Untargeted Metabolomics of Meat Digests: Its Potential to Differentiate Pork Depending on the Feeding Regimen
Abstract
:1. Introduction
2. Results
2.1. Multivariate Modeling
2.2. Annotation of Statistically Significant Molecular Markers of Differentiation
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Animal Feeding and Sampling
4.3. In Vitro Digestion of Pork Meat Samples
4.4. Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry
4.5. Data Processing and Chemometrics Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Enser, M.; Richardson, R.I.; Wood, J.D.; Gill, B.P.; Sheard, P.R. Feeding linseed to increase the n-3 PUFA of pork: Fatty acid composition of muscle, adipose tissue, liver and sausages. Meat Sci. 2000, 55, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Teye, G.A.; Sheard, P.R.; Whittington, F.M.; Nute, G.R.; Stewart, A.; Wood, J.D. Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. 2006, 73, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Pastorelli, G.; Moretti, V.M.; Macchioni, P.; Lo Fiego, D.P.; Santoro, P.; Panseri, S.; Rossi, R.; Corino, C. Influence of dietary conjugated linoleic acid on the fatty acid composition and volatile compounds profile of heavy pigs loin muscle. J. Sci. Food Agric. 2005, 85, 2227–2234. [Google Scholar] [CrossRef]
- Lo Fiego, D.P.; Macchioni, P.; Santoro, P.; Pastorelli, G.; Corino, C. Effect of dietary conjugated linoleic acid (CLA) supplementation on CLA isomers content and fatty acid composition of dry-cured Parma ham. Meat Sci. 2005, 70, 285–291. [Google Scholar] [CrossRef]
- Annaratone, C.; Caligiani, A.; Cirlini, M.; Toffanin, L.; Palla, G. Sterols, sterol oxides and CLA in typical meat products from pigs fed with different diets. Czech J. Food Sci. 2009, 27, 219–222. [Google Scholar] [CrossRef]
- Davoli, R.; Braglia, S. Molecular approaches in pig breeding to improve meat quality. Brief. Funct. Genom. Proteom. 2008, 6, 313–321. [Google Scholar] [CrossRef]
- Daza, A.; Rey, A.I.; Isabel, B.; Lopez-Bote, C.J. Effect of dietary vitamin E and partial replacement of poly- with monounsaturated fat on fatty acid patterns of backfat and intramuscular fat in heavy pigs (Iberian X Duroc). J. Anim. Physiol. Anim. Nutr. 2005, 89, 20–28. [Google Scholar] [CrossRef]
- Gobert, M.; Sayd, T.; Gatellier, P.; Santé-Lhoutellier, V. Application to proteomics to understand and modify meat quality. Meat Sci. 2014, 98, 539–543. [Google Scholar]
- Picard, B.; Lebret, B.; Cassar-Maleka, I.; Liaubet, L.; Berri, C.; Le Bihan-Duval, E.; Hocquette, J.F.; Renand, G. Recent advances in omic technologies for meat quality management. Meat Sci. 2015, 109, 18–26. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Zolla, L. From proteomics to integrated omics towards system biology. J. Proteom. 2013, 78, 558–577. [Google Scholar]
- Paredi, G.; Santendreu, M.; Mozzarelli, A.; Fadda, S.; Hollung, K.; De Almeida, A. Muscle to meat: New horizons and applications for proteomics on a farm to fork perspective. J. Proteom. 2013, 88, 58–92. [Google Scholar]
- Minekus, M.; Alminger, M.; Alvito, P.; Balance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [PubMed]
- Escudero, E.; Sentandreu, M.A.; Toldrá, F. Characterization of peptides released by in vitro digestion of pork meat. J. Agric. Food Chem. 2010, 58, 5160–5165. [Google Scholar] [CrossRef]
- Escudero, E.; Toldrá, F.; Sentandreu, M.A.; Nishimura, H.; Arihara, K. Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat Sci. 2012, 91, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Ferranti, P.; Nitride, C.; Nicolai, M.A.; Mamone, G.; Picariello, G.; Bordoni, A.; Valli, V.; Di Nunzio, M.; Babini, E.; Marcolini, E.; et al. In vitro digestion of Bresaola proteins and release of potential bioactive peptides. Food Res. Int. 2014, 63, 157–169. [Google Scholar]
- Paolella, S.; Falavigna, C.; Faccini, A.; Virgili, R.; Sforza, S.; Dall’Asta, C.; Dossena, A.; Galaverna, G. Effect of dry-cured ham maturation time on simulated gastrointestinal digestion: Characterization of the released peptide fraction. Food Res. Int. 2015, 67, 136–144. [Google Scholar] [CrossRef]
- Dellafiora, L.; Paolella, S.; Dall’Asta, C.; Dossena, A.; Cozzini, P.; Galaverna, G. Hybrid in silico/in vitro approach for the identification of angiotensin I converting enzyme inhibitory peptides from Parma dry-cured ham. J. Agric. Food Chem. 2015, 63, 6366–6375. [Google Scholar]
