synthesis of α-Fe2O3-x with benzimidazole-modified Fe-MOFs for enhanced photo-Fenton-like catalysis. Appl. Catal. B Environ. 2021, 291, 120129. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, H.; Kang, L.; Gao, Z.; Ren, F. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: Acceleration of Fe(II)/ Fe(III) cycle under visible light irradiation. Appl. Catal. B Environ. 2020, 263, 118282. [Google Scholar] [CrossRef]
- Guo, J.; Jia, H.; Zhang, A.; Pei, Z.; Luo, M.; Xue, J.; Shen, Q.; Liu, X.; Xu, B. MIL-100 (Fe) with mix-valence coordinatively unsaturated metal site as Fenton-like catalyst for efficiently removing tetracycline hydrochloride: Boosting Fe(III)/Fe(II) cycle by photoreduction. Sep. Purif. Technol. 2021, 262, 118334. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, M.; Xu, L.; Wang, S.; Yang, T.; Wu, M.; Lu, W.; Li, Y.; Yu, D. Unraveling timescale-dependent Fe-MOFs crystal evolution for catalytic ozonation reactivity modulation. J. Hazard. Mater. 2022, 431, 128575. [Google Scholar] [CrossRef]
- Yang, T.; Yu, D.; Wang, D.; Yang, T.; Li, Z.; Wu, M.; Petru, M.; Crittenden, J. Accelerating Fe(III)/Fe(II) cycle via Fe(II) substitution for enhancing Fenton-like performance of Fe-MOFs. Appl. Catal. B Environ. 2021, 286, 119859. [Google Scholar] [CrossRef]
- Yu, D.; Li, L.; Wu, M.; Crittenden, J.C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Appl. Catal. B Environ. 2019, 251, 66–75. [Google Scholar] [CrossRef]
- Wu, Q.; Siddique, M.S.; Yang, Y.; Wu, M.; Kang, L.; Yang, H. Facile and scalable synthesis of Fe-based metal organic frameworks for highly efficient photo-Fenton degradation of organic contaminants. J. Clean. Prod. 2022, 374, 134033. [Google Scholar] [CrossRef]
- Liu, N.; Dai, W.; Fei, F.; Xu, H.; Lei, J.; Quan, G.; Zheng, Y.; Zhang, X.; Tang, L. Insights into the photocatalytic activation persulfate by visible light over ReS2/MIL-88B(Fe) for highly efficient degradation of ibuprofen: Combination of experimental and theoretical study. Sep. Purif. Technol. 2022, 297, 121545. [Google Scholar] [CrossRef]
- Song, M.; Han, J.; Wang, Y.; Chen, L.; Chen, Y.; Liao, X. Effects and Mechanisms of Cu Species in Fe-MOFs on Fenton-Like Catalytic Activity and Stability. ACS Appl. Mater. Interfaces 2023, 15, 36201–36213. [Google Scholar] [CrossRef]
- Wei, F.H.; Chen, D.; Liang, Z.; Zhao, S.Q.; Luo, Y. Preparation of Fe-MOFs by microwave-assisted ball milling for reducing Cr(vi) in wastewater. Dalton. Trans. 2017, 46, 16525–16531. [Google Scholar] [CrossRef]
- Garazhian, Z.; Farrokhi, A.; Rezaeifard, A.; Jafarpour, M.; Khani, R. The enhanced visible-light-induced photocatalytic activities of bimetallic Mn-Fe MOFs for the highly efficient reductive removal of Cr(vi). RSC Adv. 2021, 11, 21127–21136. [Google Scholar] [CrossRef]
- Li, H.; Zhao, C.; Li, X.; Fu, H.; Wang, Z.; Wang, C.-C. Boosted photocatalytic Cr(VI) reduction over Z-scheme MIL-53(Fe)/Bi12O17Cl2 composites under white light. J. Alloy. Compd. 2020, 844, 156147. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.H.; Chen, F.Y.; Geng, W.Y.; Lu, X.X.; Zhang, D.E. Enhancing the spatial separation of photogenerated charges on Fe-based MOFs via structural regulation for highly-efficient photocatalytic Cr(VI) reduction. J. Hazard. Mater. 2023, 441, 129875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Fu, Y.; Hao, D.; Guo, J.; Ni, B.-J.; Jiang, B.; Xu, L.; Wang, Q. Fabrication of CN75/NH2-MIL-53(Fe) p-n heterojunction with wide spectral response for efficiently photocatalytic Cr(VI) reduction. J. Alloys Compd. 2022, 891, 161994. [Google Scholar] [CrossRef]
