Natural Phosphodiesterase-4 Inhibitors with Potential Anti-Inflammatory Activities from Millettia dielsiana
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Silico Molecular Docking Simulations
2.2. Analysis of Molecular Dynamics
2.3. Toxicity Analysis
2.4. Evaluation of In Vitro Anti-Inflammatory Compounds (D15 and D50)
3. Materials and Methods
3.1. Materials
3.2. Docking Studies
3.3. Molecular Dynamics Simulation
3.4. Toxicity Prediction
3.5. Anti-Inflammatory Activity Test Method
3.5.1. In Vitro PDE4B/D Enzymatic Assay
3.5.2. In Vitro Anti-Inflammatory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Crocetti, L.; Floresta, G.; Cilibrizzi, A.; Giovannoni, M.P. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules 2022, 27, 4964. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1048. [Google Scholar] [CrossRef] [PubMed]
- Banzouzu, J.T.; Prost, A.; Rajemiarimiraho, M.; Ongoka, P. Traditional uses of the African Millettia species (Fabaceae). Int. J. Bot. 2008, 4, 406–420. [Google Scholar] [CrossRef]
- Nguyen, T.B. Families Fabaceae in the List of flora of Vietnam; Agriculture Publishing House: Hanoi, Vietnam, 2003. (In Vietnamese) [Google Scholar]
- Vo, V.C. Dictionary of Medicinal Plants in Vietnam; Medical Publishing House: Hanoi, Vietnam, 2012. (In Vietnamese) [Google Scholar]
- Do, H.B.; Dang, Q.C.; Bui, X.C.; Nguyen, T.D.; Do, T.D.; Pham, V.H.; Vu, N.L.; Pham, D.M.; Pham, K.M.; Đoan, T.N.; et al. Medicinal Plants and Medicinal Animals in Vietnam; Science and Technics Publishing House: Hanoi, Vietnam, 2006. (In Vietnamese) [Google Scholar]
- Kamau, J.W. Phytochemistry and Biological activity of the root extract of Millettia oblata. In Degree Master of Science (Medicinal Chemistry); Jomo Kenyatta University of Agriculture and Technology: Juja, Kenya, 2012. [Google Scholar]
- Rana, A.C.; Gulliya, B. Chemistry and Pharmacology of Flavonoids- A Review. Indian J. Pharm. Educ. Res. 2019, 53, 8–20. [Google Scholar] [CrossRef]
- Wang, T.Y.; Li, Q.; Bi, K.S. Review-Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Fu, A.; Wu, W.; Li, Y.; Wang, G.; Tang, M.; Li, S.; He, S.; Zhong, S.; Lai, H.; et al. Cytotoxic and apoptotic effects of constituents from Millettia pachycarpa Benth. Fitoterapia 2012, 83, 1402–1408. [Google Scholar] [CrossRef]
- Le, D.D.; Nguyen, T.M.T.; Ngo, V.D.; Bui, T.T.L.; Chu, T.T.H.; Jang, H.J.; Dang, T.T.; Tran, T.H.; Le, H.T.; Nguyen, V.T.; et al. Anti-inflammatory secondary metabolites from the stems of Millettia dielsiana Harms ex Diels. Carbohydr. Res. 2019, 484, 107778. [Google Scholar] [CrossRef]
- Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Hourfane, S.; Mechqoq, H.; Errajouani, F.; Rocha, J.M.; El Aouad, N. In vitro and in dilico evaluations of Boswellia carterii resin dermocosmetic activities. Cosmetics 2022, 9, 131. [Google Scholar] [CrossRef]
- Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacol. Rev. 2006, 58, 488–520. [Google Scholar] [CrossRef]
- Li, J.; Zhou, N.; Liu, W.; Li, J.; Feng, Y.; Wang, X.; Wu, C.; Bao, J. Discover natural compounds as potential phosphodiesterase-4B inhibitors via computational approaches. J. Biomol. Struct. Dyn. 2016, 34, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.X.; Hassell, A.M.; Vanderwall, D.; Lambert, M.H.; Holmes, W.D.; Luther, M.A.; Rocque, W.J.; Milburn, M.V.; Zhao, Y.; Ke, H.; et al. Atomic structure of PDE4: Insights into phosphodiesterase mechanism and specificity. Science 2000, 9, 1822–1825. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne, S.; Meadows, E.; Luk, P.; Normandin, D.; Muise, E.; Boulet, L.; Nantel, F. Localization of phosphodiesterase-4 isoforms in the medulla and nodose ganglion of the squirrel monkey. Brain Res. 2001, 920, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Torres, S.; Miró, X.; Palacios, J.M.; Cortés, R.; Puigdoménech, P.; Mengod, G. Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and [3H] rolipram binding autoradiography: Comparison with monkey and rat brain. J. Chem. Neuroanat. 2000, 20, 349–374. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.A.; Tripuraneni, N.S. Selective phosphodiesterase 4B inhibitors: A review. Sci. Pharm. 2014, 82, 453–482. [Google Scholar] [CrossRef] [PubMed]
