Synthesis and Antiproliferative Activity of 2,6-Disubstituted Imidazo[4,5-b]pyridines Prepared by Suzuki Cross Coupling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
2.2.1. Antiproliferative Activity against Various Cancer Cell Lines
2.2.2. Antiviral Activity
3. Conclusions
4. Experimental Part
4.1. General Methods
4.2. Synthesis of Compounds
General Procedure for Suzuki Coupling
4.3. Antiproliferative Activity
4.4. Antiviral Activity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jampilek, J. Heterocycles in Medicinal Chemistry. Molecules 2019, 24, 3839. [Google Scholar] [CrossRef] [PubMed]
- Joule, J.A.; Mills, K. Heterocyclic Chemistry, 5th ed.; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-Containing Heterocycles as Anticancer Agents: An Overview. Anti-Cancer Agents Med. Chem. 2020, 20, 2150. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.J.; Yar, M.S.; Khan, A.A.; Ali, Z.; Haider, M.R. Recent Advances in the Synthesis and Anticancer Activity of Some Molecules Other Than Nitrogen Containing Heterocyclic Moeities. Mini. Rev. Med. Chem. 2017, 17, 1602–1632. [Google Scholar] [CrossRef] [PubMed]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef]
- Lončar, B.; Perin, N.; Mioč, M.; Boček, I.; Grgić, L.; Kralj, M.; Tomić, S.; Radić Stojković, M.; Hranjec, M. Novel amino substituted tetracyclic imidazo[4,5-b]pyridine derivatives: Design, synthesis, antiproliferative activity and DNA/RNA binding study. Eur. J. Med. Chem. 2021, 217, 113342. [Google Scholar] [CrossRef]
- Boček, I.; Hok, L.; Persoons, L.; Daelemans, D.; Vianello, R.; Hranjec, M. Imidazo[4,5-b]pyridine derived tubulin polymerization inhibitors: Design, synthesis, biological activity in vitro and computational analysis. Bioorg. Chem. 2022, 127, 106032. [Google Scholar] [CrossRef]
- Silakari, O. Key Heterocycle Cores for Designing Multitargeting Molecules, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Kabir, E.; Uzzaman, M. A Review on Biological and Medicinal Impact of Heterocyclic Compounds. Results Chem. 2022, 4, 100606. [Google Scholar] [CrossRef]
- Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Yar, M.S. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 2017, 125, 143–189. [Google Scholar] [CrossRef]
- Hranjec, M.; Lučić, B.; Ratkaj, I.; Kraljević Pavelić, S.; Piantanida, I.; Pavelić, K.; Karminski-Zamola, G. Novel Imidazo[4,5-b]Pyridine and Triaza-Benzo[c]Fluorene Derivatives: Synthesis, Antiproliferative Activity and DNA Binding Studies. Eur. J. Med. Chem. 2011, 46, 2748. [Google Scholar] [CrossRef]
- Kishbaugh, T.L.S. Pyridines and Imidazopyridines with Medicinal Significance. Curr. Top. Med. Chem. 2016, 16, 3274. [Google Scholar] [CrossRef]
- Baladi, T.; Aziz, J.; Dufour, F.; Abet, V.; Stoven, V.; Radvanyi, F.; Poyer, F.; Wu, T.D.; Guerquin-Kern, J.L.; Bernard-Pierrot, I.; et al. Design, synthesis, biological evaluation and cellular imaging of imidazo[4,5-b]pyridine derivatives as potent and selective TAM inhibitors. Bioorg. Med. Chem. 2018, 26, 5510. [Google Scholar] [CrossRef] [PubMed]
- Boček, I.; Starčević, K.; Novak Jovanović, I.; Vianello, R.; Hranjec, M. Novel imidazo[4,5-b]pyridine derived acrylonitriles: A combined experimental and computational study of their antioxidative potential. J. Mol. Liq. 2021, 342, 117527. [Google Scholar] [CrossRef]
