Antiplasmodial and Antileishmanial Activities of a New Limonoid and Other Constituents from the Stem Bark of Khaya senegalensis
Abstract
:1. Introduction
2. Results
2.1. Structure Elucidation of Compound 1
2.2. Antileishmanial, Antiplasmodial, and Cytotoxic Activities
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Plant Material
4.3. Extraction and Isolation
4.4. Physicochemical Characteristics of Compounds 1abc
- 21β-hydroxybourjotinolone A (1a), white powder (MeOH); UV: 268, 365, 405, 666 nm; IR: 3 669–3 200, 2 964–2 869, 1 697, 1 488, 1 468, 1 444, 1 270, 1 070, 970 cm−1; HR-ESI-MS [M + Na]+ m/z 511.3394 (calculated for C30H48NaO5+, 511.3399); 1H NMR (CD3OD, 600 MHz) δ 2.04 (1H, m, H1)/1.47 (1H, m, H1), 2.84 (1H, brtd, J = 14.6, 5.6 Hz, H2)/2.19 (1H, brd, J = 14.6 Hz, H2), 1.75 (1H, brdd, J = 11.5, 6.0 Hz, H5), 2.13 (1H, m, H6)/1.28 (1H, m, H6), 5.35 (1H, brq, J = 3.1 Hz, H7), 2.38 (1H, m, H9), 1.62 (2H, m, H11), 1.99 (1H, m, H12)/1.81 (1H, m, H12), 2.20 (1H, m, H15)/2.17 (1H, m, H15), 1.87 (1H, m, H16)/1.31 (1H, m, H16), 1.85 (1H, m, H17), 0.91 (3H, s, H19), 1.05 (3H, s, H19), 2.12 (1H, m, H2O), 5.26 (1H, brd, J = 2.8 Hz, H21), 1.70 (1H, m, H22)/1.65 (1H, m, H22), 4.10 (1H, brt, J = 3.6 Hz, H23), 3.60 (1H, brd, J = 1.5 Hz, H24), 1.24 (3H, s, H26), 1.27 (3H, s, H27), 1.03 (3H, s, H28), 1.13 (3H, s, H29), 1.06 (3H, s, H30); 13C NMR (CD3OD, 150 MHz) δ 39.7 (C1), 35.9 (C2), 219.2 (C3), 49.1 (C4), 53.9 (C5), 25.1 (C6), 119.2 (C7), 147.2 (C8), 49.9 (C9), 36.2 (C10), 19.3 (C11), 31.1 (C12), 44.9 (C13), 52.4 (C14), 35.9 (C15), 27.7 (C16), 48.1 (C17), 23.2 (C18), 13.1 (C19), 40.0 (C20), 94.1 (C21), 32.3 (C22), 67.1 (C23), 73.6 (C24), 73.9 (C25), 26.8 (C26), 27.3 (C27), 25.1 (C28), 22.0 (C29), 28.1 (C30).
- 21α-Melianodiol (1b) and 21β-melianodiol (1c); UV: 268, 365, 405, 666 nm; IR: 3669–3200, 2964–2869, 1697, 1488, 1468, 1444, 1270, 1070, 970 cm−1; HR-ESI-MS [M + Na]+ m/z 511.3394 (calculated for C30H48NaO5+, 511.3399); 1H- and 13C-NMR: see Table 1.
