Antimicrobial and Antioxidant Efficacy of the Lipophilic Extract of Cirsium vulgare
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC–MS Analysis
2.2. Total Flavonoids Content
2.3. Antioxidant Activity
2.4. Antibacterial Activity
2.5. Antifungal Activity
3. Materials and Methods
3.1. Plant Material
3.2. Extractions
3.3. GC–MS Analysis
3.4. Total Flavonoids Content (TFC)
3.5. Antioxidant Activities
3.5.1. Trolox Equivalent Antioxidant Activity (TEAC)
3.5.2. Ferric-Reducing Antioxidant Power
3.5.3. β-Carotene-Linoleic Acid Emulsion Oxidation
3.5.4. Cupric-Reducing Antioxidant Capacity (CUPRAC)
3.5.5. Superoxide-Radical Scavenging Activity
3.6. Antimicrobial Activities
3.6.1. Microorganisms
3.6.2. Minimum Inhibitory Concentration (MIC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kenny, O.; Smyth, T.J.; Walsh, D.; Kelleher, C.T.; Hewage, C.M.; Brunton, N.P. Investigating the potential of under-utilised plants from the Asteraceae family as source of natural antimicrobial and antioxidant extracts. Food Chem. 2014, 161, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Demirtas, I.; Tufekci, A.R.; Yaglioglu, S.; Elmastas, M. Studies on the antioxidant and antiproliferative potentials of Cirsium arvense subsp. vestitum. J. Food Biochem. 2017, 41, e12299. [Google Scholar] [CrossRef]
- Chang, N.; Li, Y.; Zhou, M.; Gao, J.; Hou, Y.; Jiang, M.; Bai, G. The hemostatic effect study of Cirsium setosum on regulating α1-Ars via mediating norepinephrine synthesis by enzyme catalysis. Biomed. Pharmacother. 2017, 87, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.W.; Chang, J.C.; Lin, L.W.; Tsai, F.H.; Chang, H.C.; Wu, C.R. Comparison of the hepatoprotective effects of four endemic Cirsium species extracts from Taiwan on CCl4-induced acute liver damage in C57BL/6 Mice. Int. J. Mol. Sci. 2018, 19, 1329. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, E.; Díaz-Espinoza, R.; Villavicencio-Nieto, M.A.; Pérez-Escandón, B.E.; Pérez-Hernández, N.; Macías, A.; Ortíz, M.I.; Ponce-Monter, H.A. Preliminary phytochemical and biological study of Cirsium ehrenbergii. Proc. West. Pharmacol. Soc. 2007, 50, 162–164. [Google Scholar]
- Kozyra, M.; Glowniak, K.; Los, R.; Mardarowicz, M.; Malm, A.; Szlapak, A. GC/MS analysis of the essential oil isolated from the herb of Cirsium vulgare (Savi.) Ten. And its antimicrobial activity. Anna. UMCS Pharm. 2009, 22, 149–154. [Google Scholar] [CrossRef]
- Ma, Q.; Jiang, J.G.; Zhang, X.M.; Zhu, W. Identification of luteolin-7-O-beta-D-glucuronide from Cirsium japonicum and its anti-inflammatory mechanism. J. Funct. Foods. 2018, 46, 521–528. [Google Scholar] [CrossRef]
- Strawa, J.; Wajs-Bonikowska, A.; Leszczynska, K.; Sciepuk, M.; Nazaruk, J. Chemical composition and antioxidant, antibacterial activity of Cirsium rivulare (Jacq) All. roots. Nat. Prod. Res. 2016, 30, 2730–2733. [Google Scholar] [CrossRef]
- Banaras, S.; Javaid, A.; Shoaib, A.; Ahmed, E. Antifungal activity of Cirsium arvense extracts against phytopathogenic fungus Macrophomin aphaseolina. Planta Daninha 2017, 35, e017162738. [Google Scholar] [CrossRef]
