The Interaction of Pesticides with Humin Fractions and Their Potential Impact on Non-Extractable Residue Formation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dynamics of Pesticide Sorption to HNs
2.2. Impact of Individual Pesticide Properties on Sorption Rate to HNs
2.3. Impact of Soil Properties on Pesticide Sorption Rate to HNs
3. Materials and Methods
3.1. Soil Sample Collection and Preparation
3.2. HN Isolation
3.3. Pesticide Characterization and Method of Their Detection
3.4. Sorption Experiments
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cousins, I.T.; Ng, C.A.; Wang, Z.; Scheringer, M. Why is high persistence alone a major cause of concern? Environ. Sci. Process. Impacts 2019, 21, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Barchańska, H.; Czaplicka, M.; Kyzioł-Komosińska, J. Interaction of selected pesticides with mineral and organic soil components. Arch. Environ. Prot. 2020, 46, 80–91. [Google Scholar]
- Whale, G.; Parsons, J.; Ginkel, K.; Davenport, R.; Vaiopoulou, E.; Fenner, K.; Schaeffer, A. Improving our understanding of the environmental persistence of chemicals. Integr. Environ. Assess. Manag. 2021, 17, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Kodesova, R.; Kocarek, M.; Kodes, V.; Drabek, O.; Kozak, J.; Hejtmankova, K. Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. J. Hazard. Mater. 2011, 186, 540–550. [Google Scholar] [CrossRef]
- Schäffer, A.; Kästner, M.; Trapp, S. A unified approach for including non-extractable residues (NER) of chemicals and pesticides in the assessment of persistence. Environ. Sci. Eur. 2018, 30, 51. [Google Scholar] [CrossRef]
- Davenport, R.; Curtis-Jackson, P.; Dalkmann, P.; Davies, J.; Fenner, K.; Hand, L.; McDonough, K.; Ott, A.; Ortega-Calvo, J.; Parsons, J.; et al. Scientific concepts and methods for moving persistence assessments into the 21st century. Integr. Environ. Assess. Manag. 2022, 18, 1454–1487. [Google Scholar] [CrossRef]
- Barriuso, E.; Benoit, P.; Dubus, I. Formation of Pesticide Nonextractable (Bound) Residues in Soil: Magnitude, Controlling Factors and Reversibility. Environ. Sci. Technol. 2008, 42, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, J. Dynamic interactions of natural organic matter and organic compounds. J. Soils Sediments 2012, 12, 1241–1256. [Google Scholar] [CrossRef]
- Włodarczyk, M. Influence of formulation on mobility of metazachlor in soil. Environ. Monit. Assess. 2014, 186, 3503–3509. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Siwek, H. Effect of the formulation on pendimethalin behaviour in octanol-water system as well as on values of octanol/water partition and bioaccumulation coefficients. Prem. Chem. 2011, 90, 1076–1079. [Google Scholar]
- Bejger, R.; Mielnik, L.; Włodarczyk, M.; Nicia, P. Studying of the interaction between peat humic acids and metazachlor using spectroscopy methods. J. Soils Sediments 2018, 18, 2675–2681. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Bejger, R.; Smreczak, B.; Podlasiński, M. Sorption of Organic Contaminants by Stable Organic Matter Fraction in Soil. Molecules 2023, 28, 429. [Google Scholar] [CrossRef]
