Steric and Energetic Studies on the Synergetic Enhancement Effect of Integrated Polyaniline on the Adsorption Properties of Toxic Basic and Acidic Dyes by Polyaniline/Zeolite-A Composite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of the pH
2.2. Kinetic Studies
2.2.1. Effect of Contact Time
2.2.2. Intra-Particle Diffusion Behaviour
2.2.3. Kinetic Modelling
2.3. Equilibrium Studies
2.3.1. Effect of MB and CR Concentrations
2.3.2. Giles’s Classification
2.3.3. Classic Isotherm Models
2.3.4. Advanced Isotherm Modelling
Steric Properties
- Number of adsorbed MB and CR (n) per each site
- Occupied active sites density (Nm)
- Adsorption capacity at the saturation state of (Qsat)
Energetic Properties
- Adsorption energy
- Thermodynamic functions
- Entropy
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the PANI/Zeolite-A Composite
3.2.1. Synthesis of Zeolite-A
3.2.2. Synthesis of Polyaniline/Zeolite-A Composite (PANI/ZA)
3.3. Adsorption Studies
3.3.1. The Batch Adsorption Tests
3.3.2. Theoretical Traditional and Advanced Equilibrium Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zourou, A.; Ntziouni, A.; Adamopoulos, N.; Roman, T.; Zhang, F.; Terrones, M.; Kordatos, K. Graphene oxide-CuFe2O4 nanohybrid material as an adsorbent of Congo red dye. Carbon Trends 2022, 7, 100147. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Zhang, J.; Wang, Y.; Wen, H.; Xie, J. Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting: A critical review. Int. J. Biol. Macromol. 2021, 189, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Zan, F.; Iqbal, A.; Guo, G.; Liu, X.; Dai, J.; Ekama, G.A.; Chen, G. Integrated food waste management with wastewater treatment in Hong Kong: Transformation, energy balance and economic analysis. Water Res. 2020, 184, 116155. [Google Scholar] [CrossRef] [PubMed]
- Taher, T.; Putra, R.; Palapa, N.R.; Lesbani, A. Preparation of magnetitenanoparticle-decorated NiFe layered double hydroxide and its adsorption performance for congo red dye removal. Chem. Phys. Lett. 2021, 777, 138712. [Google Scholar] [CrossRef]
- Ghanbari, S.; Fatehizadeh, A.; Khiadani, M.; Taheri, E.; Iqbal, H.M. Treatment of synthetic dye containing textile raw wastewater effluent using UV/Chlorine/Br photolysis process followed by activated carbon adsorption. Environ. Sci. Pollut. Res. 2022, 29, 39400–39409. [Google Scholar] [CrossRef] [PubMed]
- Pathania, D.; Dhar, S.; Sharma, A.; Srivastava, A.K. Decolourization of noxious safranin-T from waste water using Mangifera indica as precursor. Environ. Sustain. 2021, 4, 355–364. [Google Scholar] [CrossRef]
- Rassabina, A.; Khabibrakhmanova, V.; Babaev, V.; Daminova, A.; Minibayeva, F. Melanins from the Lichens Lobaria pulmonaria and Lobaria retigera as Eco-Friendly Adsorbents of Synthetic Dyes. Int. J. Mol. Sci. 2022, 23, 15605. [Google Scholar] [CrossRef]
- Arab, C.; El Kurdi, R.; Patra, D. Zinc curcumin oxide nanoparticles for enhanced adsorption of Congo red: Kinetics and adsorption isotherms study. Mater. Today Chem. 2022, 23, 100701. [Google Scholar] [CrossRef]