- Gao, Q.; Lin, D.; Fan, Y.; He, Q.; Wang, Q. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI. Chem. Eng. J. 2019, 374, 10–19. [Google Scholar] [CrossRef]
- He, Q.; Fu, Y.; Ge, X.; Al-Enizi, A.M.; Nafady, A.; Wang, Q.; Ma, S. Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr(VI) reduction. J. Environ. Chem. Eng. 2021, 9, 105961. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Vaziri, R.; Abureesh, M.A. Highly robust AgIO3/MIL-53 (Fe) nanohybrid composites for degradation of organophosphorus pesticides in single and binary systems: Application of artificial neural networks modelling. J. Taiwan Inst. Chem. Eng. 2018, 83, 133–142. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, M.; Fu, J.; Wang, Y.; Muhammad, Y.; Li, S.; Wang, J.; Zhao, Z.; Zhao, Z. Construction of Cu-bridged Cu2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-Fenton degradation of thiacloprid. Chem. Eng. J. 2020, 395, 125184. [Google Scholar] [CrossRef]
- Ahmad, M.; Chen, S.; Ye, F.; Quan, X.; Afzal, S.; Yu, H.; Zhao, X. Efficient photo-Fenton activity in mesoporous MIL-100(Fe) decorated with ZnO nanosphere for pollutants degradation. Appl. Catal. B Environ. 2019, 245, 428–438. [Google Scholar] [CrossRef]
- Yan, J.; Wen, X.; Yin, L.; Wang, Y.; Li, H.; Tu, Y. An electrochemiluminescence aptasensor for amyloid-β protein with signal enhancement from AuNPs/Fe-MOFs nanocomposite. J. Electroanal. Chem. 2023, 933, 117293. [Google Scholar] [CrossRef]
- Wang, J.-W.; Qiu, F.-G.; Wang, P.; Ge, C.; Wang, C.-C. Boosted bisphenol A and Cr(VI) cleanup over Z-scheme WO3/MIL-100(Fe) composites under visible light. J. Clean. Prod. 2021, 279, 123408. [Google Scholar] [CrossRef]
- Wang, B.-Y.; Yuan, J.; Guo, J.; Zhang, F.-Q. Synthesis of Fe-MOFs/h-CeO2 hollow micro-spheres and their highly efficient photocatalytic degradation of RhB. J. Dispers. Sci. Technol. 2022, 44, 1479–1489. [Google Scholar] [CrossRef]
- Liu, X.; Dang, R.; Dong, W.; Huang, X.; Tang, J.; Gao, H.; Wang, G. A sandwich-like heterostructure of TiO2 nanosheets with MIL-100(Fe): A platform for efficient visible-light-driven photocatalysis. Appl. Catal. B Environ. 2017, 209, 506–513. [Google Scholar] [CrossRef]
- Liu, B.; Wu, Y.; Han, X.; Lv, J.; Zhang, J.; Shi, H. Facile synthesis of g-C3N4/amine-functionalized MIL-101(Fe) composites with efficient photocatalytic activities under visible light irradiation. J. Mater. Sci. Mater. Electron. 2018, 29, 17591–17601. [Google Scholar] [CrossRef]
- Li, N.; Du, H.; Tan, M.; Yang, L.; Xue, B.; Zheng, S.; Wang, Q. Construction of Z-scheme CuBi2O4/MIL-88A(Fe) heterojunctions with enhanced LED light driven photocatalytic Cr(VI) reduction and antibacterial performance. Appl. Surf. Sci. 2023, 614, 156249. [Google Scholar] [CrossRef]
- Li, Y.; Xia, Y.; Liu, K.; Ye, K.; Wang, Q.; Zhang, S.; Huang, Y.; Liu, H. Constructing Fe-MOF-Derived Z-Scheme Photocatalysts with Enhanced Charge Transport: Nanointerface and Carbon Sheath Synergistic Effect. ACS Appl. Mater. Interfaces 2020, 12, 25494–25502. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.-T.T.; Tran, K.-N.T.; Van Tan, L.; Tran, V.A.; Doan, V.-D.; Lee, T.; Nguyen, T.D. Microwave-assisted solvothermal synthesis of bimetallic metal-organic framework for efficient photodegradation of organic dyes. Mater. Chem. Phys. 2021, 272, 125040. [Google Scholar] [CrossRef]
