Lanthanide-Based Organic Salts: Synthesis, Characterization, and Cytotoxicity Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Magnetic Salts
2.2. Magnetic Moment
2.3. Cytotoxicity of Lanthanide-Based Salts
3. Materials and Methods
3.1. General Remarks
3.2. Synthesis of Metal-Complex Salts
3.2.1. Gadolinium(III)-Based Organic Salts
3.2.2. Terbium(III)-Based Organic Salt
3.3. Magnetic Moment Determination
3.4. Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Welton, T. Ionic Liquids: A Brief History. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, R.; Branco, L.C.; Marrucho, I.M.; Araújo, J.M.M.; Rebelo, L.P.N.; Da Ponte, M.N.; Prudêncio, C.; Noronha, J.P.; Petrovski, E. Development of Novel Ionic Liquids Based on Ampicillin. Medchemcomm 2012, 3, 494–497. [Google Scholar] [CrossRef]
- Amde, M.; Liu, J.; Pang, L. Environmental Application, Fate, Effects and Concerns of Ionic Liquids: A Review. Environ. Sci. Technol. 2015, 49, 12611–12627. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Dinari, M. Ionic Liquids as Green Solvents: Progress and Prospects. In Green Solvents II—Properties and Applications of Ionic Liquids; Mohammad, A., Inamuddin, Eds.; Springer: Dordrecht, The Netherlands, 2012; ISBN 9788578110796. [Google Scholar]
- Clark, K.D.; Nacham, O.; Purslow, J.A.; Pierson, S.A.; Anderson, L. Magnetic Ionic Liquids in Analytical Chemistry: A Review. Anal. Chim. Acta 2016, 934, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.M.; Shao, Y.; Zhang, K.J.; Wang, Y.W.; Peng, Y. Syntheses of Three Terbium Complexes as Fluorescent Probes and Their Application on the PH Detection of Routine Urine Test. Chin. Chem. Lett. 2017, 28, 2009–2013. [Google Scholar] [CrossRef]
- Daniel, C.I.; Chávez, F.V.; Portugal, C.A.M.; Crespo, J.G.; Sebastiao, P.J. 1H NMR Relaxation Study of a Magnetic Ionic Liquid as a Potential Contrast Agent. J. Phys. Chem. B 2015, 119, 11740–11747. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Arco, L.; Gómez-Ramírez, A.; Durán, J.D.G.; López-López, M.T. New Perspectives for Magnetic Fluid-Based Devices Using Novel Ionic Liquids as Carriers. In Smart Actuation and Sensing Systems; Berselli, G., Vertechy, R., Vassura, G., Eds.; InTech: London, UK, 2012; pp. 445–464. [Google Scholar]
- Hayashi, S.; Hamaguchi, H. Discovery of a Magnetic Ionic Liquid [Bmim]FeCl4. Chem. Lett. 2004, 33, 1590–1591. [Google Scholar] [CrossRef]
- Lacerda, S.; Tóth, É. Lanthanide Complexes in Molecular Magnetic Resonance Imaging and Theranostics. ChemMedChem 2017, 12, 883–894. [Google Scholar] [CrossRef]
- Caravan, P.; Esteban-Gómez, D.; Rodríguez-Rodríguez, A.; Platas-Iglesias, C. Water Exchange in Lanthanide Complexes for MRI Applications. Lessons Learned over the Last 25 Years. Dalt. Trans. 2019, 48, 11161–11180. [Google Scholar] [CrossRef]
- De León-Rodríguez, L.M.; Martins, A.F.; Pinho, M.C.; Rofsky, N.M.; Sherry, A.D. Basic MR Relaxation Mechanisms and Contrast Agent Design. J. Magn. Reson. Imaging 2015, 42, 545–565. [Google Scholar] [CrossRef]
- Westbrook, C. At a Glance, 3rd ed.; John Wiley & Sons: Chichester, UK, 2016; ISBN 9781118994702. [Google Scholar]
- Verwilst, P.; Park, S.; Yoon, B.; Kim, J.S. Recent Advances in Gd-Chelate Based Bimodal Optical/MRI Contrast Agents. Chem. Soc. Rev. 2015, 44, 1791–1806. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z.S.; Zhou, S.K. MRI Contrast Agents: Classification and Application (Review). Int. J. Mol. Med. 2016, 38, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Cotton, S. Lanthanide and Actinide Chemistry; Wiley: Hoboken, NJ, USA, 2006; ISBN 9780470010082. [Google Scholar]