4.5. Biological Activities
4.5.1. Parasite and Cell Culture
4.5.2. Sample Preparation for Biological Assays
4.5.3. Antiplasmodial Activity of Compounds, Fractions and Extracts
4.5.4. Antileishmanial Potency of Compounds, Fractions, and Extracts
4.5.5. Cytotoxicity Assay
4.5.6. Data Analysis for the Performed Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Siva, B.; Suresh, G.; Poornima, B.; Venkanna, A.; Babu, K.S.; Prasad, K.R.; Rao, C.V. Cipadessin-type limonoids from the leaves of Cipadessa baccifera. Tetrahedron Lett. 2013, 54, 2934–2937. [Google Scholar] [CrossRef]
- Roy, A.; Saraf, S. Limonoids: Overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharm. Bull. 2006, 29, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.; Villarreal, C.; Toscano, R.A.; Cook, M.; Arnason, J.T.; Bye, R.; Mata, R. Limonoids from Swietenia humilis and Guarea grandiflora (Meliaceae) Taken in part from the PhD and MS theses of C. Villarreal and MA Jiménez, respectively. Phytochemistry 1998, 49, 1981–1988. [Google Scholar] [CrossRef]
- Yang, M.H.; Wang, J.S.; Luo, J.G.; Wang, X.B.; Kong, L.Y. Chisopanins A–K, 11 new protolimonoids from Chisocheton paniculatus and their anti-inflammatory activities. Bioorg. Med. Chem. 2011, 19, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, Q.; Luo, J.; Wang, J.; Wang, X.; Zhu, M.; Kong, L. Limonoids from the stem bark of Khaya senegalensis. Chem. Pharm. Bull. 2015, 63, 305–310. [Google Scholar] [CrossRef]
- Yuan, C.M.; Tang, G.H.; Wang, X.Y.; Zhang, Y.; Guo, F.; Liao, J.H.; Zou, T.; Zuo, G.Y.; Hua, H.M.; He, H.P.; et al. Two new compounds from Khaya senegalensis. J. Asian Nat. Prod. Res. 2013, 15, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.M.; Zhang, Y.; Tang, G.H.; Li, S.L.; Di, Y.T.; Hou, L.; Hao, X.J. Senegalensions A–C, three limonoids from Khaya senegalensis. Chem. Asian J. 2012, 7, 2024–2027. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, C.R.; Yang, S.P.; Yue, J.M. Limonoids and triterpenoids from Khaya senegalensis. J. Nat. Prod. 2010, 73, 669–674. [Google Scholar] [CrossRef]
- Tyoapine, D.A.; Victory, P.C.; Yusuf, A.; Badamasi, A.M. A Review of the Phytochemistry and Pharmacology of the Medicinal Plant: Khaya Senegalensis (Desr.) A. Juss. Int. J. Res. Publ. Rev. 2022, 3, 1239–1246. [Google Scholar] [CrossRef]
- Gouissi, D.H.A.; Nzangue, R.T.; Kalaza, J.H.; Pabo, W.; Chegaing, S.P.F. Medicinal Plants Used for Malaria Treatment in Gamba Village, North Region of Cameroon: Ethnopharmacological Survey; In Vivo Antimalarial Activity of Aqueous Extracts of Khaya Senegalensis Bark. Res. Sq. 2021, 1–17. [Google Scholar] [CrossRef]
- Nganso, Y.O.; Tchana, E.M.; Kahouo, A.D.; Abah, K.; Fomena, H.; Mamoudou, H. Inhibitory effect and antimicrobial activity of secondary metabolites of Khaya senegalensis (Desr.) A. Juss. (Meliaceae). Sci. J. Chem. 2020, 8, 92–105. [Google Scholar] [CrossRef]
- Idu, M.; Erhabor, J.O.; Oghale, O.; Obayagbona, N.O. Antimicrobial qualities, phytochemistry and micronutritional content of Khaya senegalensis (Desr.) A. Juss. Seed oil. J. Phytopharm. 2014, 3, 95–101. [Google Scholar] [CrossRef]
- Hayasida, W.; Oliveira, L.M.; Ferreira, A.G.; Lima, M.P. Ergostane steroids, tirucallane and apotirucallane triterpenes from Guarea convergens. Chem. Nat. Compd. 2017, 53, 312–317. [Google Scholar] [CrossRef]