- Bai, S.; Qiu, H.; Song, M.; He, G.; Wang, F.; Liu, Y.; Guo, L. Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction. eScience 2022, 2, 428–437. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Su, W.; Xing, Y. Photocatalytic CO2 reduction over copper-based materials: A review. J. CO2 Util. 2022, 61, 102056. [Google Scholar] [CrossRef]
- Wu, Q.J.; Liang, J.; Huang, Y.B.; Cao, R. Thermo-, Electro-, and Photocatalytic CO2 Conversion to Value-Added Products over Porous Metal/Covalent Organic Frameworks. Acc. Chem. Res. 2022, 55, 2978–2997. [Google Scholar] [CrossRef]
- Zheng, Y.; Fu, K.; Yu, Z.; Su, Y.; Han, R.; Liu, Q. Oxygen vacancies in a catalyst for VOCs oxidation: Synthesis, characterization, and catalytic effects. J. Mater. Chem. A 2022, 10, 14171–14186. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Z.; Wang, D.; Guo, T.; Hu, Y. In-situ growth of p-type Ag2O on n-type Bi2O2S with intimate interfacial contact for NIR light-driven photocatalytic CO2 reduction. Appl. Surf. Sci. 2022, 601, 154185. [Google Scholar] [CrossRef]
- Wang, J.; Guo, R.T.; Bi, Z.X.; Chen, X.; Hu, X.; Pan, W.G. A review on TiO2-x-based materials for photocatalytic CO2 reduction. Nanoscale 2022, 14, 11512–11528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Y.; Baig, F.; Liu, T.-F. Synthesis and Applications of Stable Iron-Based Metal–Organic Framework Materials. Cryst. Growth Des. 2021, 21, 3100–3122. [Google Scholar] [CrossRef]
- Lou, W.; Yang, J.; Li, L.; Li, J. Adsorption and separation of CO2 on Fe(II)-MOF-74: Effect of the open metal coordination site. J. Solid State Chem. 2014, 213, 224–228. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Wang, Q.; Wu, J.; Duan, G.; Xu, W.; Jian, S. Magnetically separable and recyclable Fe3O4@PDA covalent grafted by l-cysteine core-shell nanoparticles toward efficient removal of Pb2+. Vacuum 2021, 189, 110229. [Google Scholar] [CrossRef]
- Jian, S.; Tian, Z.; Zhang, K.; Duan, G.; Yang, W.; Jiang, S. Hydrothermal Synthesis of Ce-doped ZnO Heterojunction Supported on Carbon Nanofibers with High Visible Light Photocatalytic Activity. Chem. Res. Chin. Univ. 2021, 37, 565–570. [Google Scholar] [CrossRef]
- Dao, X.Y.; Guo, J.H.; Wei, Y.P.; Guo, F.; Liu, Y.; Sun, W.Y. Solvent-Free Photoreduction of CO2 to CO Catalyzed by Fe-MOFs with Superior Selectivity. Inorg. Chem. 2019, 58, 8517–8524. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Mao, J.; Huang, G.; Zhang, Y.; Huang, J.; She, H.; Liu, C.; Liu, H.; Wang, Q. Configuration of hetero-framework via integrating MOF and triazine-containing COF for charge-transfer promotion in photocatalytic CO2 reduction. Chem. Eng. J. 2022, 446, 137011. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, X.; Lu, Y.; Yang, Y.; Zhang, Y.-P.; Tang, H.-L.; Zhang, F.-M.; Yang, Z.-D.; Sun, X.; Feng, Y. Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction. Appl. Catal. B Environ. 2020, 276, 119173. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, P.; Zhang, Y.; Cheng, X.M.; Sun, W.Y. Facet-Dependent Photocatalytic Behavior of Fe-soc-MOF for Carbon Dioxide Reduction. ACS Appl. Mater. Interfaces 2023, 15, 3348–3356. [Google Scholar] [CrossRef]