- Maqbool, M.; Ajaib, M.; Ishtiaq, M.; Mushtaq, W.; Azam, S.; Haroon, M.; Azam, A.; Shahzaman, M. Investigation of antimicrobial and antioxidant activities of Cirsium arvensis (L.) scop. from district Bhimber of Azad Jammu and Kashmir. J. Chem. Soc. Pak. 2017, 39, 142–151. [Google Scholar]
- Liao, Z.; Chen, X.; Wu, M. Antidiabetic effect of flavones from Cirsium japonicum DC. in diabetic rats. Arch. Pharm. Res. 2010, 33, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, J.; Li, D.; Liu, W.; Luo, X.; Zhang, R.; Li, L.; Zhao, J. Anticancer activity and quantitative analysis of flavone of Cirsium japonicum DC. Nat. Prod. Res. 2007, 21, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Wu, B.; Tang, L.; Li, G.; Chen, H.; Yin, X. Recent research progress of Cirsium medicinal plants in China. J. Ethnopharmacol. 2021, 280, 114475. [Google Scholar] [CrossRef] [PubMed]
- Klinkhamer, P.G.L.; De Jong, T.J. Cirsium vulgare (Savi) Ten.: (Carduus lanceolatus L., Cirsium lanceolatum (L.) Scop., non Hill). J. Ecol. 1993, 81, 177–191. [Google Scholar] [CrossRef]
- Sabudak, T.; Orak, H.H.; Gulen, D.; Ozer, M.; Caliskan, H.; Bahrisefit, I.; Cabi, E. Investigation of some antibacterial and antioxidant properties of wild Cirsium vulgare from Turkey. IJPER 2017, 51, 363–367. [Google Scholar] [CrossRef]
- Nazaruk, J.; Szok, Ł. The qualitative and quantitative analysis of phenolic acids and flavonoids in Cirsium spp. Herba Pol. 2009, 55, 32–37. [Google Scholar]
- Kozyra, M.; Głowniak, K. Phenolic acids in extracts obtained from the flowering herbs of Cirsium vulgare (Savi) Ten. growing in Poland. Acta Soc. Bot. Pol. 2013, 82, 325–329. [Google Scholar] [CrossRef]
- Kozyra, M.; Biernasiuk, A.; Malm, A.; Chowaniec, M. Chemical compositions and antibacterial activity of extract sobtained from the in florescences of Cirsium canum (L.) all. Nat. Prod. Res. 2015, 29, 2059–2063. [Google Scholar] [CrossRef]
- Fernández-Martínez, E.; Jiménez-Santana, M.; CentenoÁlvarez, M.; Torres-Valencia, J.M.; Shibayama, M.; Cariño Cortés, R. Hepatoprotective Effects of Nonpolar Extracts from Inflorescences of Thistles Cirsium vulgare and Cirsiu mehrenbergii on Acute Liver Damage in Rat. Pharmacogn. Mag. 2018, 13 (Suppl. S4), 860–867. [Google Scholar]
- Aggarwal, G.; Kaur, G.; Bhardwaj, G.; Mutreja, V.; Sohal, H.S.; Nayik, G.A.; Bhardwaj, A.; Sharma, A. Traditional Uses, Phytochemical Composition, Pharmacological Properties, and the Biodiscovery Potential of the Genus Cirsium. Chemistry 2022, 4, 1161–1192. [Google Scholar] [CrossRef]
- Shahrajabian, M.H. Spear Thistle (Cirsium vulgare L.) and Ramsons (Allium ursinum L.), impressive health benefits and high-nutrient medicinal plants. Pharmacogn. Commun. 2021, 11, 168–171. [Google Scholar] [CrossRef]
- Rabi, T.; Bishayee, A. Terpenoids and breast cancer chemoprevention. Breast Cancer Res. Treat. 2009, 115, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Yamafuji, C.; Ishikawa, Y. Volatile Components of Cirsium japonicum DC. J. Essent. Oil Res. 2005, 17, 12–16. [Google Scholar] [CrossRef]