- Sajwan, D.; Semwal, A.; Rawat, J.; Sharma, H.; Dwivedi, C. Synthesis of CdSe QDs decorated ZIF-8 composite for visible light assisted degradation of methylene blue. Mater. Today Proc. 2023, 73, 180–188. [Google Scholar] [CrossRef]
- Bansal, S.; Pandey, P.K.; Upadhayay, S. Methylene Blue Dye Removal from Wastewater Using Ailanthus Excelsa Roxb as Adsorbent. Water Conserv. Sci. Eng. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Durrani, W.Z.; Nasrullah, A.; Khan, A.S.; Fagieh, T.M.; Bakhsh, E.M.; Akhtar, K.; Khan, S.B.; Din, I.U.; Khan, M.A.; Bokhari, A. Adsorption efficiency of date palm based activated carbon-alginate membrane for methylene blue. Chemosphere 2022, 302, 134793. [Google Scholar] [CrossRef]
- Jawad, A.H.; Malek, N.N.A.; Khadiran, T.; ALOthman, Z.A.; Yaseen, Z.M. Mesoporous high-surface-area activated carbon from biomass waste via microwave-assisted-H3PO4 activation for methylene blue dye adsorption: An optimized process. Diam. Relat. Mater. 2022, 128, 109288. [Google Scholar] [CrossRef]
- Hassan, H.M.A.; El-Aassar, M.R.; El-Hashemy, M.A.; Betiha, M.A.; Alzaid, M.; Alqhobisi, A.N.; Alzarea, L.A.; Alsohaimi, I.H. Sulfanilic acid-functionalized magnetic GO as a robust adsorbent for the efficient adsorption of methylene blue from aqueous solution. J. Mol. Liq. 2022, 361, 119603. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- He, L.; Chen, Y.; Li, Y.; Sun, F.; Zhao, Y.; Yang, S. Adsorption of Congo red and tetracycline onto water treatment sludge biochar: Characterisation, kinetic, equilibrium and thermodynamic study. Water Sci. Technol. 2022, 85, 1936–1951. [Google Scholar] [CrossRef] [PubMed]
- Harja, M.; Buema, G.; Bucur, D. Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci. Rep. 2022, 12, 6087. [Google Scholar] [CrossRef]
- Narayan, M.; Sadasivam, R.; Packirisamy, G.; Pichiah, S. Electrospun polyacrylonitrile-Moringa Olifera based nanofibrous bio-sorbent for remediation of Congo red dye. J. Environ. Manag. 2022, 317, 115294. [Google Scholar] [CrossRef]
- Roy, N.; Chakraborty, S. ZnO as photocatalyst: An approach to waste water treatment. Mater. Today Proc. 2021, 46, 6399–6403. [Google Scholar] [CrossRef]
- Le, T.M.H.; Nuisin, R.; Mongkolnavin, R.; Painmanakul, P.; Sairiam, S. Enhancing Dye Wastewater Treatment Efficiency in Ozonation Membrane Contactors by Chloro- and Fluoro-Organosilanes’ Functionality on Hydrophobic Pvdf Membrane Modification. SSRN Electron. J. 2022, 288, 120711. [Google Scholar] [CrossRef]
- Basaleh, A.A.; Al-Malack, M.H.; Saleh, T.A. Poly(acrylamide acrylic acid) grafted on steel slag as an efficient magnetic adsorbent for cationic and anionic dyes. J. Environ. Chem. Eng. 2021, 9, 105126. [Google Scholar] [CrossRef]
- Ashrafi, G.; Nasrollahzadeh, M.; Jaleh, B.; Sajjadi, M.; Ghafuri, H. Biowaste- and nature-derived (nano)materials: Biosynthesis, stability and environmental applications. Adv. Colloid Interface Sci. 2022, 301, 102599. [Google Scholar] [CrossRef]