- Malgorzata, N.D.; Priyanka, B.; Mathias, D.; Martin, R.W.; Robert, P. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014, 42, W53–W58. [Google Scholar] [CrossRef]
- Vu, T.T.L.; Dao, V.H.; Bui, M.Q.; Pham, T.H.M.; Do, T.L. Hepatoprotective Effect of Millettia dielsiana: In Vitro and In Silico Study. Molecules 2022, 27, 8978. [Google Scholar] [CrossRef]
- McNutt, A.T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sunseri, J.; Koes, D.R. GNINA 1.0: Molecular docking with deep learning. J. Cheminform. 2021, 13, 43. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Felding, J.; Sørensen, M.D.; Poulsen, T.D.; Larsen, J.; Andersson, C.; Refer, P.; Engell, K.; Ladefoged, L.G.; Thormann, T.; Vinggaard, A.M.; et al. Discovery and early clinical development of 2-{6-[2-(3, 5-dichloro-4-pyridyl) acetyl]-2, 3-dimethoxyphenoxy}-N-propylacetamide (LEO 29102), a soft-drug inhibitor of phosphodiesterase 4 for topical treatment of atopic dermatitis. J. Med. Chem. 2014, 57, 5893–5903. [Google Scholar] [CrossRef]
- Ye, H.; Wu, W.; Liu, Z.; Xie, C.; Tang, M.; Li, S.; Yang, J.; Tang, H.; Chen, K.; Long, C.; et al. Bioactivity-guided isolation of anti-inflammation flavonoids from the stems of Millettia dielsiana Harms. Fitoterapia 2014, 95, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Wang, D.X.; Chen, R.Y.; Liu, P.; Yu, D.Q. Novel benzil and isoflavone derivatives from Millettia dielsiana. Planta Med. 2009, 75, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Wang, H.Q.; Chen, R.Y. Isoflavones from vine stem of Millettia dielsiana. China J. Chin. Mater. Medica 2007, 32, 2138–2140. [Google Scholar]
- Gong, T.; Zhang, T.; Wang, D.X.; Chen, R.Y.; Liu, P.; Yu, D.Q. Two new isoflavone glycosides from the vine stem of Millettia dielsiana. J. Asian Nat. Prod. Res. 2014, 16, 181–186. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert. Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
- Abrahama, M.J.; Murtola, T.; Schulz, R.; P’all, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Spoel, D.V.D.; Lindah, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E.; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D. AmberTools 22; University of California: San Francisco, CA, USA, 2022. [Google Scholar]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE-Antechamber python parser interface. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef]
- Alexeev, Y.; Mazanetz, M.P.; Ichihara, O.; Fedorov, D.G. GAMESS as a free quantum-mechanical platform for drug research. Curr. Top. Med. Chem. 2012, 12, 2013–2033. [Google Scholar] [CrossRef] [PubMed]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Pham, N.K.; Nguyen, X.H.; Ta, C.B.; Nguyen, D.K.; Tran, T.O. Compounds Isolated from Lawsonia inermis L. Collected in Vietnam and Evaluation of Their Potential Activity Against the Main Protease of SARS-CoV-2 Using In silico Molecular Docking and Molecular Dynamic Simulation. Nat. Prod. Commun. 2022, 17, 1934578X221125161. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Pham, M.Q.; Nguyen, X.H.; Pham, C.N.; Phung, T.T.H. Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2. RSC Adv. 2021, 11, 17478–17486. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef]
- Yu, S.; Pearson, A.D.; Lim, R.K.; Rodgers, D.T.; Li, S.; Parker, H.B.; Weglarz, M.; Hampton, E.N.; Bollong, M.J.; Shen, J.; et al. Tremblay MS Targeted Delivery of an Anti-inflammatory PDE4 Inhibitor to Immune Cells via an Antibody-drug Conjugate. Mol. Ther. J. Am. Soc. Gene Ther. 2016, 24, 2078–2089. [Google Scholar] [CrossRef]
- Suzuki, O.; Mizukami, K.; Etori, M.; Sogawa, Y.; Takagi, N.; Tsuchida, H.; Morimoto, K.; Goto, T.; Yoshino, T.; Mikkaichi, T.; et al. Evaluation of the Therapeutic Index of a Novel Phosphodiesterase 4B–Selective Inhibitor Over Phosphodiesterase 4D in Mice. J. Pharmacol. Sci. 2013, 123, 219–226. [Google Scholar] [CrossRef]