- Leutcha, B.P.; Dzoyem, J.P.; Jouda, J.B.; Sema, D.K.; Tsague, T.V.F.; Bitchagno, G.T.M.; Sewald, N. Antimicrobial and Cytotoxic Activities of Constituents from the Fruit of Albizia lebbeck L. Benth (Fabaceae). Molecules 2022, 27, 4823. [Google Scholar] [CrossRef] [PubMed]
- Magnibou, L.M.; Leutcha, P.B.; Tchegnitegni, B.T.; Wouamba, S.C.; Magne, C.Y.; Yaya, A.J.; Talla, E. A new phenanthrene derivative from Entada abyssinica with antimicrobial and antioxidant properties. Z Fur Naturforsch. B 2022, 77, 1–7. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, D.; Lin, Q.H.; He, J.F.; Liu, W.Y.; Xie, N.; Qu, W. Cytotoxic tirucallane and apotirucallane triterpenoids from the stems of Picrasma quassioides. J. Nat. Prod. 2016, 79, 1899–1910. [Google Scholar] [CrossRef]
- Arriaga, A.; Mesquita, A.C.; Pouliquen, Y.; Lima, R.A.; Cavalcante, S.H.; Carvalho, M.G.; Braz-Filho, R. Chemical constituents of Simarouba versicolor. An. Acad. Bras. Cienc. 2002, 74, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Puripattanavong, J.; Weber, S.; Brecht, V.; Frahm, A.W. Phytochemical investigation of Aglaia andamanica. Planta Med. 2000, 66, 740–745. [Google Scholar] [CrossRef]
- Cortez, D.A.; Vieira, P.C.; Fernandes, J.B.; da Silva, G.F.G.; Ferreira, A.G. Limonoids from Trichilia hirta. Phytochemistry 1992, 31, 625–628. [Google Scholar] [CrossRef]
- Salam, S.; Harneti, D.; Maharani, R.; Nurlelasari; Safari, A.; Hidayat, A.T.; Lesmana, R.; Nafiah, M.A.; Supratman, U.; Kyle, P.T.A.; et al. Cytotoxic triterpenoids from Chisocheton pentandrus. Phytochemistry 2021, 187, 112759. [Google Scholar] [CrossRef]
- Leutcha, B.P.; Sema, D.K.; Dzoyem, J.P.; Ayimele, G.A.; Nyongbela, K.D.; Delie, F.; Alléman, É.; Sewald, N.; Meli, L.A. Cytotoxicity of a new tirucallane derivative isolated from Stereospermum acuminatissimum K. Schum stem bark. Nat. Prod. Res. 2021, 35, 4417–4422. [Google Scholar] [CrossRef] [PubMed]
- Polonsky, J.; Varon, Z.; Rabanal, R.M.; Jacquemin, H. 21,20-anhydromelianone and melianone from Simarouba amara (Simaroubaceae); carbon-13 NMR spectral analysis of Δ7-tirucallol-type triterpenes. Isr. J. Chem. 1977, 16, 16–19. [Google Scholar] [CrossRef]
- Biavatti, M.W.; Vieira, P.C.; Da Silva, M.F.; Fernandes, J.B.; Albuquerque, S. Triterpenoid constituents of Raulinoa echinata. J. Nat. Prod. 2002, 65, 562–565. [Google Scholar] [CrossRef]
- Mahato, S.B.; Nandy, A.K.; Kundu, A.P. Pentacyclic triterpenoid sapogenols and their glycosides from Terminalia bellerica. Tetrahedron 1992, 48, 2483–2494. [Google Scholar] [CrossRef]
- Gade, I.S.; Chadeneau, C.; Simo, R.T.; Talla, E.; Atchade, A.D.T.; Seité, P.; Vannier, B.; Laurent, S.; Henoumont, C.; Kamdje, A.H.N.; et al. A new phenyl alkyl ester and a new combretin triterpene derivative from Combretum fragrans F. Hoffm (Combretaceae) and antiproliferative activity. Open Chem. 2020, 18, 1523–1531. [Google Scholar] [CrossRef]
- Chae, H.J.; Kim, G.J.; Deshar, B.; Kim, H.J.; Shin, M.J.; Kwon, H.; Suh, S.S. Anticancer activity of 2-O-caffeoyl alphitolic acid extracted from the Lichen, Usnea barbata 2017-KL-10. Molecules 2021, 26, 3937. [Google Scholar] [CrossRef]