- Lahiri, S.K.; Zhang, C.; Sillanpää, M.; Liu, L. Nanoporous NiO@SiO2 photo-catalyst prepared by ion-exchange method for fast elimination of reactive dyes from wastewater. Mater. Today Chem. 2022, 23, 100677. [Google Scholar] [CrossRef]
- Alam, G.; Ihsanullah, I.; Naushad, M.; Sillanpää, M. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chem. Eng. J. 2022, 427, 130011. [Google Scholar] [CrossRef]
- Haleem, A.; Shafiq, A.; Chen, S.Q.; Nazar, M. A comprehensive review on adsorption, photocatalytic and chemical degradation of dyes and nitro-compounds over different kinds of porous and composite materials. Molecules 2023, 28, 1081. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.; Daverey, A.; Dutta, K.; Yata, V.K.; Arunachalam, K. Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium and thermodynamics study. Environ. Technol. Innov. 2022, 25, 102200. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Tenhu, H.; Khattab, S.A.; Eldeeb, A.A.; Azaam, M.M. Highly efficient adsorbent material for removal of methylene blue dye based on functionalized polyacrylonitrile. Eur. Polym. J. 2022, 169, 111138. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ohemeng-Boahen, G.; Sewu, D.D.; Osei, B.A.; Woo, S.H. Improved adsorption of Congo red from aqueous solution using alkali-treated goethite impregnated chitosan hydrogel capsule. J. Environ. Chem. Eng. 2022, 10, 108244. [Google Scholar] [CrossRef]
- Brahma, D.; Saikia, H. Synthesis of ZrO2/MgAl-LDH composites and evaluation of its isotherm, kinetics and thermodynamic properties in the adsorption of congo red dye. Chem. Thermodyn. Therm. Anal. 2022, 7, 100067. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gnanamoorthy, G.; Ali, D.; Bera, S.P.; Roy, A.; Kumar, G.; Choudhary, N.; Kalasariya, H.; Basnet, A. Cytotoxicity, Removal of Congo Red Dye in Aqueous Solution Using Synthesized Amorphous Iron Oxide Nanoparticles from Incense Sticks Ash Waste. J. Nanomater. 2022, 2022, 5949595. [Google Scholar] [CrossRef]
- Han, M.; Wang, S.; Chen, X.; Liu, H.; Gao, H.; Zhao, X.; Wang, F.; Yang, H.; Yi, Z.; Fang, L. Spinel CuB2O4 (B = Fe, Cr, and Al) Oxides for Selective Adsorption of Congo Red and Photocatalytic Removal of Antibiotics. ACS Appl. Nano Mater. 2022, 5, 11194–11207. [Google Scholar] [CrossRef]
- Vo, T.S.; Vo, T.T.B.C. Organic dye removal and recycling performances of graphene oxide-coated biopolymer sponge. Prog. Nat. Sci. Mater. Int. 2022, 32, 634–642. [Google Scholar] [CrossRef]
- Senguttuvan, S.; Janaki, V.; Senthilkumar, P.; Kamala-Kannan, S. Polypyrrole/zeolite composite–A nanoadsorbent for reactive dyes removal from synthetic solution. Chemosphere 2022, 287, 132164. [Google Scholar] [CrossRef] [PubMed]
- Abukhadra, M.R.; Mostafa, M.; Jumah, M.N.B.; Al, N.; Alruhaimi, R.S.; Salama, Y.F.; Allam, A.A. Correction: Insight into the Adsorption Properties of Chitosan/Zeolite-A Hybrid Structure for Effective Decontamination of Toxic Cd (II) and As (V) Ions from the Aqueous Environments. J. Polym. Environ. 2022, 30, 4500. [Google Scholar] [CrossRef]