- Ćwieląg-Piasecka, I. Soil organic matter composition and ph as factors affecting retention of carbaryl, carbofuran and metolachlor in soil. Molecules 2023, 28, 5552. [Google Scholar] [CrossRef]
- Senesi, N. Binding mechanisms of pesticides to soil humic substances. Behav. Pestic. Soil Environ. 1992, 123–124, 63–76. [Google Scholar] [CrossRef]
- Murphy, E.M.; Zachara, J.M.; Smith, S.C.; Phillips, J.L.; Wietsma, T.W. Interaction of Hydrophobic Organic Compounds with Mineral-Bound Humic Substances. Environ. Sci. Technol. 1994, 28, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Sadegh-Zadeh, F.; Abd Wahid, S.; Jalili, B. Sorption, degradation and leaching of pesticides in soils amended with organic matter: A review. Adv. Environ. Technol. 2017, 3, 119–132. [Google Scholar]
- Novotny, E.H.; Turetta, A.P.D.; Resende, M.F.; Rebello, C.M. The quality of soil organic matter, accessed by 13C solid state nuclear magnetic resonance, is just as important as its content concerning pesticide sorption. Environ. Pollut. 2020, 266, 115298. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, G.; Loibner, A. Linking organic pollutant (bio) availability with geosorbent properties and biomimetic methodology: A review of geosorbent characterization and (bio)availability prediction. Environ. Pollut. 2006, 141, 494–512. [Google Scholar] [CrossRef]
- Hayes, M.; Mylotte, R.; Swift, R. Humin: Its Composition and Importance in Soil Organic Matter. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Burlington, MA, USA, 2017; Volume 143, pp. 47–138. ISBN 978-0-12-812421-5. [Google Scholar]
- Schaumann, G. Soil organic matter beyond molecular structure Part I: Macromolecular and supramolecular characteristics. J. Plant. Nutr. Soil Sci. 2006, 169, 145–156. [Google Scholar] [CrossRef]
- Schaumann, G. Soil organic matter beyond molecular structure Part II: Amorphous nature and physical aging. J. Plant. Nutr. Soil Sci. 2006, 169, 157–167. [Google Scholar] [CrossRef]
- Clapp, C.E.; Hayes, M.H.B.; Simpson, A.J.; Kingery, W.L. Chemistry of soil organic matter. In Chemical Processes in Soil; Tabatabai, M.A., Sparks, D.L., Eds.; SSSA: Madison, WI, USA, 2005; pp. 1–150. [Google Scholar]
- ECHA—European Chemical Agency. Options to Address NER in Regulatory P Assessment. Background Note 1(5). 10 June 2019. Available online: https://echa.europa.eu/documents/10162/13632/bg_note_addressing_non-extractable_residues.pdf/e88d4fc6-a125-efb4-8278-d58b31a5d342 (accessed on 1 September 2023).
- Wauchope, R.; Yeh, S.; Linders, J.; Kloskowski, R.; Tanaka, K.; Rubin, B.; Katayama, A.; Kordel, W.; Gerstl, Z.; Lane, M.; et al. Pesticide soil sorption parameters: Theory, measurement, uses, limitations and reliability. Pest Manag. Sci. 2002, 58, 419–445. [Google Scholar] [CrossRef] [PubMed]
- Venkanna, B.K.; Swati, B.V. Basic Thermodynamics; PHI Learning Pvt. Ltd.: Delhi, India, 2010; ISBN 9788120341128. [Google Scholar]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Endo, S. Applicability Domain of Polyparameter Linear Free Energy Relationship Models Evaluated by Leverage and Prediction Interval Calculation. Environ. Sci. Technol. 2022, 56, 5572–5579. [Google Scholar] [CrossRef] [PubMed]
