Measuring the Residual Levels of Fenpyroximate and Its Z-Isomer in Citrus Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry and Assessing the Related Dietary Intake Risks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.2. Method Validation
2.2.1. Linearity and Sensitivity
2.2.2. Recovery
2.2.3. Matrix Effect
2.3. Terminal Residues
2.4. Long-Term Dietary Risk Assessment
2.5. Short-Term Dietary Risk Assessment
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Field Trials
3.3. Sample Pre-Treatment
3.4. Instrumental Parameters
3.5. Method Validation
3.6. Definitions of Fenpyroximate
3.7. Assessment of Long-Term Dietary Intake Risk
3.8. Assessment of Short-Term Dietary-Intake Risk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ikoma, Y.; Matsumoto, H.; Kato, M. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes. Breed Sci. 2016, 66, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Zhang, Y.H.; Zhao, Q.Y.; Wang, C.Q.; Cui, Y.L.; Li, J.; Chen, A.H.; Liang, G.L.; Jiao, B.N. Occurrence, temporal variation, quality and safety assessment of pesticide residues on citrus fruits in China. Chemosphere 2020, 258, 127381. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.J.; Zhu, K.J.; Sun, Q.; Zhang, W.Y.; Wang, X.; Cao, H.B.; Tan, M.; Xie, Z.Z.; Zeng, Y.L.; Ye, J.L.; et al. Natural variation in CCD4 promoter underpins species-specific evolution of red coloration in citrus peel. Mol. Plant 2019, 12, 1294–1307. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, M.J.; Alquézar, B.; Alos, E.; Medina, V.; Carmona, L.; Bruno, M.; Al-Babili, S.; Zacarias, L. A novel carotenoid cleavage activity involved in the biosynthesis of citrus fruit-specific apocarotenoid pigments. J. Exp. Bot. 2013, 64, 4461–4478. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.J.; Gu, Y.M.; Zheng, Y. Progress of citrus industry economy in China. J. Huazhong Agric. Univ. 2021, 40, 58–69. [Google Scholar]
- Li, Z.X.; Su, X.S.; Dong, C.; Zhou, J.; An, W.J.; Wang, C.Q.; Jiao, B.J. Determination of five pesticides in kumquat: Dissipation behaviors, residues and their health risk assessment under field conditions. Ecotoxicol. Environ. Saf. 2021, 228, 112958. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hou, H.Z.; Hu, J.Y. Simultaneous determination of residues of multiple pesticides and their metabolites in citrus and orange juice from markets in China: Residue levels and dietary risk assessment. Environ. Sci. Pollut. Res. 2023, 30, 84778–84790. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Fenpyroximate. 2017. Available online: https://www.fao.org/3/i8258en/i8258en.pdf (accessed on 20 August 2022).
- Malhat, F.; Abdallah, O.; Anagnostopoulos, C.; Hussien, M.; Purnama, I.; Helmy, R.M.A.; Soliman, H.; El-Hefny, D. Residue, dissipation, and dietary intake evaluation of fenpyroximate acaricide in/on guava, orange, and eggplant under open field condition. Front Nutr. 2022, 9, 939012. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.X.; Yan, T.C.; Yue, Z.X.; Li, M.H.; Zheng, H.; Wang, S.L.; Cao, J. Dispersive micro-solid-phase extraction of acaricides from fruit juice and functional food using cucurbituril as sorbent. Food Anal. Methods 2022, 15, 1356–1367. [Google Scholar] [CrossRef]
- Motoba, K.; Nishizawa, H.; Suzuki, T.; Hamaguchi, H.; Uchida, M.; Funayama, S. Species-Specific Detoxification Metabolism of Fenpyroximate, a Potent Acaricide. Pestic. Biochem. Physiol. 2000, 67, 73–84. [Google Scholar] [CrossRef]
- China Pesticide Information Network. Available online: http://www.chinapesticide.org.cn/zwb/dataCenter (accessed on 20 August 2022).
- Al-Rahman, S.H.A.; Almaz, M.M.; Osama, I.A. Determination of degradation rate of acaricide fenpyroximate in apple, citrus, and grape by HPLC-DAD. Food Anal. Methods 2013, 90, 306–311. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, Y.J.; Kang, I.H.; Kim, D.H.; Lee, J.R. Analytical methods of fenpyroximate in herbal medicines. Korean J. Pestic. Sci. 2014, 18, 141–147. [Google Scholar] [CrossRef]
- Malhat, F.; El-Mesallamy, A.; Assy, M.; Madian, W.; Loutfy, N.M.; Ahmed, M.T. Residues, half-life times, dissipation, and safety evaluation of the acaricide fenpyroximate applied on grapes. Toxicol. Environ. Chem. Rev. 2013, 95, 1309–1317. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Fenpyroximate. 2013. Available online: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation13/Fenpyroximate.pdf (accessed on 20 August 2022).