- Wang, L.; Muhammad, H.; Laipan, M.; Fan, X.; Guo, J.; Li, Y. Enhanced removal of Cr (VI) and Mo (VI) from polluted water using L-cysteine doped polypyrrole/bentonite composite. Appl. Clay Sci. 2022, 217, 106387. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Yang, R.; Zhou, G.; Yu, P.; Sun, L.; Hao, T.; Wang, J.; Liu, Y. Novel environment-friendly magnetic bentonite nanomaterials functionalized by carboxymethyl chitosan and 1-(2-pyridinylazo)-2-naphthaleno for adsorption of Sc (III). Appl. Surf. Sci. 2021, 566, 150644. [Google Scholar] [CrossRef]
- Jawad, A.H.; Rangabhashiyam, S.; Abdulhameed, A.S.; Syed-Hassan, S.S.A.; ALOthman, Z.A.; Wilson, Z.A.L.D. Process optimization and adsorptive mechanism for reactive blue 19 dye by magnetic crosslinked chitosan/MgO/Fe3O4 biocomposite. J. Polym. Environ. 2022, 30, 2759–2773. [Google Scholar] [CrossRef]
- Guo, J.; Wang, L.; Tu, Y.; Muhammad, H.; Fan, X.; Cao, G.; Laipan, M. Polypyrrole modified bentonite nanocomposite and its application in high-efficiency removal of Cr (VI). J. Environ. Chem. Eng. 2021, 9, 106631. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Ghanem, A.F.; Sheir, D.H.; Badawy, A.A. Effective single and contest carcinogenic dyes adsorption onto A-zeolite/bacterial cellulose composite membrane: Adsorption isotherms, kinetics, and thermodynamics. J. Environ. Chem. Eng. 2022, 10, 108588. [Google Scholar] [CrossRef]
- Sandomierski, M.; Zielińska, M.; Voelkel, A. Calcium zeolites as intelligent carriers in controlled release of bisphosphonates. Int. J. Pharm. 2020, 578, 119117. [Google Scholar] [CrossRef]
- Hidayat, E.; Yoshino, T.; Yonemura, S.; Mitoma, Y.; Harada, H. Synthesis, adsorption isotherm and kinetic study of alkaline-treated zeolite/chitosan/Fe3+ composites for nitrate removal from aqueous solution—Anion and dye effects. Gels 2022, 8, 782. [Google Scholar] [CrossRef]
- Servatan, M.; Zarrintaj, P.; Mahmodi, G.; Kim, S.J.; Ganjali, M.R.; Saeb, M.R.; Mozafari, M. Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discov. Today 2020, 25, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Marković, M.; Daković, A.; Rottinghaus, G.E.; Kragović, M.; Petković, A.; Krajišnik, D.; Milić, J.; Mercurio, M.; de Gennaro, B. Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant. Colloids Surf. B Biointerfaces 2017, 151, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Bandura, L.; Białoszewska, M.; Malinowski, S.; Franus, W. Adsorptive performance of fly ash-derived zeolite modified by β-cyclodextrin for ibuprofen, bisphenol A and caffeine removal from aqueous solutions–equilibrium and kinetic study. Appl. Surf. Sci. 2021, 562, 150160. [Google Scholar] [CrossRef]
- Lu, S.; Liu, Q.; Han, R.; Shi, J.; Guo, M.; Song, C.; Ji, N.; Lu, X.; Ma, D. Core-shell structured Y zeolite/hydrophobic organic polymer with improved toluene adsorption capacity under dry and wet conditions. Chem. Eng. J. 2021, 409, 128194. [Google Scholar] [CrossRef]