- Xie, X.; Liu, Y.; Li, Y.; Tao, J.; Liu, C.; Feng, J.; Feng, L.; Shan, Y.; Yang, S.; Xu, K. Nitrogen-doped Fe-MOFs derived carbon as PMS activator for efficient degradation of tetracycline. J. Taiwan Inst. Chem. Eng. 2023, 146, 104891. [Google Scholar] [CrossRef]
- Li, G.; Li, F.; Liu, J.; Fan, C. Fe-based MOFs for photocatalytic N2 reduction: Key role of transition metal iron in nitrogen activation. J. Solid State Chem. 2020, 285, 121245. [Google Scholar] [CrossRef]
- Lasek, J.; Yu, Y.-H.; Wu, J.C.S. Removal of NOx by photocatalytic processes. J. Photochem. Photobiol. C Photochem. Rev. 2013, 14, 29–52. [Google Scholar] [CrossRef]
- Yong, S.; Xiao-yu, S.; Wang, Z.; Chun-yan, L.; Qidong, Z.; Jinsuo, G.; Xinyong, L. Synthesis and characterization of Cu+/MIL-100(Fe) with enhanced catalytic performance for NH3-SCR. Ferroelectrics 2018, 522, 20–28. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Kim, T.H.; Lee, S.W. Influence of operational parameters on the photocatalytic performance of DE-NOx process Via MIL-101(Fe). Prog. Nat. Sci. Mater. Int. 2018, 28, 689–695. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.; Tu, X.; Zhu, S.; Sun, C.; Zhang, L.; Han, W.; Duan, X.; Sun, Q.; Zheng, H. Fe/Zr-MOFs constructed by a sunlight-responsive ligand for efficient photocatalytic nitrogen fixation under ambient condition. J. Colloid. Interface Sci. 2023, 633, 703–711. [Google Scholar] [CrossRef]
- Huang, L.; Kong, X.; Chang, K.; Yu, Z.; Tao, X.; Tang, T.; Xu, Y. DBD plasma assisted synthesis of MO@Fe/Ce-MOFs with rich oxygen defects as efficient photocatalysts for nitrogen fixation. J. Environ. Chem. Eng. 2023, 11, 109836. [Google Scholar] [CrossRef]
- Li, P.; Kim, S.; Jin, J.; Do, H.C.; Park, J.H. Efficient photodegradation of volatile organic compounds by iron-based metal-organic frameworks with high adsorption capacity. Appl. Catal. B Environ. 2020, 263, 118284. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, H.; Zang, C.; Tan, J.; Sun, B.; Bian, F. Photocatalytic aldehydes/alcohols/toluenes oxidative amidation over bifunctional Pd/MOFs: Effect of Fe-O clusters and Lewis acid sites. J. Catal. 2021, 401, 279–287. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Rao, Z.; Tang, Z.; Wang, Y.; Shi, G.; Lu, G.; Xie, X.; Chen, D.; Sun, J. In-situ synthesis of Z-Scheme MIL-100(Fe)/α-Fe2O3 heterojunction for enhanced adsorption and Visible-light photocatalytic oxidation of O-xylene. Chem. Eng. J. 2021, 416, 129112. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Rao, Z.; Tang, Z.; Shi, G.; Wang, Y.; Lu, G.; Xie, X.; Chen, D.; Sun, J. One-pot Synthesis of the MIL-100 (Fe) MOF/MOX Homojunctions with Tunable Hierarchical Pores for the Photocatalytic Removal of BTXS. Appl. Catal. B Environ. 2022, 303, 120885. [Google Scholar] [CrossRef]
- Qin, J.; Pei, Y.; Zheng, Y.; Ye, D.; Hu, Y. Fe-MOF derivative photocatalyst with advanced oxygen reduction capacity for indoor pollutants removal. Appl. Catal. B Environ. 2023, 325, 122346. [Google Scholar] [CrossRef]
Catalysts | Synthesis Method | Target Substances | Concentration(mg·L−1)/Volume (mL) | Catalyst (g/L)/ (g) | Reaction Time (min) | Efficiency (%)/Evolution | Light Source | Ref. |
---|---|---|---|---|---|---|---|---|
N-Fe-MOFs | DBD plasma | MO | 20 | 0.80 | 48 | 97.00 | 500 W xenon lamp | [60] |
D-Fe-MOFs | DBD plasma | MO | 20 | 0.80 | 48 | 97.00 | 500 W xenon lamp | [61] |
Fe-MOFs@Fe2O3 | DBD plasma | MG | 15 | 0.30 | 20 | 99.30 | 500 W xenon lamp | [62] |