- Nardi, C.D.; Bonelli, F. Moving from fast to ballistic gradient in liquid chromatography/tandem mass spectrometry pharmaceutical bioanalysis: Matrix effect and chromatographic evaluations. Rapid Commun. Mass Spectrom. 2006, 20, 2709–2716. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, S.; Li, T.B.; Li, X.H.; Huang, X.P.; Gao, Y.Y.; Li, B.X.; Lin, J.; Mu, W. Determination of pyraclostrobin dynamic residual distribution in tilapia tissues by UPLC-MS/MS under acute toxicity conditions. Ecotoxic. Environ. Saf. 2020, 206, 111182. [Google Scholar] [CrossRef] [PubMed]
- Codex Online Databases. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/zh/?p_id=193 (accessed on 20 August 2022).
- United States Pesticide MRLs. Available online: https://www.govinfo.gov/content/pkg/CFR-2014-title40-vol24/xml/CFR-2014-title40-vol24-part180.xml#seqnum180.669 (accessed on 20 August 2022).
- The Japan Food Chemical Research Foundation. Available online: http://db.ffcr.or.jp/front/ (accessed on 20 August 2022).
- GB2763-2021; National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. National Health Commission of the People’s Republic of China: Beijing, China, 2021.
- EU Pesticide Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls/searchpr (accessed on 20 August 2022).
- Korea MRLs for Pesticides. Available online: https://www.mfds.go.kr/eng/brd/m_60/view.do?seq=67166 (accessed on 20 August 2022).
- Schabacker, J.; Hahne, J.; Ludwigs, J.D.; Vallon, M.; Foudoulakis, M.; Murfitt, R.; Ristau, K. Residue levels of pesticides on fruits for use in wildlife risk assessments. Integr. Environ. Assess. Manag. 2021, 17, 552–561. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Template for the Evaluation of Acute Exposure (IESTI). Available online: https://cdn.who.int/media/docs/default-source/food-safety/gems-food/guidance-iesti-2014.pdf?sfvrsn=9b24629a_2 (accessed on 20 August 2022).
- 27. NY/T 788-2018; Guideline for the Testing of Pesticide Residues in Crops. Chinese Agricultural Press: Beijing, China, 2018.
- González-Curbelo, M.Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríg-uez-Delgado, M.Á. Evolution and applications of the QuEChERS method. TrAC Trends Anal. Chem. 2015, 71, 169–185. [Google Scholar] [CrossRef]
- European Commission. Guidance Document on Analytical Qualitycontrol and Method Validation Procedures for Pesticides Residues and Analysis in Food and Feed. 2021. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 20 August 2022).
- Wan, J.; He, P.; Chen, Y.S.; Zhu, Q.J. Comprehensive target analysis for 19 pyrethroids in tea and orange samples based on LC-ESI-QqQ-MS/MS and LC-ESI-Q-ToF/MS. LWT-Food Sci. Technol. 2021, 151, 155–165. [Google Scholar] [CrossRef]
- Xiang, L.; Sun, T.F.; Chen, L.; Xiao, T.; Cai, Q.Y.; Li, H.; He, D.C.; Wong, M.H.; Li, Y.W.; Mo, C.H. A robust method for routine analysis of perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) in various edible crop matrices. Food Anal. Methods 2017, 10, 2518–2528. [Google Scholar] [CrossRef]
- Tang, H.X.; Sun, Q.; Huang, J.Q.; Wen, G.Y.; Han, L.J.; Wang, L.; Zhang, Y.; Dong, M.F.; Wang, W.M. Residue behaviors, degradation, processing factors, and risk assessment of pesticides in citrus from field to product processing. Sci. Total Environ. 2023, 897, 165321. [Google Scholar] [CrossRef] [PubMed]
Compound | Retention Time (Rt, min) | Qualitative Ion Pair (M Z−1) | Quantitative Ion Pair (M Z−1) | Declustering Potential (DP, V) | Collision Energy (CE, V) |