- Dutta, A.; Nirmale, A.; Nayak, R.; Selvakumar, M.; Bhat, S.; Paramasivam, S.; Kumar, S.S. Geometric design optimization of polyaniline/graphite nanocomposite based flexible humidity sensor for contactless sensing and breath monitoring. Mater. Lett. 2022, 323, 132577. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, S.; Lin, D.; Zhang, Z.; Li, G. Functional anti-corrosive and anti-bacterial surface coatings based on cuprous oxide/polyaniline microcomposites. Mater. Des. 2022, 216, 110589. [Google Scholar] [CrossRef]
- Ashraf, M.-T.; AlHammadi, A.A.; El-Sherbeeny, A.M.; Alhammadi, S.; Al Zoubi, W.; Ko, Y.G.; Abukhadra, M.R. Synthesis of cellulose fibers/Zeolite-A nanocomposite as an environmental adsorbent for organic and inorganic selenium ions; Characterization and advanced equilibrium studies. J. Mol. Liq. 2022, 360, 119573. [Google Scholar] [CrossRef]
- Vivas, E.L.; Cho, K. Efficient adsorptive removal of Cobalt (II) ions from water by dicalcium phosphate dihydrate. J. Environ. Manag. 2021, 283, 111990. [Google Scholar] [CrossRef]
- Tran, T.N.; Do, Q.C.; Kim, D.; Kim, J.; Kang, S. Urchin-like structured magnetic hydroxyapatite for the selective separation of cerium ions from aqueous solutions. J. Hazard. Mater. 2022, 430, 128488. [Google Scholar] [CrossRef]
- Adly, E.R.; Shaban, M.S.; El-Sherbeeny, A.M.; Al Zoubi, W.; Abukhadra, M.R. Enhanced Congo Red Adsorption and Photo-Fenton Oxidation over an Iron-Impeded Geopolymer from Ferruginous Kaolinite: Steric, Energetic, Oxidation, and Synergetic Studies. ACS Omega 2022, 7, 31218–31232. [Google Scholar] [CrossRef]
- Chen, Y.; Nie, Z.; Gao, J.; Wang, J.; Cai, M. A novel adsorbent of bentonite modified chitosan-microcrystalline cellulose aerogel prepared by bidirectional regeneration strategy for Pb (II) removal. J. Environ. Chem. Eng. 2021, 9, 105755. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Vo, D.V.N.; Nguyen, T.T.; Nguyen, T.T.T.; Nguyen, L.T.T.; Tran, T.V. Kinetic, equilibrium, adsorption mechanisms of cationic and anionic dyes on N-doped porous carbons produced from zeolitic-imidazolate framework. Int. J. Environ. Sci. Technol. 2022, 19, 10723–10736. [Google Scholar] [CrossRef]
- El Qada, E. Kinetic Behavior of the Adsorption of Malachite Green Using Jordanian Diatomite as Adsorbent. Jordanian J. Eng. Chem. Ind. (JJECI) Res. Pap. 2020, 3. [Google Scholar]
- Salam, M.A.; Abukhadra, M.R.; Mostafa, M. Effective decontamination of As (V), Hg (II), and U (VI) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: Adsorption behavior and mechanism. Environ. Sci. Pollut. Res. 2020, 27, 13247–13260. [Google Scholar] [CrossRef]
- Lin, X.; Xie, Y.; Lu, H.; Xin, Y.; Altaf, R.; Zhu, S.; Liu, D. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery. Chem. Eng. J. 2021, 413, 127530. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Lee, J.; Nandi, D.; Parameswaranpillai, J.; Pant, B.; Siengchin, S. Efficient removal of organic dye from aqueous solution using hierarchical zeolite-based biomembrane: Isotherm, kinetics, thermodynamics and recycling studies. Catalysts 2022, 12, 886. [Google Scholar] [CrossRef]