- Bae, G.H.; Lee, S.M.; Lee, E.S.; Lee, J.S.; Gang, J.S. Isolation and quantitative analysis of betulinic acid and alphitolic acid from Zyziphi fructus. Yakhak Hoeji. 1996, 40, 558–562. [Google Scholar]
- Abdelgaleil, S.A.; Hashinaga, F.; Nakatani, M. Antifungal activity of limonoids from Khaya ivorensis. Pest. Manag. Sci. 2005, 61, 186–190. [Google Scholar] [CrossRef]
- Gunatilaka, A.A.; Bolzani, V.S.; Dagne, E.; Hofmann, G.A.; Johnson, R.K.; McCabe, F.L.; Mattern, M.R.; Kingston, D.G. Limonoids showing selective toxicity to DNA repair-deficient yeast and other constituents of Trichilia emetica. J. Nat. Prod. 1998, 61, 179–184. [Google Scholar] [CrossRef]
- Chun-Mao, Y.; Yu, Z.; Gui-Hua, T.; Ying-Tong, D.; Ming-Ming, C.; Xiao-Ying, W.; Guo-Ying, Z.; Shun-Lin, L.; Hui-Ming, H.; Hong-Ping, H.; et al. Khayseneganins A–H, Limonoids from Khaya senegalensis. J. Nat. Prod. 2012, 76, 327–333. [Google Scholar] [CrossRef]
- Nakatani, M.; Abdelgaleil, S.A.; Kassem, S.M.; Takezaki, K.; Okamura, H.; Iwagawa, T.; Doe, M. Three new modified limonoids from Khaya senegalensis. J. Nat. Prod. 2002, 65, 1219–1221. [Google Scholar] [CrossRef] [PubMed]
- Nwodo, N.J.; Ibezim, A.; Ntie-Kang, F.; Adikwu, M.U.; Mbah, C.J. Anti-trypanosomal activity of Nigerian plants and their constituents. Molecules 2015, 28, 7750–7771. [Google Scholar] [CrossRef] [PubMed]
- Dawé, A.; Mbiantcha, M.; Yakai, F.; Jabeen, A.; Ali, M.S.; Lateef, M.; Ngadjui, B.T. Flavonoids and triterpenes from Combretum fragrans with anti-inflammatory, antioxidant and antidiabetic potential. Z. Naturforsch. C 2018, 73, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Cren-Olivé, C.; Wieruszeski, J.M.; Maes, E.; Rolando, C. Catechin and epicatechin deprotonation followed by 13C NMR. Tetrahedron Lett. 2002, 43, 4545–4549. [Google Scholar] [CrossRef]
- Lin, W.Y.; Yen, M.H.; Teng, C.M.; Tsai, I.L.; Chen, I.S. Cerebrosides from the rhizomes of Gynura japonica. J. Chin. Chem. Soc. 2004, 51, 1429–1434. [Google Scholar] [CrossRef]
- Kamboj, A.; Saluja, A.K. Isolation of stigmasterol and β-sitosterol from petroleum ether extract of aerial parts of Ageratum conyzoides (Asteraceae). Int. J. Pharm. Pharm. Sci. 2011, 3, 94–96. [Google Scholar]
- Ramiarantsoa, H.; Attioua, B.K.; Kouamé, M.A.; Djakouré, L.A. Le O-β-D-glucoside du β-sitostérol Isolé des Feuilles de Ravenala madagascariensis. J. Soc. Ouest-Afr. Chim. 2008, 26, 99–103. [Google Scholar]
- Khan, N.M.U.; Hossain, M.S. Scopoletin and β-sitosterol glucoside from roots of Ipomoea digitata. J. Pharmacogn. Phytochem. 2015, 4, 5–7. [Google Scholar]
- Jonville, M.C.; Kodja, H.; Humeau, L.; Fournel, J.; De Mol, P.; Cao, M.; Angenot, L.; Frédérich, M. Screening of medicinal plants from Reunion Island for antimalarial and cytotoxic activity. J. Ethnopharmacol. 2008, 120, 382–386. [Google Scholar] [CrossRef]
- Batista, R.; Silva Ade, J.J.; de Oliveira, A.B. Plant-derived antimalarial agents: New leads and efficient phytomedicines. Part II. Nonalkaloidal natural products. Molecules 2009, 14, 3037–3072. [Google Scholar] [CrossRef]
- WHO. Leishmaniasis. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 27 September 2023).
- WHO. Malaria. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 27 September 2023).