- Marques, R.V.; Sestito, S.E.; Bourgaud, F.; Miguel, S.; Cailotto, F.; Reboul, P.; Jouzeau, J.-Y.; RahuelClermont, S.; Boschi-Muller, S.; Simonsen, H.T. AntiInflammatory Activity of Bryophytes Extracts in LPS-Stimulated RAW264.7 Murine Macrophages. Molecules 2022, 27, 1940. [Google Scholar] [CrossRef]
- Yao, Y.D.; Shen, X.Y.; Machado, J.; Luo, J.F.; Dai, Y.; Lio, C.K.; Yu, Y.; Xie, Y.; Luo, P.; Liu, J.X.; et al. Nardochinoid B Inhibited the Activation of RAW264.7 Macrophages Stimulated by Lipopolysaccharide through Activating the Nrf2/HO-1 Pathway. Molecules 2019, 24, 2482. [Google Scholar] [CrossRef]
Entry | Compounds Name | Affinity Binding (kcal mol−1) | Hydrogen Bonds | Distance of Hydrogen Bond (Å) | Hydrophobic Interaction |
---|---|---|---|---|---|
D38 | Millesianin F | −11.56 | GLU442 ASP413 HIS412 ASP530 TYR371 ASN533 GLN581 | 2.62 2.48 (2.26) 2.83 2.27 (3.02) 2.78 2.63 2.75 | MET485, PHE584, MET569, GLN581 |
D50 | 5,7,4′-trihydroxyisoflavone 7-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside | −11.35 | ASP530 | 2.68 | ILE588, PHE584 |
D45 | 7-hydroxy-4′,8-dimethoxyisoflavone 7-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside | −11.32 | GLN581 ASP530 | 2.74 2.52, 2.50 | PHE552, PHE584, MET569, ILE588 |
D47 | Odoratin-7-O-β-d-glucopyranoside | −11.19 | GLN581 | 2.65 | PHE584, MET569, MET485 |
D41 | Claclrastin-7-O-β-d-glucopyranoside | −11.06 | ASP530 ASP413 HIS416 VAL419 GLN581 | 4.75 2.62 2.18 2.61 1.85 (2.02) | PHE584, PHE552, ILE548, TYR371, HIS372 |
D39 | Millesianin G | −10.94 | ASP413 ASP530 TYR371 ASN533 | 2.37 (2.33) 2.93 (2.24) 2.81 2.68 | MET485, PHE584, MET569, GLU442, HIS372 |
D42 | 7-hydroxy-4′,6 dimethoxyisoflavone-7-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside | −10.38 | GLN581 | 2.62 | MET485, PHE584, MET569 |
Entry | Compounds Name | Affinity Binding (kcal mol−1) | Hydrogen Bond | Distance of Hydrogen Bond (Å) | Hydrophobic Interaction |
---|---|---|---|---|---|
D50 | 5,7,4′-trihydroxyisoflavone 7-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside | −13.01 | ASP346 ASN283 GLU304 ASP275 ASP392 HIS238 MET503 | 2.12 3.18 (3.36) 2.67 2.46 2.45 2.72 3.15 | PHE432, MET273 |
D38 | Millesianin F | −11.26 | THR345 ASP392 TYR233 GLN443 | 2.38 2.61 2.14 (3.13) 3.30 | PHE506, MET347, PHE414, ILE410, PHE446 |
D47 | Odoratin-7-O-β-d-glucopyranoside | −10.86 | ASP346 ASN283 GLU304 THR345 GLN443 | 2.96 3.20 2.48 2.42 2.71 | MET347, PHE414, PHE446, PHE506, SER282 |
D41 | Claclrastin-7-O-β-d-glucopyranoside | −10.77 | TYR233 ASP392 HIS278 GLU304 | 2.35 2.60 2.65 2.94 | PHE446, ILE410, PHE414, PHE506, TYR233 |
D39 | Millesianin G | −10.73 | ASP346 ASN283 HIS307 ASP275 HIS234 | 2.42 2.64 (3.34, 3.37) 2.64 3.02 3.00 | MET503, PHE506, PHE446, PHE414, MET347 |
D42 | 7-hydroxy-4′,6 dimethoxyisoflavone-7-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside | −10.57 | TYR233 ASP392 HIS238 ASP275 GLN443 HIS278 VAL281 ASN283 | 2.70 2.38 2.12 2.12 (2.67) 2.75 2.56 2.94 2.59 | PHE414, ILE410, PHE446, MET347 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, V.T.T.; Hung, H.V.; Ha, N.X.; Le, C.H.; Minh, P.T.H.; Lam, D.T. Natural Phosphodiesterase-4 Inhibitors with Potential Anti-Inflammatory Activities from Millettia dielsiana. Molecules 2023, 28, 7253. https://doi.org/10.3390/molecules28217253
Le VTT, Hung HV, Ha NX, Le CH, Minh PTH, Lam DT. Natural Phosphodiesterase-4 Inhibitors with Potential Anti-Inflammatory Activities from Millettia dielsiana. Molecules. 2023; 28(21):7253. https://doi.org/10.3390/molecules28217253
Chicago/Turabian StyleLe, Vu Thi Thu, Hoang Van Hung, Nguyen Xuan Ha, Cao Hong Le, Pham Thi Hong Minh, and Do Tien Lam. 2023. "Natural Phosphodiesterase-4 Inhibitors with Potential Anti-Inflammatory Activities from Millettia dielsiana" Molecules 28, no. 21: 7253. https://doi.org/10.3390/molecules28217253
APA StyleLe, V. T. T., Hung, H. V., Ha, N. X., Le, C. H., Minh, P. T. H., & Lam, D. T. (2023). Natural Phosphodiesterase-4 Inhibitors with Potential Anti-Inflammatory Activities from Millettia dielsiana. Molecules, 28(21), 7253. https://doi.org/10.3390/molecules28217253