- Sherlala, A.; Raman, A.; Bello, M.M.; Buthiyappan, A. Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. J. Environ. Manag. 2019, 246, 547–556. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, X.; Guo, L.; Lan, J.; Zhang, L.; Cao, D. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep. Purif. Technol. 2018, 194, 462–469. [Google Scholar] [CrossRef]
- Jasper, E.E.; Ajibola, V.O.; Onwuka, J.C. Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Appl. Water Sci. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Dawodu, F.; Akpomie, G.; Abuh, M. Equilibrium Isotherm Studies on the Batch Sorption of Copper (II) ions from Aqueous Solution unto Nsu Clay. Int. J. Sci. Eng. Res. 2012, 3, 1–7. [Google Scholar]
- Mobarak, M.; Ali, R.A.; Seliem, M.K. Chitosan/activated coal composite as an effective adsorbent for Mn (VII): Modeling and interpretation of physicochemical parameters. Int. J. Biol. Macromol. 2021, 186, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Dhaouadi, F.; Sellaoui, L.; Reynel-Ávila, H.E.; Landín-Sandoval, V.; Mendoza-Castillo, D.I.; Jaime-Leal, J.E.; Lima, E.C.; Bonilla-Petriciolet, A.; Lamine, A.B. Adsorption mechanism of Zn2+, Ni2+, Cd2+, and Cu2+ ions by carbon-based adsorbents: Interpretation of the adsorption isotherms via physical modelling. Environ. Sci. Pollut. Res. 2021, 28, 30943–30954. [Google Scholar] [CrossRef] [PubMed]
- Sellaoui, L.; Ali, J.; Badawi, M.; Bonilla-Petriciolet, A.; Chen, Z. Understanding the adsorption mechanism of Ag+ and Hg2+ on functionalized layered double hydroxide via statistical physics modeling. Appl. Clay Sci. 2020, 198, 105828. [Google Scholar] [CrossRef]
- Ali, R.A.; Mobarak, M.; Badawy, A.M.; Lima, E.C.; Seliem, M.K.; Ramadan, H. New insights into the surface oxidation role in enhancing Congo red dye uptake by Egyptian ilmenite ore: Experiments and physicochemical interpretations. Surf. Interfaces 2021, 26, 101316. [Google Scholar] [CrossRef]
- Dhaouadi, F.; Sellaoui, L.; Badawi, M.; Reynel-Ávila, H.E.; Mendoza-Castillo, D.I.; Jaime-Leal, J.E.; Bonilla-Petriciolet, A.; Lamine, A.B. Statistical physics interpretation of the adsorption mechanism of Pb2+, Cd2+ and Ni2+ on chicken feathers. J. Mol. Liq. 2020, 319, 114168. [Google Scholar] [CrossRef]
- Sellaoui, L.; Guedidi, H.; Reinert, L.; Knani, S.; Duclaux, L.; Lamine, A.B. Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: New physicochemical interpretations. RSC Adv. 2016, 6, 12363–12373. [Google Scholar] [CrossRef]
Kinetic Models | |||||
---|---|---|---|---|---|
Models | Parameters | ZA (MB) | ZA (CR) | PANI/ZA (MB) | PANI/ZA (CR) |
Pseudo-first-order | k1 (1/min) | 0.0116 | 0.0095 | 0.0125 | 0.0121 |
Qe (Cal) (mg/g) | 111.5 | 83.2 | 130.5 | 112.8 | |
R2 | 0.97 | 0.926 | 0.985 | 0.95 | |
χ2 | 0.594 | 2.25 | 0.372 | 1.039 | |
Pseudo-second-order | k2 (mg/g min) | 9.67 × 10−5 | 9.14 × 10−5 | 9.28 × 10−5 | 1.31 × 10−4 |