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis. 2017, 11, e0006052. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Van Agtmael, M.A.; Eggelte, T.A.; Van Boxtel, C.J. Artemisinin drugs in the treatment of malaria: From medicinal herb to registered medication. Trends Pharmacol. Sci. 1999, 20, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Schwikkard, S.; van Heerden, F.R. Antimalarial activity of plant metabolites. Nat. Prod. Rep. 2002, 19, 675–692. [Google Scholar] [CrossRef]
- Tahir, A.E.; Satti, G.M.H.; Khalid, S.A. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.). J. Ethnopharmacol. 1999, 64, 227–233. [Google Scholar] [CrossRef]
- Manga, A.; Gassama, A.; Diatta, K.; Bassène, E.; Cojean, S.; Cavé, C. Antiplasmodial activity of extracts of Khaya senegalensis (DERS.) A. Jus (Meliaceae) and Melia azedarach L.; Plants of Senegalese Traditional Medicine. Int. J. Pharm. Sci. Res. 2018, 9, 4659–4665. [Google Scholar] [CrossRef]
- Shayoub, M.E.A.; Kabbashi, A.S.; Osman, H.M.; Mahmoud, A.N.; Elhassan, A.M.; Dawoud, A.D.H.; Jawad, A.S.A. Anti-malarial activity of Khaya senegalensis. Indo Am. J. Pharm. Res. 2016, 6. [Google Scholar]
- Ahua, K.M.; Ioset, J.R.; Ioset, K.N.; Diallo, D.; Mauël, J.; Hostettmann, K. Antileishmanial activities associated with plants used in the Malian traditional medicine. J. Ethnopharmacol. 2007, 110, 99–104. [Google Scholar] [CrossRef]
- Kayser, O.; Abreu, P.M. Antileishmania and immunostimulating activities of two dimeric proanthocyanidins from Khaya senegalensis. Pharm. Biol. 2001, 39, 284–288. [Google Scholar] [CrossRef]
- Palit, P.; Mandal, S.C. Evidence Based Validation of Traditional Medicines: A Comprehensive Approach; Mandal, S.C., Chakraborty, R., Sen, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; p. 359. [Google Scholar]
- Happi, G.; Nangmo, P.; Dzouemo, L.; Kache, S.; Kouam, A.; Wansi, J. Contribution of Meliaceous plants in furnishing lead compounds for antiplasmodial and insecticidal drug development. J. Ethnopharmacol. 2022, 285, 114906. [Google Scholar] [CrossRef]
- Djoumessi, A.K.; Nono, R.N.; Neumann, B.; Stammler, H.G.; Bitchagno, G.T.M.; Efange, N.M.; Nkenfou, C.N.; Ayong, L.; Lenta, B.N.; Sewald, N.; et al. Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities. Metabolites 2023, 13, 298. [Google Scholar] [CrossRef]
- Cimanga, R.K.; Tona, G.L.; Mesia, G.K.; Kambu, O.K.; Bakana, D.P.; Kalenda, P.D.T.; Penge, A.O.; Muyembe, J.J.T.; Totté, J.; Pieters, L.; et al. Bioassay-guided isolation of antimalarial triterpenoid acids from the leaves of Morinda lucida. Pharm. Biol. 2006, 44, 677–681. [Google Scholar] [CrossRef]
- Peixoto, J.A.; Silva, M.L.A.E.; Crotti, A.E.M.; Veneziani, R.C.S.; Gimenez, V.M.M.; Januário, A.H.; Groppo, M.; Magalhaes, L.G.; Dos Santos, F.F.; Albuquerque, S.; et al. Antileishmanial activity of the hydroalcoholic extract of miconia langsdorffii, isolated compounds, and semisynthetic derivatives. Molecules 2011, 16, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Torres-Santos, E.C.; Lopes, D.; Rodrigues Oliveira, R.; Carauta, J.P.P.; Bandeira Falcao, C.A.; Kaplan, M.A.C.; Rossi-Bergmann, B. Antileishmanial activity of isolated triterpenoids from Pourouma guianensis. Phytomedicine 2004, 11, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Mogana, R.; Adhikari, A.; Debnath, S.; Hazra, S.; Hazra, B.; Teng-Jin, K.; Wiart, C. The antiacetylcholinesterase and antileishmanial activities of Canarium patentinervium Miq. Biomed Res. Int. 2014, 2014, 903529. [Google Scholar] [CrossRef] [PubMed]