- Eeshwarasinghe, D.; Loganathan, P.; Vigneswaran, S. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere 2019, 223, 616–627. [Google Scholar] [CrossRef]
- Tan, K.H. Humic Matter in Soil and the Environment. Principles and Controversies; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK; New York, NY, USA, 2014. [Google Scholar]
- Wang, X.Q.; Liu, J.; Zhang, N.; Yang, H. Adsorption, mobility, biotic and abiotic metabolism and degradation of pesticide exianliumi in three types of farmland. Chemosphere 2020, 254, 126741. [Google Scholar] [CrossRef]
- Koskinen, W.C.; Harper, S.S. The Retention Process: Mechanisms. In Pesticides in the Soil Environment: Processes Impacts and Modelling; Cheng, H.H., Ed.; Chapter 3, SSSA Book Series, no. 2; Soil Science Society of America: Madison, WI, USA, 1990; pp. 51–76. [Google Scholar]
- Kornilov, D.A.; Kiselev, V.D.; Konovalov, A.I. Comparison of enthalpy, entropy, and volume changes of chemical reactions. Russ. Chem. Bull. 2015, 64, 956–959. [Google Scholar] [CrossRef]
- Jing, T.-F.; Zhang, D.; Jin, Y.; Si, G.; Li, B.; Mu, W.; Liu, F. Humic acid nature and compound structure together determine the capacity of soil to sorb Avermectin B1a and its derivatives. J. Chem. Eng. 2023, 453, 139914. [Google Scholar] [CrossRef]
- Dorado, J.; Almendros, G. Organo-Mineral Interactions Involved in Herbicide Sorption on Soil Amended with Peats of Different Maturity Degree. Agronomy 2021, 11, 869. [Google Scholar] [CrossRef]
- Singh, R.P.; Srivastava, G. Adsorption and Movement of Carbofuran in Four Different Soils Varying in Physical and Chemical Properties. Adsorpt. Sci. Technol. 2009, 27, 193–203. [Google Scholar] [CrossRef]
- Li, H.; Sheng, G.; Teppen, B.; Johnston, C.; Boyd, S.A. Sorption and desorption of pesticides by clay minerals and humic acid clay complexes. Soil Sci. Soc. Am. J. 2003, 67, 122–131. [Google Scholar]
- Ćwieląg-Piasecka, I.; Debicka, M.; Medyńska-Juraszek, A. Effectiveness of Carbaryl, Carbofuran and Metolachlor Retention in Soils under the Influence of Different Colloid. Minerals 2021, 11, 924. [Google Scholar] [CrossRef]
- Infante, C.M.C.; Masini, J.C. Development of a spectrophotometric sequential injection methodology for online monitoring of the adsorption of paraquat on clay mineral and soil. Spectrosc. Lett. 2007, 40, 3–14. [Google Scholar] [CrossRef]
- Guégan, R. Organoclay applications and limits in the environment. Comptes Rendus Chim. 2019, 22, 132–141. [Google Scholar] [CrossRef]
- Murano, H.; Suzuki, K.; Kayada, S.; Saito, M.; Yuge, N.; Arishiro, T.; Watanabe, A.; Isoi, T. Influence of humic substances and iron and aluminum ions on the sorption of acetamiprid to an arable soil. Sci. Total Environ. 2018, 615, 1478–1484. [Google Scholar] [CrossRef]
- Clausen, L.; Fabricius, I.; Madsen, L. Adsorption of pesticides onto quartz, calcite, kaolinite and a-alumina. J. Environ. Qual. 2002, 30, 846–857. [Google Scholar] [CrossRef]