Qe (Cal) (mg/g) | 129.75 | 100.27 | 150.5 | 114.8 | |
R2 | 0.937 | 0.89 | 0.96 | 0.92 | |
χ2 | 1.40 | 3.26 | 1.03 | 1.94 |
Parameters of the Classic Isotherm Models | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Models | Parameters | MB (ZA) | CR (ZA) | MB (PANI/ZA) | CR (PANI/ZA) | ||||||||
293 K | 303 K | 313 K | 293 K | 303 K | 313 K | 293 K | 303 K | 313 K | 293 K | 303 K | 313 K | ||
Langmuir | Qmax (mg/g) | 179.65 | 145.11 | 115.6 | 140.36 | 110.04 | 89.6 | 270.9 | 218.02 | 177.4 | 235.5 | 189.8 | 166.4 |
b(L/mg) | 3.14 × 10−5 | 1.03 × 10−6 | 6.06 × 10−8 | 8.06 × 10−5 | 1.41 × 10−6 | 1.91 × 10−6 | 6.41 × 10−5 | 1.54 × 10−5 | 3.12 × 10−7 | 3.41 × 10−5 | 7.3 × 10−8 | 1.14 × 10−8 | |
R2 | 0.994 | 0.99 | 0.991 | 0.99 | 0.994 | 0.991 | 0.996 | 0.993 | 0.994 | 0.998 | 0.996 | 0.994 | |
χ2 | 0.22 | 0.102 | 0.048 | 0.048 | 0.068 | 0.013 | 0.0085 | 0.030 | 0.269 | 0.125 | 0.118 | 0.243 | |
Freundlich | 1/n | 0.53 | 0.43 | 0.38 | 0.56 | 0.44 | 0.47 | 0.55 | 0.50 | 0.39 | 0.55 | 0.35 | 0.33 |
kF (mg/g) | 189.01 | 151.3 | 120.3 | 146.4 | 114.6 | 94.04 | 285.6 | 228.9 | 177.4 | 249.7 | 190.9 | 163.3 | |
R2 | 0.98 | 0.974 | 0.983 | 0.987 | 0.991 | 0.974 | 0.982 | 0.991 | 0.983 | 0.99 | 0.98 | 0.986 | |
χ2 | 0.654 | 0.836 | 0.554 | 0.461 | 0.124 | 0.257 | 0.452 | 0.234 | 0.314 | 0.413 | 0.568 | 0.539 | |
D-R | β (mol2/KJ2) | 0.00891 | 0.0129 | 0.0181 | 0.00794 | 0.0164 | 0.0213 | 0.00560 | 0.00839 | 0.0119 | 0.00785 | 0.00866 | 0.0127 |
Qm (mg/g) | 178.3 | 153.8 | 127.4 | 136.58 | 115.04 | 92.46 | 266.2 | 219.5 | 184.5 | 231.3 | 203.2 | 176.8 | |
R2 | 0.98 | 0.99 | 0.99 | 0.988 | 0.999 | 0.996 | 0.99 | 0.99 | 0.99 | 0.986 | 0.992 | 0.987 | |
χ2 | 0.57 | 0.24 | 0.34 | 0.353 | 0.0171 | 0.092 | 0.64 | 0.235 | 0.176 | 0.861 | 0.537 | 0.713 | |
E (KJ/mol) | 7.49 | 6.22 | 5.25 | 7.93 | 5.52 | 4.84 | 9.44 | 7.71 | 6.48 | 7.98 | 7.59 | 6.27 |
Advanced Isotherm Model | ||||
---|---|---|---|---|
Steric and Energetic Parameters | ||||
293 K | 303 K | 313 K | ||
MB (ZA) | n | 2.58 | 3.34 | 3.92 |
Nm (mg/g) | 69.39 | 43.45 | 29.45 | |
QSat (mg/g) | 179.6 | 145.1 | 115.6 | |
C1/2 (mg/L) | 54.85 | 62.06 | 68.9 | |
ΔE (kJ/mol) | −10.26 | −13.72 | −16.8 | |
CR (ZA) | n | 2.31 | 3.045 | 3.17 |
Nm (mg/g) | 60.67 | 34.66 | 29.43 | |
QSat (mg/g) | 140.3 | 110.04 | 89.6 | |
C1/2 (mg/L) | 58.8 | 69.57 | 75.38 | |
ΔE (kJ/mol) | −9.38 | −13.9 | −16.49 | |
MB (PANI/ZA) | n | 2.48 | 2.73 | 3.65 |
Nm (mg/g) | 109.2 | 79.7 | 47.5 | |
QSat (mg/g) | 270.9 | 218.2 | 173.4 | |
C1/2 (mg/L) | 48.99 | 57.47 | 61.92 | |
ΔE (kJ/mol) | −7.5 | −11.7 | −14.11 | |
CR (PANI/ZA) | n | 2.53 | 4.08 | 4.5 |
Nm (mg/g) | 92.9 | 45.93 | 35.92 | |
QSat (mg/g) | 235.5 | 187.4 | 161.7 | |
C1/2 (mg/L) | 57.74 | 57.97 | 63.54 | |
ΔE (kJ/mol) | −8.94 | −9.35 | −12.0 |
Kinetic Models | ||
---|---|---|
Model | Equation | Parameters |
Pseudo-first-order | Qt (mg/g) is the adsorbed ions at time (t), and k1 is the rate constant of the first-order adsorption (1/min) | |