- Krause, M.; Foks, H.; Gobis, K. Pharmacological Potential and Synthetic Approaches of Imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine Derivatives. Molecules 2017, 22, 399. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.A. Mini review: Biological significances of nitrogen hetero atom containing heterocyclic compounds. Int. J. Bioorg. Chem. 2017, 2, 146. [Google Scholar]
- Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1979, 95, 2457–2483. [Google Scholar] [CrossRef]
- Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J Organomet. Chem. 1999, 576, 147–168. [Google Scholar] [CrossRef]
- Lapinskaite, R.; Atalay, H.N.; Malatinec, Š.; Donmez, S.; Cinar, Z.O.; Schwarz, P.F.; Perhal, A.F.; Císařová, I.; Labanauskas, L.; Karpiński, T.M.; et al. Synthesis of Selagibenzophenone A and Its Derivatives for Evaluation of Their Antiproliferative, RORγ Inverse Agonistic, and Antimicrobial Effect. Chem. Sel. 2023, 8, e20220481. [Google Scholar] [CrossRef]
- Hemanth Kumar, P.; Rambabu, M.; Vijayakumar, V.; Sarveswari, S. Palladium-Mediated Synthesis of 2-([Biphenyl]-4-yloxy)quinolin-3-carbaldehydes through Suzuki–Miyaura Cross-Coupling and Their in Silico Breast Cancer Studies on the 3ERT Protein. ACS Omega 2023, 8, 11806–11812. [Google Scholar] [CrossRef]
- Moi, D.; Citarella, A.; Bonanni, D.; Pinzi, L.; Passarella, D.; Silvani, A.; Giannini, C.; Rastelli, G. Synthesis of potent and selective HDAC6 inhibitors led to unexpected opening of a quinazoline ring. RSC Adv. 2022, 12, 11548–11556. [Google Scholar] [CrossRef]
- Casalnuovo, A.; Calabrese, L. Palladium-catalyzed alkylations in aqueous media. J. Am. Chem. Soc. 1990, 112, 4324–4330. [Google Scholar] [CrossRef]
- Fu-She, H. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 2013, 42, 5270–5298. [Google Scholar]
- Ohtaka, A. Recyclable Polymer-Supported Nanometal Catalysts in Water. Chem. Record. 2013, 13, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Lindsley, C.W.; Bates, B.S.; Menon, U.N.; Jadhav, S.B.; Kane, A.S.; Jones, C.K.; Rodriguez, A.L.; Conn, P.J.; Olsen, C.M.; Winder, D.G.; et al. (3-Cyano-5-fluorophenyl)biaryl Negative Allosteric Modulators of mGlu5: Discovery of a New Tool Compound with Activity in the OSS Mouse Model of Addiction. ACS Chem. Neurosci. 2011, 2, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.J.; Bupp, J.E.; Tanga, M.J. Synthesis of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic food mutagen. ARKIVOC 2002, 90–96. [Google Scholar] [CrossRef]
- Sajith, A.M.; Abdul Khader, K.K.; Joshi, N.; Nageswar Reddy, M.; Padusha, M.S.A.; Nagaswarupa, H.P.; Nibin Joy, M.; Bodke, Y.D.; Karuvalam, R.P.; Banerjee, R.; et al. Design synthesis and structureeactivity relationship (SAR) studies of imidazo[4,5-b]pyridine derived purine isosteres and their potential as cytotoxic agents. Eur. J. Med. Chem. 2015, 89, 21–31. [Google Scholar] [CrossRef]
- Sajith, A.M.; Muralidharan, A. Microwave enhanced Suzuki coupling: A diversity-oriented approach to the synthesis of highly functionalised 3-substituted-2-aryl/heteroaryl imidazo[4,5-b]pyridines. Tet. Lett. 2012, 53, 1036–1041. [Google Scholar] [CrossRef]
- Grivas, S.; Linstrom, S. Palladium(0)-Catalyzed Phenylation of Imidazo[4,5-b]pyridines. J. Heterocyclic. Chem. 1995, 32, 467. [Google Scholar] [CrossRef]