- Orhan, I.; Deliorman-Orhan, D.; Ozcelik, B. Antiviral activity and cytotoxixity of the lipophilic extracts of various edible plants and their fatty acids. Food Chem. 2009, 115, 701–705. [Google Scholar] [CrossRef]
- Gallo, M.B.C.; Sarachine, M.J. Biological activities of Lupeol. Int. J. Biomed. Pharmaceut. Sci. 2009, 3, 46–66. [Google Scholar]
- Oliveria, F.A.; Chaves, M.H.; Almeida, F.R.C.; Lima, R.C.P., Jr.; Silva, R.M.; Maia, J.L.; Brito, G.A.; Santos, F.A.; Rao, V.S. Protective effect of alpha- and beta-amyrin, a triterpene mixture from Protium heptaphyllum (Aubl.) March. trunk wood resin, against acetamin ophen-induced liver injury in mice. J. Ethnopharm. 2005, 98, 103–108. [Google Scholar] [CrossRef]
- Fatima, N.; Rizwan, M.; Hobani, Y.H.; Marwan, A.S.; Kumar, B.V.; Sunosi, R.A.; Abdulwahab, S.I.; Areeshi, M.Y.; Alvi, A.; Oriaby, M.E. Gas Chromatography/Mass Spectrometry analysis of Catha edulis Forks, A psycho stimulant revealed potent solvent dependent antimicrobial activity. J. Pharmacogn. Phytochem. 2017, 6, 197–204. [Google Scholar]
- Iyer, S.; Millar, T.; Clemens, S.; Zachgo, S.; Giblin, M.; Taylor, D.; Sanchez, L.K.J.; Cerda-Olmedo, E.; Martinez-Force, E. Advances in Plant Lipid Research; Secretaridode Publicacionesdela Universidadde Sevilla: Sevile, Spain, 1998; p. 87. [Google Scholar]
- Tava, A.; Cunico, C.; Cremona, R.; Piccinini, E. Isomeric composition of the ester fraction from epicuticular waxes of Festuca arundinacea Schreb. J. High. Resolut. Chromatogr. 1996, 19, 43–48. [Google Scholar] [CrossRef]
- Smaoui, S.; Mathieu, F.; Fguira, B.F.; Lilia, M.; Georges, M.L. Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain. World J. Microbiol. Biotechnol. 2012, 28, 793–804. [Google Scholar] [CrossRef]
- El-Sakhawy, F.S.; El-Tantawy, M.; Ross, S.A.; El-Sohly, M.A. Composition and antimicrobial activity of the essential oil of Murraya exotica L. Flavour. Fragr. J. 1998, 13, 59–62. [Google Scholar] [CrossRef]
- Leventhal, L.J.; Boyce, E.G.; Zurier, R.B. Treatment of rheumatoid arthritis with gammalinolenic acid. Ann. Intern. Med. 1993, 119, 867–873. [Google Scholar] [CrossRef]
- Reifen, R.; Karlinsky, A.; Stark, A.H.; Berkovich, Z.; Nyska, A. alpha-Linolenic acid (ALA) is an anti-inflammatory agent in inflammatory bowel disease. J. Nutr. Biochem. 2015, 26, 1632–1640. [Google Scholar] [CrossRef] [PubMed]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Nazaruk, J.; Chłędzik, S.; Strawa, J.; Bazydło, K.; Wajs-Bonikowska, A. Chemical composition and antioxidant activity of Cirsium vulgare (Savi) Ten. inflorescences. Nat. Pro. Commun. 2017, 12, 519–522. [Google Scholar]
- Griškevičienė, U.; Marksa, M.; Ževžikovienė, A.; Kazlauskienė, D.; Vainorienė, R.; Ževžikovas, A.; Ivanauskas, L. Cirsium vulgare leaves: Isolation and identification of phenolic compounds. Chemija 2021, 32, 92–99. [Google Scholar] [CrossRef]
- Malejko, J.; Nalewajko-Sieliwoniuk, E.; Nazaruk, J.; Siniło, J.; Kojło, A. Determination of the total polyphenolic content in Cirsium palustre (L.) leaves extracts with manganese(IV) chemiluminescence detection. Food Chem. 2014, 152, 155–161. [Google Scholar] [CrossRef]