---|---|---|---|---|---|
Fenpyroximate | 2.71 | 422.2 > 366.1 | 422.2 > 135.0 | 90 | 23 |
Z-fenpyroximate | 2.28 | 90 | 43 |
Compounds | Matrix | Calibration Curve | R2 | ME/% | LOQ/ (mg kg−1) |
---|---|---|---|---|---|
Fenpyroximate | Whole citrus | y = 43,651,900x + 85,383 | 0.9916 | −16.8 | 0.01 |
Citrus flesh | y = 46,191,900x + 103,438 | 0.9913 | −12.0 | 0.01 | |
Acetonitrile | y = 52,490,800x + 117,794 | 0.9904 | - | 0.01 | |
Z-fenpyroximate | Whole citrus | y = 38,951,300x + 40,262 | 0.9920 | −25.8 | 0.01 |
Citrus flesh | y = 49,233,100x + 104,127 | 0.9913 | −6.18 | 0.01 | |
Acetonitrile | y = 52,475,700x + 147,634 | 0.9907 | - | 0.01 |
Compounds | Matrix | Spiked Level/ (mg kg−1) | Average Recovery (n = 5)/% | RSD/% |
---|---|---|---|---|
Fenpyroximate | Whole citrus | 0.01 | 109 | 2 |
0.1 | 110 | 1 | ||
0.2 | 108 | 1 | ||
0.5 | 104 | 4 | ||
Citrus flesh | 0.01 | 109 | 2 | |
0.1 | 98 | 3 | ||
0.2 | 92 | 1 | ||
Z-fenpyroximate | Whole citrus | 0.01 | 113 | 2 |
0.1 | 110 | 2 | ||
0.2 | 104 | 1 | ||
0.5 | 108 | 1 | ||
Citrus flesh | 0.01 | 91 | 2 | |
0.1 | 90 | 1 | ||
0.2 | 90 | 2 |
Application Dose (mg kg−1) | Application Times | Harvest Interval (Days) | Matrix | Residues (mg/kg) | ||||
---|---|---|---|---|---|---|---|---|
Fenpyroximate | Z- Fenpyroximate | Total Residues (Evaluate Definition) | STMR (mg kg−1) | HR (mg kg−1) | ||||
56 | 1 | 15, 25 | Whole citrus | <0.010–0.18 | <0.010 | <0.020–0.19 | - | - |
Flesh citrus | <0.010–0.063 | <0.010 | <0.020–0.053 | 0.020 | 0.053 |
Food Classification | Fi (kg) | Residue (mg kg−1) | Sources | NEDI (mg kg−1 bw) | Allowable Daily Intake (mg kg−1 bw) | RQc/% | |
---|---|---|---|---|---|---|---|
Total fenpyroximate (sum of fenpyroximate and Z-fenpyroximate) | Other grains | 0.0233 | 0.01 | CAC, MRL (maize) | 3.70 × 10−6 | ADI | NEDI/ADI × 100% |
Fruits | 0.0457 | 0.020 | STMR in this study (flesh citrus) | 1.45 × 10−5 | |||
Salt | 0.012 | 2 | China, MRL (lycium) | 3.80 × 10−4 | |||
total | 3.98 × 10−4 | 0.01 | 3.98 |
Age | bw (kg) | LP (kg) | NESTI (mg kg−1 bw) | RQa (%) |
---|---|---|---|---|
1–6 years | 16.1 | 0.587 | 0.00275 | 27.5 |
>6 years | 63 | 1.014 | 0.00106 | 10.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, R.; Cao, J.; Li, J.; Qi, Y.; Qin, S. Measuring the Residual Levels of Fenpyroximate and Its Z-Isomer in Citrus Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry and Assessing the Related Dietary Intake Risks. Molecules 2023, 28, 7123. https://doi.org/10.3390/molecules28207123
Sun R, Cao J, Li J, Qi Y, Qin S. Measuring the Residual Levels of Fenpyroximate and Its Z-Isomer in Citrus Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry and Assessing the Related Dietary Intake Risks. Molecules. 2023; 28(20):7123. https://doi.org/10.3390/molecules28207123
Chicago/Turabian StyleSun, Ruiqing, Junli Cao, Jindong Li, Yanli Qi, and Shu Qin. 2023. "Measuring the Residual Levels of Fenpyroximate and Its Z-Isomer in Citrus Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry and Assessing the Related Dietary Intake Risks" Molecules 28, no. 20: 7123. https://doi.org/10.3390/molecules28207123
APA StyleSun, R., Cao, J., Li, J., Qi, Y., & Qin, S. (2023). Measuring the Residual Levels of Fenpyroximate and Its Z-Isomer in Citrus Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry and Assessing the Related Dietary Intake Risks. Molecules, 28(20), 7123. https://doi.org/10.3390/molecules28207123