- Tatipaka, H.B.; Gillespie, R.; Chatterjee, A.K.; Norcross, N.R.; Hulverson, M.A.; Ranade, R.M.; Nagendar, P.; Creason, S.A.; McQueen, J.; Duster, N.A.; et al. Substituted 2-Phenylimidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis. J. Med. Chem. 2014, 57, 828–835. [Google Scholar] [CrossRef]
- Takada, H.; Kaieda, A.; Tawada, M.; Nagino, T.; Sasa, K.; Oikawa, T.; Oki, A.; Sameshima, T.; Miyamoto, K.; Miyamoto, M.; et al. Identification of 2,6-Disubstituted 3H-Imidazo[4,5-b]pyridines as Therapeutic Agents for Dysferlinopathies through Phenotypic Screening on Patient-Derived Induced Pluripotent Stem Cells. J. Med. Chem. 2019, 62, 9175–9187. [Google Scholar] [CrossRef]
- Boček, I.; Hranjec, M.; Vianello, R. Imidazo[4,5-b]pyridine derived iminocoumarins as potential pH probes: Synthesis, spectroscopic and computational studies of their protonation equilibria. J. Mol. Liq. 2022, 355, 118982. [Google Scholar] [CrossRef]
- Boček Pavlinac, I.; Zlatić, K.; Persoons, L.; Daelemans, D.; Banjanac, M.; Radovanović, V.; Butković, K.; Kralj, M.; Hranjec, M. Biological Activity of Amidino-Substituted Imidazo [4,5-b]pyridines. Molecules 2023, 28, 16. [Google Scholar] [CrossRef] [PubMed]
- Philani Mpungose, P.; Vundla, Z.P.; Maguire, M.; Friedrich, H.B. The Current Status of Heterogeneous Palladium Catalysed Heck and Suzuki Cross-Coupling Reactions. Molecules 2018, 23, 1676. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.F.R.A.C.; Rodrigues, A.S.M.C.; Silva, V.L.M.; Silva, A.M.S.; Santos, L.M.N.B.F. Highly Efficient and Magnetically Recoverable Niobium Nanocatalyst for the Multicomponent Biginelli Reaction. ChemCatChem 2014, 6, 1291–1302. [Google Scholar] [CrossRef]
- Chelucci, G. Hydrodehalogenation of halogenated pyridines and quinolines by sodium borohydride/N,N,N′,N′-tetramethylethylenediamine under palladium catalysis. Tet. Lett. 2010, 51, 1562–1565. [Google Scholar] [CrossRef]
- Perin, N.; Hok, L.; Beč, A.; Persoons, L.; Vanstreels, E.; Daelemans, D.; Vianello, R.; Hranjec, M. N-substituted benzimidazole acrylonitriles as in vitro tubulin polymerization inhibitors: Synthesis, biological activity and computational analysis. Eur. J. Med. Chem. 2021, 211, 113003. [Google Scholar] [CrossRef]
- Beč, A.; Cindrić, M.; Persoons, L.; Banjanac, M.; Radovanović, V.; Daelemans, D.; Hranjec, M. Novel biologically active N-substituted benzimidazole derived Schiff bases: Design, synthesis and biological evaluation. Molecules 2023, 28, 3720. [Google Scholar] [CrossRef]
Reaction | Solvents/Ratio | Catalyst | Base | T/°C and t/h | Heating | Products |
---|---|---|---|---|---|---|
1 | EtOH/toluene 4:1 | Pd(PPh3)4 | K2CO3 | 110 °C/48 h | Conventional | c |
2 | EtOH/toluene 4:1 | Pd(dppf)Cl2 | K2CO3 | 110 °C/48 h | Conventional | b i c |
3 | EtOH/toluene 4:1 | Pd(PPh3)4 | Cs2CO3 | 110 °C/48 h | Conventional | a i c |
4 | Dioxane/water 2:1 | Pd(PPh3)4 | K2CO3 | 110 °C/48 h | Conventional | c |
5 | EtOH/toluene 4:1 | Pd(PPh3)4 | K2CO3 | 120 °C/3.5 h | Microwave | c |
6 | EtOH/toluene 4:1 | Pd(dppf)Cl2 | K2CO3 | 120 °C/3.5 h | Microwave | b i c |
7 | EtOH/toluene 4:1 | Pd(PPh3)4 | Cs2CO3 | 120 °C/3.5 h | Microwave | a i c |
8 | Dioxane/water 2:1 | Pd(PPh3)4 | K2CO3 | 120 °C/3.5 h | Microwave | b i c |
Cpd | IC50 (µM) | |||||||
---|---|---|---|---|---|---|---|---|
Capan-1 | HCT-116 | LN-229 | NCI-H460 | DND-41 | HL-60 | K-562 | Z-138 | |
12 | 35.27 | >100 | >100 | >100 | >100 | 52.30 | >100 | 30.05 |