- Rizky, A.; Eka, W.S.; Anas, S.; Unang, S.; Milyadi, S.; Ajeng, D.; Keri, L.; Melisa, I.B.; Shinichiro, K.; Hiroshi, K. Catechin Isolated from Garcinia celebica Leaves Inhibit Plasmodium falciparum Growth through the Induction of Oxidative Stress. Pharmacogn. Mag. 2017, 13, 301–305. [Google Scholar] [CrossRef]
- Kemal, T.; Feyisa, K.; Bisrat, D.; Asres, K. In Vivo Antimalarial Activity of the Leaf Extract of Osyris quadripartita Salzm. ex Decne and Its Major Compound (-) Catechin. J. Trop. Med. 2022, 2022, 3391216. [Google Scholar] [CrossRef]
- Bickii, J.; Tchouya, G.R.F.; Tchouankeu, J.C.; Tsamo, E. Antimalarial activity in crude extracts of some Cameroonian medicinal plants. Afr. J. Trad. Compl. Alt. Med. 2007, 4, 107–111. [Google Scholar] [CrossRef]
- Kowa, T.K.; Tchokouaha, L.R.; Cieckiewicz, E.; Philips, T.J.; Dotse, E.; Wabo, H.K.; Frédérich, M. Antileishmanial and cytotoxic activities of a new limonoid and a new phenyl alkene from the stem bark of Trichilia gilgiana (Meliaceae). Nat. Prod. Res. 2020, 34, 3182–3188. [Google Scholar] [CrossRef]
- Kurimoto, S.I.; Takaishi, Y.; Ahmed, F.A.; Kashiwada, Y. Triterpenoids from the fruits of Azadirachta indica (Meliaceae). Fitoterapia 2014, 92, 200–205. [Google Scholar] [CrossRef]
- Shen, J.; Ma, X.; He, Y.; Wang, Y.; Zhong, T.; Zhang, Y. Anti-inflammatory and antioxidant properties of Melianodiol on DSS-induced ulcerative colitis in mice. PeerJ 2022, 10, e14209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tan, J.; Vanderveer, D.; Wang, X.; Wargovich, M.J.; Chen, F. Khayanolides from African mahogany Khaya senegalensis (Meliaceae): A revision. Phytochemistry 2009, 70, 294–299. [Google Scholar] [CrossRef]
- Smilkstein, M.; Sriwilaijaroen, N.; Kelly, J.X.; Wilairat, P.; Riscoe, M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother. 2004, 48, 1803–1806. [Google Scholar] [CrossRef] [PubMed]
- Siqueira-Neto, J.L.; Song, O.R.; Oh, H.; Sohn, J.H.; Yang, G.; Nam, J.; Jang, J.; Cechetto, J.; Lee, C.B.; Moon, S.; et al. Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds. PLoS Negl. Trop. Dis. 2010, 4, e675. [Google Scholar] [CrossRef] [PubMed]
- Bowling, T.; Mercer, L.; Don, R.; Jacobs, R.; Nare, B. Application of a resazurin-based high-throughput screening assay for the identification and progression of new treatments for human African trypanosomiasis. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Douanla, P.D.; Tabopda, T.K.; Tchinda, A.T.; Cieckiewicz, E.; Frédérich, M.; Boyom, F.F.; Tsabang, N.; Yeboah, S.; Nkengfack, A.E.; Tchuendem, M.H.K. Antrocarines A-F, antiplasmodial ergostane steroids from the stem bark of Antrocaryon klaineanum. Phytochemistry 2015, 117, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
N° | 21β Hydroxybourjotinolone A 1a | 21α-Melianodiol 1b | 21β-Melianodiol 1c | ||||
---|---|---|---|---|---|---|---|
δC | δH | HMBC | δC | δH | δC | δH | |
1 | 39.7 | 2.04 (1H, m) 1.47 (1H, m) | 39.7 | 2.04 (1H, m) 1.47 (1H, m) | 39.7 | 2.04 (1H, m) 1.47 (1H, m) | |