- Zhao, Z.W.; Chang, H.C.; Ching, H.; Lien, J.C.; Huang, H.C.; Wu, C.R. Antioxidant effects and phytochemical properties of seven Taiwanese Cirsium species extracts. Molecules 2021, 26, 3935. [Google Scholar] [CrossRef]
- Karasakal, A.; Demirci, A.S.; Tokatlı Demirok, N.; Cabi, E. Antioxidant, antimicrobial activities and total flavonoid contents of Cirsium bulgaricum DC. leaf extracts. Marmara Pharm. J. 2015, 19, 43–51. [Google Scholar] [CrossRef]
- Boga, M.; Yilmaz, P.K.; Cebe, D.B.; Fatima, M.; Siddiqui, S.; Kolak, U. Chemical constituents and biological activities of Cirsium leucopsis, C. sipyleum, and C. eriophorum. Z. Naturforsch C J. Biosci. 2014, 69, 381–390. [Google Scholar] [CrossRef]
- Borawska, M.H.; Czechowska, S.K.; Markiewicz, R.; Socha, K.; Nazaruk, J.; Pałka, J.; Isidorov, V.A. Enhancement of antibacterial effects of extracts from Cirsium species using sodium picolinate and estimation of their toxicity. Nat. Prod. Res. 2010, 24, 554–561. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Statti, G.A.; Tundis, R.; Conforti, F.; Ando’, S.; Menichini, F. Antimicrobial activity and cytotoxicity of Cirsium tenoreanum. Fitoterapia 2004, 75, 577–580. [Google Scholar] [CrossRef]
- Nazaruk, J.; Jakoniuk, P. Flavonoid composition and antimicrobial activity of Cirsium rivulare (jacq.) All. flowers. J. Ethnopharmacol. 2005, 102, 208–212. [Google Scholar] [CrossRef]
- Gadisa, E.; Tadesse, E. Antimicrobial activity of medicinal plants used for urinary tract infections in pastoralist community in Ethiopia. BMC Complement. Med. Ther. 2021, 21, 74. [Google Scholar] [CrossRef]
- Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multi drug-resistant microbes. PLoS ONE 2021, 16, e0249253. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Hussain, M.; Shah, G.M.; Rahman, K.U.; Ullah, A.; Abbasi, S. Preliminary Study of the Phytochemical analysis, Antimicrobial, Antioxidant and Cytotoxic activity of Cirsium swaticum. J. Xi’an Shiyou Univ. Nat. Sci. Ed. 2022, 18, 1321–1339. [Google Scholar]
- Ozcelik, B.; Deliorman Orhan, D.; Karaoğlu, T.; Ergun, F. Antimicrobial activities of various Cirsium hypoleucum extracts. Ann. Microbio. 2005, 55, 135–138. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) asameasure of “antioxidantpower”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Miller, H.E. A simplified method for evaluation of antioxidant. J. Am. Oil Chem. Soc. 1971, 45, 91. [Google Scholar] [CrossRef]
- Apak, R.; Guclu, K.; Ozyurek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Robak, J.; Gryglewski, R.J. Flavonoids are scavengers of superoxides anions. Biochem. Pharmacol. 1988, 37, 837–841. [Google Scholar] [CrossRef] [PubMed]
- CLSI M38-A2; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi-Second Eddition. Clinical and Laboratory Standards Institute: Wayne, MI, USA, 2008.
- CLSI M07-A9; Reference Method for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard-NinthEdition. Clinical and Laboratory Standards Institute: Wayne, MI, USA, 2012.
- CLSI M27-S4; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; 4th Informational Supplement. Clinical and Laboratory Standards Institute: Wayne, MI, USA, 2012.