13 | 1.50 | 3.94 | 4.10 | 4.25 | 4.25 | 1.65 | 3.42 | 1.87 |
14 | >100 | >100 | >100 | >100 | >100 | 69.35 | >100 | >100 |
15 | 10.85 | >100 | 79.25 | >100 | >100 | 37.25 | >100 | 34.40 |
16 | >100 | >100 | >100 | >100 | >100 | 78.95 | >100 | 65.20 |
17 | 26.60 | >100 | 72.95 | >100 | 76.40 | 41.45 | 83.25 | 40.90 |
18 | 7.29 | >100 | 63.56 | >100 | 70.85 | 46.10 | 84.70 | 34.80 |
19 | 1.90 | 2.32 | 1.77 | 2.83 | 1.57 | 3.30 | 1.50 | 1.45 |
20 | >100 | >100 | >100 | >100 | >100 | 62.45 | >100 | 86.05 |
21 | >100 | >100 | >100 | >100 | >100 | 83.10 | >100 | 62.75 |
22 | >100 | >100 | >100 | >100 | >100 | 70.85 | >100 | 58.05 |
23 | >100 | >100 | >100 | >100 | >100 | 89.90 | >100 | 72.90 |
24 | 63.03 | >100 | 55.75 | 81.60 | 78.50 | 36.20 | 62.25 | 54.35 |
25 | 67.26 | 56.25 | 59.15 | >100 | >100 | 23.65 | 39.00 | 25.50 |
ETO | 0.10 | 2.55 | 1.37 | 4.60 | 0.60 | 0.37 | 2.35 | 0.05 |
Cpd | Cytotoxicity (CC50/µM) | Antiviral Activity (EC50/μM) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HEL 299 | Hep3b | MDCK | HEp-2 | Vero E6 | HCoV 229E HEL 299 | HCoV OC43 HEL 299 | HCoV NL63 Hep3B | Influenza H1N1 MDCK | Influenza H3N2 MDCK | Influenza B MDCK | RSV Hep-2 | HSV-1 HEL 299 | YFV VeroE6 | ZIKV VeroE6 | SINDV VeroE6 | SFV VeroE6 | |
15 | >50 | >50 | >50 | >50 | >50 | 31.3 | >50 | >50 | 33.5 | 39.5 | 34.5 | >50 | >50 | >50 | >50 | >50 | >50 |
Remdesivir | >10 | >10 | - | >10 | - | 0.2 | 0.06 | 0.2 | - | - | - | 0.006 | >10 | - | - | - | - |
Chloroquine | - | 7.1 | - | - | 55.8 | - | - | - | - | - | - | - | - | >100 | 13.4 | 8 | >100 |
Ribavirin | >250 | 155.0 | >250 | 129.0 | >250 | 83.3 | 97.6 | 45.8 | 6.6 | 12.3 | 5.2 | 35.7 | 217.2 | 235.3 | - | - | - |
Zanamivir | - | - | >100 | - | - | - | - | - | 0.3 | 68.1 | 0.5 | - | - | - | - | - | - |
Rimantadin | - | - | >100 | - | - | - | - | - | 0.08 | 0.06 | >100 | - | - | - | - | - | - |
DS-10.000 | >100 | - | - | >100 | >100 | 0.4 | 2.4 | - | - | - | - | 0.07 | 1.7 | >100 | >100 | 36.5 | 8.1 |
Mycoph. acid | - | 1.2 | - | 2.1 | >100 | - | - | - | - | - | - | 0.8 | - | 0.6 | 25.2 | >100 | >100 |
E64d | >100 | - | - | - | >100 | 2.0 | 3.9 | - | - | - | - | - | >100 | >100 | 27.8 | >100 | >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boček Pavlinac, I.; Dragić, M.; Persoons, L.; Daelemans, D.; Hranjec, M. Synthesis and Antiproliferative Activity of 2,6-Disubstituted Imidazo[4,5-b]pyridines Prepared by Suzuki Cross Coupling. Molecules 2023, 28, 7208. https://doi.org/10.3390/molecules28207208
Boček Pavlinac I, Dragić M, Persoons L, Daelemans D, Hranjec M. Synthesis and Antiproliferative Activity of 2,6-Disubstituted Imidazo[4,5-b]pyridines Prepared by Suzuki Cross Coupling. Molecules. 2023; 28(20):7208. https://doi.org/10.3390/molecules28207208
Chicago/Turabian StyleBoček Pavlinac, Ida, Mirna Dragić, Leentje Persoons, Dirk Daelemans, and Marijana Hranjec. 2023. "Synthesis and Antiproliferative Activity of 2,6-Disubstituted Imidazo[4,5-b]pyridines Prepared by Suzuki Cross Coupling" Molecules 28, no. 20: 7208. https://doi.org/10.3390/molecules28207208
APA StyleBoček Pavlinac, I., Dragić, M., Persoons, L., Daelemans, D., & Hranjec, M. (2023). Synthesis and Antiproliferative Activity of 2,6-Disubstituted Imidazo[4,5-b]pyridines Prepared by Suzuki Cross Coupling. Molecules, 28(20), 7208. https://doi.org/10.3390/molecules28207208