2 | 35.9 | 2.84 (1H, brtd, 14.6, 5.6) 2.19 (1H, brd, 14.6) | 1, 3, 4, 10 | 35.9 | 2.84 (1H, brtd, 14.6, 5.6) 2.19 (1H, brd, 14.6) | 35.9 | 2.84 (1H, brtd, 14.6, 5.6) 2.19 (1H, brd, 14.6) |
3 | 219.2 | - | 219.2 | - | 219.2 | - | |
4 | 49.1 | - | 49.1 | - | 49.1 | - | |
5 | 53.9 | 1.75 (1H, brdd, 11.5, 6.0) | 4, 8, 19 | 53.9 | 1.75 (1H, brdd, 11.5, 6.0) | 53.9 | 1.75 (1H, brdd, 11.5, 6.0) |
6 | 25.1 | 2.13 (1H, m) 1.28 (1H, m) | 4, 8, 10 | 25.1 | 2.13 (1H, m) 1.28 (1H, m) | 25.1 | 2.13 (1H, m) 1.28 (1H, m) |
7 | 119.2 | 5.35 (1H, brq, 3.1) | 5, 6, 9 | 119.2 | 5.35 (1H, brq, 3.1) | 119.2 | 5.35 (1H, brq, 3.1) |
8 | 147.2 | - | 147.2 | - | 147.2 | - | |
9 | 49.9 | 2.38 (1H, m) | 49.9 | 2.38 (1H, m) | 49.9 | 2.38 (1H, m) | |
10 | 36.2 | - | 36.2 | - | 36.2 | - | |
11 | 19.3 | 1.62 (2H, m) | 19.3 | 1.62 (2H, m) | 19.3 | 1.62 (2H, m) | |
12 | 31.1 | 1.99 (1H, m) 1.81 (1H, m) | 31.1 | 1.99 (1H, m) 1.81 (1H, m) | 31.1 | 1.99 (1H, m) 1.81 (1H, m) | |
13 | 44.9 | - | 44.9 | - | 44.9 | - | |
14 | 52.4 | - | 52.4 | - | 52.4 | - | |
15 | 35.9 | 2.20 (1H, m) 2.17 (1H, m) | 17 | 35.9 | 2.20 (1H, m) 2.17 (1H, m) | 35.9 | 2.20 (1H, m) 2.17 (1H, m) |
16 | 27.7 | 1.87 (1H, m) 1.31 (1H, m) | 27.7 | 1.87 (1H, m) 1.31 (1H, m) | 27.7 | 1.87 (1H, m) 1.31 (1H, m) | |
17 | 48.1 | 1.85 (1H, m) | 52.0 | 1.85 (1H, m) | 52.0 | 1.85 (1H, m) | |
18 | 23.2 | 0.91 (3H, s) | 12, 13, 14, 17 | 0.92 (3H, s) | 0.89 (3H, s) | ||
19 | 13.1 | 1.05 (3H, s) | 1, 5, 9, 10 | 13.1 | 1.05 (3H, s) | 13.1 | 1.05 (3H, s) |
20 | 40.0 | 2.12 (1H, m) | 50.2 | 2.11 (1H, m) | 47.9 | 2.00 (1H, m) | |
21 | 94.1 | 5.26 (1H, brd, 2.8) | 22, 24 | 103.2 | 5.21 (1H, brdd, 4.0, 1.8) | 94.1 | 5.21 (1H, brdd, 4.0, 1.8) |
22 | 32.3 | 1.70 (1H, m) 1.65 (1H, m) | 17, 21, 24 | 32.9 | 1.99 (1H, m) 1.82 (1H, m) | 32.9 | 1.99 (1H, m) 1.82 (1H, m) |
23 | 67.1 | 4.10 (1H, brt, 3.6) | 20 | 77.0 | 4.34 (1H, brddd, 10.8, 5.0, 2.3) | 78.3 | 4.46 (1H, brddd, 9.3, 6.7, 1.8) |
24 | 73.6 | 3.60 (1H, brd, 1.5) | 21, 23, 25, 27 | 78.5 | 3.20 (1H, brd, 2.3) | 78.5 | 3.14 (1H, brd, 1.8) |
25 | 73.9 | - | 74.5 | - | 73.6 | - | |
26 | 26.8 | 1.24 (3H, s) | 24, 25, 27 | 25.6 | 1.21 (3H, s) | 25.6 | 1.19 (3H, s) |
27 | 27.3 | 1.27 (3H, s) | 24, 25, 26 | 27.5 | 1.26 (3H, s) | 27.5 | 1.23 (3H, s) |
28 | 25.1 | 1.03 (3H, s) | 3, 4, 5, 29 | 25.1 | 1.03 (3H, s) | 25.1 | 1.03 (3H, s) |
29 | 22.0 | 1.13 (3H, s) | 3, 4, 5, 28 | 22.0 | 1.13 (3H, s) | 22.0 | 1.13 (3H, s) |
30 | 28.1 | 1.06 (3H, s) | 8, 13, 15 | 28.1 | 1.06 (3H, s) | 28.1 | 1.06 (3H, s) |
Samples | Cytotoxicity on RAW 264.7 Cells | Antiplasmodial Activity (μg/mL), Selectivity (SI) and Resistance Index (RI) | Antileishmanial Activity (μg/mL) and Selectivity (SI) | |||||
---|---|---|---|---|---|---|---|---|
CC50 ± SD | Pf3D7 IC50 ± SD | SI_Pf3D7 | PfDd2 IC50 ± SD | SI_PfDd2 | RI | IC50 ± SD | SI | |
Extract (μg/mL) | ||||||||
KS-MeOH | 47.52 | 79.40 ± 0.33 | 0.59 | 2.50 ± 0.12 | 19 | 0.03 | 5.12 ± 0.70 | 9.28 |
Fractions (μg/mL) | ||||||||
KS-Hex | 80.73 | 90.87 ± 0.08 | 0.88 | 4.05 ± 0.00 | 19.93 | 0.04 | 2.68 ± 0.42 | 30.12 |
KS-EtOAc | 50.64 | 69.52 ± 0.33 | 0.72 | 4.78 ± 0.36 | 10.59 | 0.06 | 5.99 ± 0.77 | 8.45 |
Isolated compounds (μg/mL) | ||||||||