- de Bettencourt-Dias, A. Introduction to Lanthanide Ion Luminescence. In Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials; de Bettencourt-Dias, A., Ed.; John Wiley & Sons: New Delhi, India, 2014; pp. 1–48. ISBN 9781118682760. [Google Scholar]
- Leonard, J.P.; Nolan, C.B.; Stomeo, F.; Gunnlaugsson, T. Photochemistry and Photophysics of Coordination Compounds: Lanthanides. Top. Curr. Chem. 2007, 281, 1–43. [Google Scholar]
- Bünzli, J.-C.G. Review: Lanthanide Coordination Chemistry: From Old Concepts to Coordination Polymers. J. Coord. Chem. 2014, 67, 3706–3733. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, P. A Basis for Lanthanide Single-Molecule Magnets. In Lanthanide Single Molecule Magnets; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–39. ISBN 9783662469989. [Google Scholar]
- Peters, J.A.; Huskens, J.; Raber, D.J. Lanthanide Induced Shifts and Relaxation Rate Enhancements. Prog. Nucl. Magn. Reson. Spectrosc. 1996, 28, 283–350. [Google Scholar] [CrossRef]
- Dong, H.; Du, S.; Zheng, X.; Lyu, G.; Sun, L.; Li, L.; Zhang, P.; Zhang, C.; Yan, C. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem. Rev. 2015, 115, 10725–10815. [Google Scholar] [CrossRef] [PubMed]
- Teo, R.D.; Termini, J.; Gray, H.B. Lanthanides: Applications in Cancer Diagnosis and Therapy. J. Med. Chem. 2016, 59, 6012–6024. [Google Scholar] [CrossRef] [PubMed]
- Cotton, S. Electronic and Magnetic Properties of the Lanthanides. In Lanthanide and Actinide Chemistry; Woolins, D., Crabtree, B., Atwood, D., Meyer, G., Eds.; John Wiley & Sons: Chippenham, UK, 2006; pp. 61–87. [Google Scholar]
- Gómez-Lechón, M.J.; Tolosa, L.; Donato, M.T. Cell-based models to predict human hepatotoxicity of drugs. Rev. Toxicol. 2014, 31, 149–156. [Google Scholar]
- Qiu, J.; Zhang, J.; Li, A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. Ecotoxicol. Environ. Saf. 2023, 249, 114447. [Google Scholar] [CrossRef]
- Liu, X.; Shan, K.; Shao, X.; Shi, X.; He, Y.; Liu, Z.; Jacob, J.A.; Deng, L. Nanotoxic Effects of Silver Nanoparticles on Normal HEK-293 Cells in Comparison to Cancerous HeLa Cell Line. Int. J. Nanomed. 2021, 16, 753–761. [Google Scholar] [CrossRef]
- Forte, A.; Gago, S.; Alves, C.; Silva, J.; Rosa, J.; Pedrosa, R.; Laia, C.A.T.; Marrucho, I.M.; Branco, L.C. Unpublished Research. 2020. [Google Scholar]
- Werner, E.J.; Datta, A.; Jocher, C.J.; Raymond, K.N. High-Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging. Angew. Chem.—Int. Ed. 2008, 47, 8568–8580. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Kovacs, Z.; Green, K.N.; Ratnakar, S.J.; Sherry, A.D. Alternatives to Gadolinium-Based Metal Chelates for Magnetic Resonance Imaging. Chem. Rev. 2010, 110, 2960–3018. [Google Scholar] [CrossRef] [PubMed]
- Murugesu, M.; Schelter, E.J. Not Just Lewis Acids: Preface for the Forum on New Trends and Applications for Lanthanides. Inorg. Chem. 2016, 55, 9951–9953. [Google Scholar] [CrossRef] [PubMed]
- Nghia, N.T.; Tinet, E.; Ettori, D.; Beilvert, A.; Pavon-Djavid, G.; Maire, M.; Ou, P.; Tualle, J.M.; Chaubet, F. Gadolinium/Terbium Hybrid Macromolecular Complexes for Bimodal Imaging of Atherothrombosis. J. Biomed. Opt. 2017, 22, 076004. [Google Scholar] [CrossRef] [PubMed]
- Sitharaman, B.; Jacobson, B.D.; Wadghiri, Y.Z.; Bryant, H.; Frank, J. The Magnetic, Relaxometric, and Optical Properties of Gadolinium-Catalyzed Single Walled Carbon Nanotubes The Magnetic, Relaxometric, and Optical Properties of Gadolinium-Catalyzed Single Walled Carbon Nanotubes. J. Appl. Phys. 2013, 113, 134308. [Google Scholar] [CrossRef] [PubMed]