MIL-88B(Fe) | Solvothermal | TC-HCl | 10 | 0.20 | 7 | 83.30 | / | [65] |
MIL-53(Fe) | Solvothermal | AO7 | 0.05 mM | 0.60 | 90 | Almost 100 | LED lamps | [66] |
Mn/Fe-MOFs | Solvothermal | RhB | 3 × 10−5 M | 0.10 | 120 | 91.78 | 40 W LED lamps | [67] |
TiO2@NH2-MIL-101(Fe) | Self-assembly | MB | 50 | 0.20 | 30 | 96.00 | 300 W xenon lamp | [68] |
MIL-100(Fe)/polymer | Photopolymerization | Acid Black | 15 ppm | / | 30 | 95.20 | UV–Visible Light | [69] |
M/Fe-MOF (M = Co, Cu, Mg) | Solvothermal | RhB | 3 × 10−5 M | 0.25 | 120 | 92.00 | 40 W LED | [70] |
α-Fe2O3@C@SiO2/TiO2 | Solvothermal | RY145 dye | 50–250 | 0.30 | 90 | 100 | 8 W 12in T5 TUV | [71] |
Fe-MOFs | Oil bath | MB | 20 | 0.25 | 180 | 76.16 | 500 W mercury lamp | [72] |
Fe3O4@GO@MIL-100(Fe) | Hydrothermal | 2,4-DCP | 50 | / | 60 | Almost 100 | 500 W xenon lamp | [73] |
Fe3O4@MIL-100(Fe) | In-suit growth | Levofloxacin | 200 | 0.33 | 180 | 93.40 | PLS-SXE300/300UV | [78] |
NH2-MIL-101(Fe) | Post-synthetic modification | TBBPA | 1.84 mM | 0.50 | 120 | Almost 100 | / | [79] |
PDINH/MIL-88A(Fe) | Facile ball-milling | CQ | 10 | 0.40 | 30 | 94.60 | PCX50C | [80] |
CNT@MIL-101(Fe) | Hydrothermal | Ciprofloxacin | 3.02 μM | 0.50 | 60 | Almost 100 | White light LEDs | [81] |
MIL-101(Fe)/γ-Fe2O3 | Hydrothermal | OTC | 25 | / | 60 | 91.20 | Visible light | [82] |
Fe3O4@MIL-53(Fe) | Calcination | IBP | 10 | 0.40 | 60 | 99 | 500 W xenon lamp | [84] |
NH2-MIL-53(Fe) | Solvothermal | CO2 | 50 | 0.002 | 5 h | CO/87.6 μmol·g−1 (6 h) | 300 W xenon lamp | [127] |
NH2-MIL-101(Fe) | Hydrothermal | CO2 | 50 | 0.10 | 8 h | CO/25 μmol·g−1·h−1 CH4/11.67 μmol·g−1·h−1 | 300 W xenon lamp | [128] |
PCN-250-Fe2M (M = Mn, Zn, Ni, Co) | Solvothermal | CO2 | / | / | 4 h | CO/21.51 mmol·g−1 (4 h) | 300 W xenon lamp | [129] |
Fe-soc-MOFs | Solvothermal | CO2 | 50 | 0.05 | 5 h | CO/1804 μmol·g−1·h−1 | Visible light | [130] |
MIL-101(Fe) | Solvothermal | N2 | 80 | 0.05 | 60 | Nitrogen fixation activity 50.35 μmol·L−1·h−1 | 300 W xenon lamp | [132] |
MIL-101(Fe) | Microwave-solvothermal | NOx | 0.1 ppm | 0.10 | 60 | 77 | 150 W xenon lamp | [135] |
Fe/Zr-MOFs | Solvothermal | N2 | 40 | 0.002 | 5 h | Nitrogen fixation activity 49.8 μmol·L−1·h−1 | 300 W xenon lamp | [136] |
MO@Fe/Ce-MOFs | Calcination | N2 | 500 | 0.0025 | 2 h | Nitrogen fixation activity 299 μmol·L−1·h−1 | 500 W xenon lamp | [137] |
Fe-MOFs | Solvothermal | VOCs | 1000 | 0.20 | 2 h | CO2/460 ppm | INNOVA 1412i | [138] |
MIL-100(Fe)/α-Fe2O3 | Hydrothermal | VOCs | 120 | 0.095 | 200 | 100 | 250 W xenon lamp | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Peng, Y.; Jiang, Y.; Li, L.; Wang, H.; Li, K. Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review. Molecules 2023, 28, 7121. https://doi.org/10.3390/molecules28207121
Cai J, Peng Y, Jiang Y, Li L, Wang H, Li K. Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review. Molecules. 2023; 28(20):7121. https://doi.org/10.3390/molecules28207121
Chicago/Turabian StyleCai, Jun, Yang Peng, Yanxin Jiang, Li Li, Hua Wang, and Kongzhai Li. 2023. "Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review" Molecules 28, no. 20: 7121. https://doi.org/10.3390/molecules28207121
APA StyleCai, J., Peng, Y., Jiang, Y., Li, L., Wang, H., & Li, K. (2023). Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review. Molecules, 28(20), 7121. https://doi.org/10.3390/molecules28207121