No. | RI | Compounds | Percentage [%] |
---|---|---|---|
1 | 891 | 5-Eicosene | 1.11 |
2 | 891 | Cycloeicosane | 2.62 |
3 | 936 | Hexadecanoic acid (palmitic acid) | 3.21 |
4 | 941 | 1-Nonadecene | 4.23 |
5 | 975 | Hexadecadienoic acid, methyl ester | 0.74 |
6 | 986 | 9,12-Octadecadien-1-ol | 4.90 |
7 | 994 | cis-9-Hexadecenal | 1.15 |
8 | 1002 | Hexadecanoic acid, butyl ester | 9.89 |
9 | 1043 | Docosane | 0.50 |
10 | 1069 | Linolenic acid, ethyl ester | 6.38 |
11 | 1080 | 1-Tricosene | 2.89 |
12 | 1129 | Pentacosane | 0.41 |
13 | 1156 | 1,2-Benzenedicarboxylic acid, diisooctyl ester | 0.36 |
14 | 1165 | Tetrahydrogeraniol | 0.17 |
15 | 1183 | Pentafluoropropionic acid, heptadecyl ester | 1.99 |
16 | 1228 | 17-Pentatriacontene | 0.18 |
17 | 1263 | 10-Methylnonadecane | 0.24 |
18 | 1273 | 1,3-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | 0.33 |
19 | 1292 | cis-9,10-Epoxyoctadecanamide | 0.31 |
20 | 1330 | Squalene | 0.11 |
21 | 1407 | 2,2-dimehyl-3-(3,7,16,20-tetramethyl-heneicosa-3,7,11,15,19-pentaenyl) oxirane | 0.15 |
22 | 1457 | 1-Hentetracontanol | 0.51 |
23 | 1470 | Acetic acid, octadecyl ester | 0.11 |
24 | 1492 | Octadecanal | 0.13 |
25 | 1590 | Solanesol | 0.14 |
26 | 1548 | Tetratetracontane | 1.99 |
27 | 1572 | Vitamin E | 0.16 |
28 | 1583 | 1,10-dibromo-decane | 0.10 |
29 | 1648 | 1-Triacontanol | 0.27 |
30 | 1682 | Octadecanal | 0.09 |
31 | 1684 | Stigmasterol | 0.35 |
32 | 1740 | Stigmast-5-en-3-ol | 1.17 |
33 | 1774 | Olean-12-ene | 1.82 |
34 | 1786 | 1,54-dibromo-tetrapentacontane | 0.19 |
35 | 1813 | Methyl commate B | 2.00 |
36 | 1858 | Docosyl acetate | 0.12 |
37 | 1860 | A′-Neogammacer-22(29)-ene (Diploptene) | 0.37 |
38 | 1882 | Norolean-12-ene | 5.15 |
39 | 1936 | Lupeol | 13.19 |
40 | 2066 | Lup-20(29)-en-3-yl-acetate | 29.94 |
41 | 2301 | 4′,5-dihydroxy-7-diglyocoside-flavone | 0.31 |
Volatile Compounds | Percentage [%] |
---|---|
Terpenoids | 52.89 |
Hydrocarbons (alkanes and alkenes) | 14.17 |
Esters | 19.92 |
Alcohols | 5.68 |
Fatty acids | 3.21 |
Sterols | 1.52 |
Carbonyl compounds (aldehyde-ketones) | 1.37 |
Other functional groups (amide, epoxide, alkyl halide, etc.) | 0.29 alkyl halide 0.31 amide 0.31 phenolics 0.15 epoxide 0.16 vitamin E |
Total (%) | 99.98 |
Extracts | 1 Total Flavonoid Content | Antioxidant Activity Assays | ||||||
---|---|---|---|---|---|---|---|---|