- Weber, J.; Jamroz, E.; Kocowicz, A.; Debicka, M.; Bekier, J.; Ćwieląg-Piasecka, I.; Ukalska-Jaruga, A.; Mielnik, L.; Bejger, R.; Jerzykiewicz, M. Optimized isolation method of humin fraction from mineral soil material. Environ. Geochem. Health 2022, 44, 1289–1298. [Google Scholar] [CrossRef]
Sorption Equation | Total Amount of Adsorbed Pesticide (Mean ± sd) | |
---|---|---|
Flufenacet | ||
C1 | y = −0.04x2 + 2.2x + 2.1 | 30.0 ± 1.2 |
C2 | y = −0.01x2 + 1.7x + 5.5 | 49.1 ± 0.9 |
C3 | y = −0.06x2 + 2.7x + 5.3 | 38.2 ± 1.1 |
C4 | y = −0.05x2 + 2.8x + 5.9 | 48.0 ± 1.5 |
C5 | y = −0.05x2 + 2.7x + 5.8 | 48.9 ± 0.8 |
C6 | y = 0.01x2 + 0.3x + 3.8 | 23.0 ± 0.9 |
C7 | y = −0.05x2 + 2.5x + 2.9 | 35.4 ± 1.4 |
C8 | y = −0.05x2 + 2.6x + 5.1 | 40.5 ± 1.6 |
Pendimethalin | ||
C1 | y = −0.03x2 + 1.6x + 2.8 | 25.1 ± 1.2 |
C2 | y = −0.03x2 + 1.6x + 4.0 | 32.6 ± 1.7 |
C3 | y = −0.02x2 + 1.8x + 3.7 | 40.7 ± 1.5 |
C4 | y = −0.05x2 + 1.9x + 4.3 | 20.3 ± 1.3 |
C5 | y = −0.03x2 + 1.6x + 1.2 | 24.2 ± 0.9 |
C6 | y = −0.08x2 + 3.9x + 8.4 | 21.4 ± 1.5 |
C7 | y = −0.03x2 + 1.7x + 4.2 | 31.6 ± 1.4 |
C8 | y = −0.05x2 + 2.5x + 3.6 | 34.9 ± 1.3 |
Cypermethrin | ||
C1 | y = −0.08x2 + 4.0x + 5.7 | 58.5 ± 1.3 |
C2 | y = −0.09x2 + 4.7x + 8.9 | 73.5 ± 1.2 |
C3 | y = −0.13x2 + 5.9x + 8.5 | 69.9 ± 1.5 |
C4 | y = −0.13x2 + 5.1x + 11.1 | 49.2 ± 1.1 |
C5 | y = −0.10x2 + 4.7x + 11.3 | 61.6 ± 1.6 |
C6 | y = −0.08x2 + 3.8x + 8.5 | 49.5 ± 1.0 |
C7 | y = −0.09x2 + 4.8x + 8.3 | 66.0 ± 0.9 |
C8 | y = −0.10x2 + 4.8x + 10.8 | 63.8 ± 0.9 |
Metazachlor | ||
C1 | y = −0.21x2 + 8.7x + 19.1 | 95.0 ± 1.1 |
C2 | y = −0.20x2 + 8.6x + 19.1 | 94.9 ± 1.6 |
C3 | y = −0.19x2 + 8.4x + 18.8 | 94.2 ± 1.7 |
C4 | y = −0.20x2 + 8.5x + 19.2 | 95.5 ± 1.0 |
C5 | y = −0.19x2 + 8.4x + 18.8 | 93.9 ± 1.5 |
C6 | y = −0.20x2 + 8.5x + 19.2 | 95.5 ± 1.4 |
C7 | y = −0.19x2 + 8.5x + 18.9 | 95.3 ± 1.6 |
C8 | y = −0.20x2 + 8.5x + 19.4 | 94.4 ± 1.8 |
Acetamiprid | ||
C1 | y = −0.19x2 + 8.4x + 19.4 | 96.6 ± 0.9 |
C2 | y = −0.20x2 + 8.5x + 19.1 | 94.3 ± 0.8 |
C3 | y = −0.19x2 + 8.3x + 18.9 | 93.9 ± 1.0 |
C4 | y = −0.19x2 + 8.3x + 18.8 | 96.1 ± 1.1 |
C5 | y = −0.20x2 + 8.4x + 19.0 | 93.4 ± 1.2 |
C6 | y = −0.19x2 + 8.3x + 19.0 | 94.1 ± 0.9 |
C7 | y = −0.20x2 + 8.4x + 19.0 | 94.7 ± 0.9 |
C8 | y = −0.19x2 + 8.4x + 18.9 | 94.3 ± 1.3 |
PCA 1 | PCA 2 | PCA 3 | |
---|---|---|---|
Clay | 0.22 | 0.89 | −0.05 |
Silt + Sand | −0.22 | −0.89 | 0.05 |
pH in KCl | 0.65 | −0.56 | 0.25 |
TOC | −0.74 | 0.58 | 0.30 |
TN | −0.74 | 0.63 | 0.12 |
TOC/TN | −0.23 | −0.05 | 0.90 |
Flufenacet | 0.20 | 0.59 | −0.43 |
Pendimethalin | 0.80 | 0.31 | 0.12 |
Cypermethrin | 0.94 | 0.26 | −0.17 |
Metazachlor | −0.70 | −0.16 | −0.35 |
Acetamiprid | −0.43 | −0.35 | −0.65 |
Eigenvalues | 3 | 2 | 1 |
Total variance | 53 | 27 | 15 |
Cumulative % | 53 | 80 | 96 |
Soil Samples | Clay (%) | Sand + Silt (%) | pH in KCl | TOC (g kg−1) | TN (g kg−1) | TOC/TN |
---|---|---|---|---|---|---|
C1 | 16 | 84 | 7.71 | 13.3 | 1.06 | 12.5 |
C2 | 41 | 59 | 7.45 | 24.4 | 2.14 | 11.4 |
C3 | 22 | 78 | 7.52 | 21.2 | 1.60 | 13.2 |
C4 | 24 | 76 | 5.64 | 41.7 | 3.39 | 12.3 |