- Gould, C.A.; Mcclain, K.R.; Yu, J.M.; Groshens, T.J.; Furche, F.; Harvey, B.G.; Long, R. Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and Dysprosium(II). J. Am. Chem. Soc. 2019, 141, 12967–12973. [Google Scholar] [CrossRef]
Compound | Physical State | Tm [Td] (a) (°C) | |
---|---|---|---|
[N1,1,1,C2OH][GdCl4] | White solid | 145 | |
[N1,1,4,C2OH][GdCl4] | White solid | 118 | |
[N1,1,C2OH,C2OH][GdCl4] | White solid | Hygroscopic | |
[N1,1,2,C3OH][GdCl4] | Pale yellow solid | 147 | |
Gd(III) | [N1,1,4,C3OH][GdCl4] | Yellow solid | 148 |
[N2,2,2,C2OH][GdCl4] | White solid | 95 | |
[N1,1,1,C2COOCH3][GdCl4] | White solid | 152 | |
[N2,2,2,2][GdCl4] | White solid | 114 | |
[P4,4,4,4][GdCl4] | Yellow solid | Hygroscopic | |
[N1,1,1,C2OH][TbCl4] | White solid | 114 | |
[N1,1,4,C2OH][TbCl4] | White solid | 115 | |
[N1,1,C2OH,C2OH][TbCl4] | White solid | Hygroscopic | |
[N1,1,2,C3OH][TbCl4] | Pale yellow solid | 139 | |
Tb(III) | [N1,1,4,C3OH][TbCl4] | Yellow solid | 155 |
[POH,OH,OH,OH][TbCl4] | White solid | 146 | |
[N1,1,1,C2COOCH3][TbCl4] | White solid | 142 | |
[N2,2,2,2][TbCl4] | White solid | 110 | |
[P4,4,4,4][TbCl4] | Yellow solid | Hygroscopic |
Compound | [N1,1,1,C2OH] | [N1,1,4,C2OH] | [N1,1,C2OH,C2OH] | [N1,1,2,C3OH] | [N1,1,4,C3OH] | [POH,OH,OH,OH] | [P4,4,4,4] |
---|---|---|---|---|---|---|---|
(A) | |||||||
(B) |
Compound | 10−6 × χg (c.g.s) (a) | µeff (MB) (b) | |
---|---|---|---|
Gd(III) | Gd(III) free ion | - | 7.94 [33] |
[N1,1,1,C2OH] [GdCl4] | 55.78 | 7.30 | |
[N1,1,4,C2OH] [GdCl4] | 45.48 | 6.93 | |
[N1,1,C2OH,C2OH] [GdCl4] | 45.25 | 6.82 | |
[N1,1,2,C3OH] [GdCl4] | 51.24 | 7.24 | |
[N1,1,4,C3OH] [GdCl4] | 47.83 | 7.22 | |
[N2,2,2,C2OH] [GdCl4] | 40.61 | 6.55 | |
[N1,1,1,C2COOCH3][GdCl4] | n.d. | n.d. | |
[N2,2,2,2] [GdCl4] | n.d. | n.d. | |
[P4,4,4,4] [GdCl4] | 37.45 | 7.04 | |
Tb(III) | Tb(III) free ion | - | 9.72 [34] |
[N1,1,1,C2OH] [TbCl4] | 82.41 | 8.90 | |
[N1,1,4,C2OH] [TbCl4] | 82.23 | 9.34 | |
[N1,1,C2OH,C2OH] [TbCl4] | 65.59 | 8.22 | |
[N1,1,2,C3OH] [TbCl4] | 72.21 | 8.61 | |
[N1,1,4,C3OH] [TbCl4] | 58.45 | 7.99 | |
[POH,OH,OH,OH] [TbCl4] | 59.29 | 8.01 | |
[N1,1,1,C2COOCH3][TbCl4] | n.d. | n.d. | |
[N2,2,2,2] [TbCl4] | n.d. | n.d. | |
[P4,4,4,4] [TbCl4] | 56.50 | 8.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forte, A.; Gago, S.; Alves, C.; Silva, J.; Alves, J.; Pedrosa, R.; Laia, C.A.T.; Marrucho, I.M.; Branco, L.C. Lanthanide-Based Organic Salts: Synthesis, Characterization, and Cytotoxicity Studies. Molecules 2023, 28, 7152. https://doi.org/10.3390/molecules28207152
Forte A, Gago S, Alves C, Silva J, Alves J, Pedrosa R, Laia CAT, Marrucho IM, Branco LC. Lanthanide-Based Organic Salts: Synthesis, Characterization, and Cytotoxicity Studies. Molecules. 2023; 28(20):7152. https://doi.org/10.3390/molecules28207152
Chicago/Turabian StyleForte, Andreia, Sandra Gago, Celso Alves, Joana Silva, Joana Alves, Rui Pedrosa, César A. T. Laia, Isabel M. Marrucho, and Luis C. Branco. 2023. "Lanthanide-Based Organic Salts: Synthesis, Characterization, and Cytotoxicity Studies" Molecules 28, no. 20: 7152. https://doi.org/10.3390/molecules28207152
APA StyleForte, A., Gago, S., Alves, C., Silva, J., Alves, J., Pedrosa, R., Laia, C. A. T., Marrucho, I. M., & Branco, L. C. (2023). Lanthanide-Based Organic Salts: Synthesis, Characterization, and Cytotoxicity Studies. Molecules, 28(20), 7152. https://doi.org/10.3390/molecules28207152