Pseudo-second-order | Qe is the quantity of adsorbed ions after equilibration (mg/g), and k2 is the model rate constant (g/mg min) | |
Classic Isotherm models | ||
Model | Equation | Parameters |
Langmuir | Ce is the rest concentration (mg/L), Qmax is the theoretical maximum adsorption capacity (mg/g), and b is the Langmuir constant (L/mg) | |
Freundlich | Kf (mg/g) is the constant of the Freundlich model related to the adsorption capacity, and n is the constant of the Freundlich model related to the adsorption intensities | |
Dubinin–Radushkevich | β (mol2/KJ2) is the D-R constant, ε (KJ2/mol2) is the polanyil potential, and Qm is the adsorption capacity (mg/g) | |
Advanced isotherm models | ||
Model | Equation | Parameters |
Monolayer model with one energy site (Model 1) | Q is the adsorbed quantity in mg/g n is the number of adsorbed ions per site Nm is the density of the effective receptor sites (mg/g) Qo is the adsorption capacity at the saturation state in mg/g C1/2 is the concentration of the ions at half saturation stage in mg/L C1 and C2 are the concentrations of the ions at the half saturation stage for the first active sites and the second active sites, respectively n1 and n2 are the adsorbed ions per site for the first active sites and the second active sites, respectively | |
Monolayer model with two energy sites (Model 2) | ||
Double layer model with one energy site (Model 3) | ||
Double layer model with two energy sites (Model 3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaidalkilani, A.T.; Farhan, A.M.; Sayed, I.R.; El-Sherbeeny, A.M.; Al Zoubi, W.; Al-Farga, A.; Abukhadra, M.R. Steric and Energetic Studies on the Synergetic Enhancement Effect of Integrated Polyaniline on the Adsorption Properties of Toxic Basic and Acidic Dyes by Polyaniline/Zeolite-A Composite. Molecules 2023, 28, 7168. https://doi.org/10.3390/molecules28207168
Zaidalkilani AT, Farhan AM, Sayed IR, El-Sherbeeny AM, Al Zoubi W, Al-Farga A, Abukhadra MR. Steric and Energetic Studies on the Synergetic Enhancement Effect of Integrated Polyaniline on the Adsorption Properties of Toxic Basic and Acidic Dyes by Polyaniline/Zeolite-A Composite. Molecules. 2023; 28(20):7168. https://doi.org/10.3390/molecules28207168
Chicago/Turabian StyleZaidalkilani, Ayah T., Amna M. Farhan, Islam R. Sayed, Ahmed M. El-Sherbeeny, Wail Al Zoubi, Ammar Al-Farga, and Mostafa R. Abukhadra. 2023. "Steric and Energetic Studies on the Synergetic Enhancement Effect of Integrated Polyaniline on the Adsorption Properties of Toxic Basic and Acidic Dyes by Polyaniline/Zeolite-A Composite" Molecules 28, no. 20: 7168. https://doi.org/10.3390/molecules28207168
APA StyleZaidalkilani, A. T., Farhan, A. M., Sayed, I. R., El-Sherbeeny, A. M., Al Zoubi, W., Al-Farga, A., & Abukhadra, M. R. (2023). Steric and Energetic Studies on the Synergetic Enhancement Effect of Integrated Polyaniline on the Adsorption Properties of Toxic Basic and Acidic Dyes by Polyaniline/Zeolite-A Composite. Molecules, 28(20), 7168. https://doi.org/10.3390/molecules28207168