C5 | 19 | 81 | 7.39 | 26.1 | 2.03 | 12.8 |
C6 | 21 | 79 | 7.52 | 39.9 | 2.90 | 13.7 |
C7 | 24 | 76 | 7.48 | 24.6 | 2.12 | 11.6 |
C8 | 47 | 53 | 6.66 | 37.7 | 2.80 | 13.4 |
Properties | Flufenacet | Pendimethalin | Acetamiprid | Metazachlor | α-Cypermethrin |
---|---|---|---|---|---|
Chemical formula | C14H13F4N3O2S | C13H19N3O4 | C10H11ClN4 | C14H16ClN3O | C22H19Cl2NO3 |
Pesticide type | Herbicide | Herbicide | Insecticide | Herbicide | Insecticide |
Substance group | Oxyacetamide | Dinitroaniline | Neonicotinoid | Chloroacetamide | Pyrethroid |
Molecular mass (g mol−1) | 363.33 | 281.31 | 222.67 | 277.75 | 416.30 |
Polar surface area (Å2) | 83.6 | 104.0 | 52.3 | 38.1 | 59.3 |
Octanol–water partition coefficient at pH 7, 20 °C | P = 3.16 × 103 Log P = 3.5 | P = 2.51 × 105 Log P = 5.4 | P = 6.31 × 100 Log P = 0.8 | P = 3.09 × 102 Log P = 2.49 | P = 6.31 × 105 Log P = 5.8 |
Vapor pressure at 20 °C (mPa) | 0.09 | 3.34 | 1.73·10−4 | 0.093 | 0.00038 |
Henry’s law constant at 25 °C (Pa m3 mol−1) | 1.3 × 10−3 | 1.27 | 5.30 × 10−8 | 5.9 × 10−5 | 5.30 × 10−2 |
Linear adsorption and mobility | Koc = 401 mL·g−1 | Koc = 17,491 mL·g−1 | Koc = 200 mL·g−1 | Koc = 54.0 mL·g−1 | Koc = 288,735 mL·g−1 |
Freundlich adsorption and mobility | Kf = 4.38 Kfoc = 273.3 1/n = 0.92 | Kf = 220.1 Kfoc = 13,792 1/n = 0.954 | Kf = 1.58 Kfoc = 106.5 1/n = 0.86 | Kf = 1.02 Kfoc = 79.6 1/n = 0.993 | - |
Bio-concentration factor (BCF, L kg−1) | 71.4 | 5100 | Low risk | Low risk | 910 |
Threshold of Toxicological Concern (Cramer Class) | High (class III) | High (class III) | High (class III) | High (class III) | High (class III) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ukalska-Jaruga, A.; Bejger, R.; Smreczak, B.; Weber, J.; Mielnik, L.; Jerzykiewicz, M.; Ćwieląg-Piasecka, I.; Jamroz, E.; Debicka, M.; Kocowicz, A.; et al. The Interaction of Pesticides with Humin Fractions and Their Potential Impact on Non-Extractable Residue Formation. Molecules 2023, 28, 7146. https://doi.org/10.3390/molecules28207146
Ukalska-Jaruga A, Bejger R, Smreczak B, Weber J, Mielnik L, Jerzykiewicz M, Ćwieląg-Piasecka I, Jamroz E, Debicka M, Kocowicz A, et al. The Interaction of Pesticides with Humin Fractions and Their Potential Impact on Non-Extractable Residue Formation. Molecules. 2023; 28(20):7146. https://doi.org/10.3390/molecules28207146
Chicago/Turabian StyleUkalska-Jaruga, Aleksandra, Romualda Bejger, Bożena Smreczak, Jerzy Weber, Lilla Mielnik, Maria Jerzykiewicz, Irmina Ćwieląg-Piasecka, Elżbieta Jamroz, Magdalena Debicka, Andrzej Kocowicz, and et al. 2023. "The Interaction of Pesticides with Humin Fractions and Their Potential Impact on Non-Extractable Residue Formation" Molecules 28, no. 20: 7146. https://doi.org/10.3390/molecules28207146
APA StyleUkalska-Jaruga, A., Bejger, R., Smreczak, B., Weber, J., Mielnik, L., Jerzykiewicz, M., Ćwieląg-Piasecka, I., Jamroz, E., Debicka, M., Kocowicz, A., & Bekier, J. (2023). The Interaction of Pesticides with Humin Fractions and Their Potential Impact on Non-Extractable Residue Formation. Molecules, 28(20), 7146. https://doi.org/10.3390/molecules28207146