TFC (mg CAT/g) | TFC (mg RUT/g) | TEAC (mmol Trolox/g) | FRAP (μmol Fe2+/g) | 2 EC50 FRAP (µg/mL) | CUPRAC (mM Troloks/g) | 3 EC50CUPRAC (µg/mL) | 4 Superoxide-Radical Scavenging Activity (%) | |
Methanol | 25.7 ± 2.2 | 44.6 ± 1.3 | 0.86 ± 0.04 | 1436.6 ± 11.1 | 14.7 ± 0.08 | 2.14 ± 0.002 | 18.5 ± 0.002 | 74.8 ± 0.8 |
Ethylacetate | 23.6 ± 0.9 | 40.3 ± 1.8 | 0.41 ± 0.01 | 295.6 ± 4.1 | 80.5 ± 0.02 | 1.62 ± 0.002 | 33.5 ± 0.031 | 53.5 ± 1.2 |
Hexane | nd 5 | nd | 0.34 ± 0.03 | 49.7 ± 3.7 | 651.8 ± 0.01 | 0.38 ± 0.055 | 140.6 ± 0.003 | 24.9 ± 0.2 |
Diethyl ether | 16.3 ± 0.8 | 28.1 ± 0.8 | 0.40 ± 0.02 | 115.3 ± 4.7 | 127.5± 0.03 | 1.15 ± 0.011 | 60.6 ± 0.001 | 39.8 ± 2.5 |
Bacteria | Methanol | Ethyl Acetate | Diethyl Ether | Hexane | Standard (µg/mL) |
---|---|---|---|---|---|
S. aureus | 250 | 15.62 | 15.62 | ≥250 | 0.125 * |
B. subtilis | 250 | 3.9 | 15.62 | 250 | 1 |
E. coli | 125 | 62.5 | 31.25 | 15.62 | 1 |
P. aeruginosa | 250 | 125 | 15.62 | 31.25 | 1 |
P. mirabilis | 250 | 125 | 31.25 | ≥250 | 1 |
S. typhimurium | 250 | 250 | 31.25 | ≥250 | 2 |
Fungi | Methanol | Ethyl Acetate | Diethyl Ether | Hexane | Standard (µg/mL) |
---|---|---|---|---|---|
C. albicans | 250 | 15.62 | 15.62 | 1.95 | 2 * |
C. glabrata | 125 | 15.62 | 7.81 | 1.95 | 2 |
C. parapsilosis | 15.62 | 15.62 | 15.62 | 1.95 | 1 |
C. krusei | 31.25 | 3.9 | 7.81 | 0.97 | 4 |
P. chrysogenum | 7.81 | 31.25 | 7.81 | 3.9 | 1 |
A. fumigatus | 250 | 15.62 | 7.81 | 0.97 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydın Kurç, M.; Orak, H.H.; Gülen, D.; Caliskan, H.; Argon, M.; Sabudak, T. Antimicrobial and Antioxidant Efficacy of the Lipophilic Extract of Cirsium vulgare. Molecules 2023, 28, 7177. https://doi.org/10.3390/molecules28207177
Aydın Kurç M, Orak HH, Gülen D, Caliskan H, Argon M, Sabudak T. Antimicrobial and Antioxidant Efficacy of the Lipophilic Extract of Cirsium vulgare. Molecules. 2023; 28(20):7177. https://doi.org/10.3390/molecules28207177
Chicago/Turabian StyleAydın Kurç, Mine, Hakime Hülya Orak, Dumrul Gülen, Hilmican Caliskan, Merve Argon, and Temine Sabudak. 2023. "Antimicrobial and Antioxidant Efficacy of the Lipophilic Extract of Cirsium vulgare" Molecules 28, no. 20: 7177. https://doi.org/10.3390/molecules28207177
APA StyleAydın Kurç, M., Orak, H. H., Gülen, D., Caliskan, H., Argon, M., & Sabudak, T. (2023). Antimicrobial and Antioxidant Efficacy of the Lipophilic Extract of Cirsium vulgare. Molecules, 28(20), 7177. https://doi.org/10.3390/molecules28207177