21β-hydroxylbourjotinolone A (1a) + 21α-melianodiol (1b) + 21β-melianodiol (1c) | >400 | 84.30 ± 0.11 | >4.74 | 27.38 ± 0.18 | >14.6 | 0.32 | 14.31 ± 0.87 | >27.94 |
Bellericagenin B (2) | >400 | 107.72 ± 0.37 | >3.81 | 34.02 ± 0.09 | >11.75 | 0.31 | 6.5 ± 0.01 | >61.54 |
Alphitolic acid (3) | 35.76 | 146.77 ± 0.13 | 0.24 | >200 | ND | ND | 17.09 ± 0.90 | 2.09 |
Methylangolensate (4) | 72.74 | 165.19 ± 0.06 | 0.44 | 20.51 ± 0.45 | 34.13 | 0.12 | 25.83 ± 0.27 | 2.81 |
Rohituka-3 (5) | >400 | 68 ± 0.02 | >5.88 | 15.92 ± 0.33 | >25.13 | 0.23 | 23.35 ± 0.21 | >17.13 |
Khayanolide E (6) | 81.61 | 56.98 ± 0.08 | 1.43 | 14.03 ± 0.06 | 49.88 | 0.24 | 81.73 ± 0.12 | 0.99 |
Oleanolic acid (7) | >400 | 93.58 ± 0.92 | ˃4.27 | 43.58 ± 0.73 | ˃9.17 | 0.47 | 30.63 ± 0.67 | ˃13.06 |
Belamcanidin (8) | >400 | 104.92 ± 0.39 | >3.82 | 50.97 ± 0.37 | >7.84 | 0.48 | 22.21 ± 0.08 | >18.013 |
Catechin (9) | >400 | 111.96 ± 0.04 | >3.57 | 2.93 ± 0.02 | >136.6 | 0.02 | 26.97 ± 0.70 | >14.83 |
Gynuramide IV (10) | >400 | 101.07 ± 0.01 | >3.96 | 14.13 ± 0.03 | >28.3 | 0.14 | 6.43 ± 0.06 | >62.22 |
β-sitosterol (11) + stigmasterol (13) | >400 | 109.69± 1.66 | >6.12 | >200 | ND | >1.1 | 13.47 ± 0.74 | >29.69 |
β-sitosterol glycoside (12) + stigmasterol glycoside (14) | >400 | 65.34 ± 0.89 | ˃3.65 | 33.16 ± 0.43 | ˃12 | 0.51 | 9.60 ± 0.64 | ˃41.65 |
Reference drugs (μg/mL) | ||||||||
Chloroquine | - | 0.022 ± 0.25 | - | 0.085 ± 0.01 | - | - | - | ND |
Artemesin | - | 0.02 ± 0.00 | - | 0.024 ± 0.24 | - | - | - | - |
Amphotericin B | - | - | - | - | - | - | 3.14 ± 0.46 | - |
Podophyllotoxin | 0.71 ± 0.20 | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amang à Ngnoung, G.A.; Nganso Ditchou, Y.O.; Leutcha, P.B.; Dize, D.; Tatsimo, S.J.N.; Tchokouaha, L.R.Y.; Kowa, T.K.; Tembeni, B.; Mamoudou, H.; Poka, M.; et al. Antiplasmodial and Antileishmanial Activities of a New Limonoid and Other Constituents from the Stem Bark of Khaya senegalensis. Molecules 2023, 28, 7227. https://doi.org/10.3390/molecules28207227
Amang à Ngnoung GA, Nganso Ditchou YO, Leutcha PB, Dize D, Tatsimo SJN, Tchokouaha LRY, Kowa TK, Tembeni B, Mamoudou H, Poka M, et al. Antiplasmodial and Antileishmanial Activities of a New Limonoid and Other Constituents from the Stem Bark of Khaya senegalensis. Molecules. 2023; 28(20):7227. https://doi.org/10.3390/molecules28207227
Chicago/Turabian StyleAmang à Ngnoung, Gabrielle Ange, Yves Oscar Nganso Ditchou, Peron Bosco Leutcha, Darline Dize, Simplice Joël Ndendoung Tatsimo, Lauve Rachel Yamthe Tchokouaha, Theodora Kopa Kowa, Babalwa Tembeni, Hamadou Mamoudou, Madan Poka, and et al. 2023. "Antiplasmodial and Antileishmanial Activities of a New Limonoid and Other Constituents from the Stem Bark of Khaya senegalensis" Molecules 28, no. 20: 7227. https://doi.org/10.3390/molecules28207227
APA StyleAmang à Ngnoung, G. A., Nganso Ditchou, Y. O., Leutcha, P. B., Dize, D., Tatsimo, S. J. N., Tchokouaha, L. R. Y., Kowa, T. K., Tembeni, B., Mamoudou, H., Poka, M., Demana, P. H., Siwe Noundou, X., Fekam Boyom, F., & Meli Lannang, A. (2023). Antiplasmodial and Antileishmanial Activities of a New Limonoid and Other Constituents from the Stem Bark of Khaya senegalensis. Molecules, 28(20), 7227. https://doi.org/10.3390/molecules28207227