- Lucini, L.; Borgognone, D.; Rouphael, Y.; Cardarelli, M.; Bernardi, J.; Colla, G. Mild Potassium Chloride Stress Alters the Mineral Composition, Hormone Network, and Phenolic Profile in Artichoke Leaves. Front. Plant Sci. 2016, 7, 948. [Google Scholar] [CrossRef]
- Zimmer, B.; Angioni, C.; Osthues, T.; Toewe, A.; Thomas, D.; Pierre, S.C.; Geisslinger, G.; Scholich, K.; Sisignano, M. The oxidized linoleic acid metabolite 12,13-DiHOME mediates thermal hyperalgesia during inflammatory pain. BBA-Mol. Cell Biol. Lipids 2018, 1863, 669–678. [Google Scholar]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar]
- Saccani, G.; Bergamaschi, M.; Schivazappa, C.; Cirlini, M.; Galaverna, G.; Virgili, R. Evaluation of the antioxidant effect of a phytocomplex addition in clean label pork salami enriched in n-3 PUFA. Food Chem. 2023, 399, 133963. [Google Scholar] [PubMed]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Effect of the presence of protein on lipolysis and lipid oxidation occurring during in vitro digestion of highly unsaturated oils. Food Chem. 2017, 235, 21–33. [Google Scholar] [PubMed]
- Chiang, J.Y.L. Bile acid metabolism and signaling in liver disease and therapy. Liver Res. 2017, 1, 3–9. [Google Scholar] [PubMed]
- Tieu, E.W.; Li, W.; Chen, J.; Baldisseri, D.M.; Slominski, A.T.; Tuckey, R.C. Metabolism of cholesterol, vitamin D3 and 20-hydroxyvitamin D3 incorporated into phospholipid vesicles by human CYP27A1. J. Steroid Biochem. Mol. Biol. 2012, 129, 163–171. [Google Scholar] [PubMed]
- Schneider, S.; El-Said Mohamed, M.; Fuchs, G. Anaerobic metabolism of L-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thauera aromatic. Arch. Microbiol. 1997, 168, 310–320. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Simon, R.C.; Riethorst, W.; Zepeck, F.; Kroutil, W. Synthesis of (R)- or (S)-valinol using x-transaminases in aqueous and organic media. Bioorg. Med. Chem. 2014, 22, 5558–5562. [Google Scholar]
- Chang, Y.T.; Gray, N.S.; Rosania, G.R.; Sutherlin, D.P.; Kwon, S.; Norman, T.C.; Sarohia, R.; Leost, M.; Meijer, L.; Schultz, P.G. Synthesis and application of functionally diverse 2,6,9-trisubstituted purine libraries as CDK inhibitors. Chem. Biol. 1999, 6, 361–375. [Google Scholar] [CrossRef]
- Kim, J.H.; Seong, P.N.; Cho, S.H.; Park, B.Y.; Hah, K.H.; Yu, L.H.; Lim, D.G.; Hwang, I.H.; Kim, D.H.; Lee, J.M.; et al. Characterization of Nutritional Value for Twenty-one Pork Muscles. Asian-Aust. J. Anim. Sci. 2008, 21, 138–143. [Google Scholar]
- Fenton, H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899–911. [Google Scholar]
- Oueslati, K.; de La Pomélie, D.; Santé-Lhoutellier, V.; Gatellier, P. Impact of the Fenton process in meat digestion as assessed using an in vitro gastro-intestinal model. Food Chem. 2016, 209, 43–49. [Google Scholar]
- Carlsen, C.U.; Møller, J.K.S.; Skibsted, L.H. Heme-iron in lipid oxidation. Coord. Chem. Rev. 2005, 249, 485–498. [Google Scholar]
- Simitzis, P.E.; Charismiadou, M.A.; Goliomytis, M.; Charalambous, A.; Ntetska, I.; Giamouri, E.; Deligeorgis, S.G. Antioxidant status, meat oxidative stability and quality characteristics of lambs fed with hesperidin, naringin or α-tocopheryl acetate supplemented diets. J. Sci. Food Agric. 2019, 99, 343–349. [Google Scholar] [PubMed]
- Chikwanha, O.C.; Moelich, E.; Gouws, P.; Muchenje, V.; Nolte, J.V.E.; Dugan, M.E.R.; Mapiye, C. Effects of feeding increasing levels of grape (Vitis vinifera cv. Pinotage) pomace on lamb shelf-life and eating quality. Meta Sci. 2019, 157, 107887. [Google Scholar]
- Pena-Bermudez, Y.A.; Lobo, R.R.; Rojas-Moreno, D.A.; Poleti, M.D.; de Amorim, T.R.; Rosa, A.F.; Pereira, A.S.C.; Pinheiro, R.S.B.; Bueno, I.C.S. Effects of Feeding Increasing Levels of Yerba Mate on Lamb Meat Quality and Antioxidant Activity. Animals 2020, 10, 1458. [Google Scholar]
- Rombouts, C.; Hemeryck, L.Y.; Van Hecke, T.; De Smet, S.; De Vos, W.H.; Vanhaecke, L. Untargeted metabolomics of colonic digests reveals kynurenine pathway metabolites, dityrosine and 3-dehydroxycarnitine as red versus white meat discriminating metabolites. Sci. Rep. 2017, 7, 42514. [Google Scholar]
- Ribeiro, J.S.; Missão Cordeiro Santos, M.J.; Kauly Rosa Silva, L.; Lavinscky Pereirab, L.C.; Alves Santos, I.; Caetano da Silva Lannes, S.; Viana da Silva, M. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar]
- Vitali, M.; Dimauro, C.; Sirri, R.; Zappaterra, M.; Zambonelli, P.; Manca, E.; Sami, D.; Lo Fiego, D.P.; Davoli, R. Effect of dietary polyunsaturated fatty acid and antioxidant supplementation on the transcriptional level of genes involved in lipid and energy metabolism in swine. PLoS ONE 2018, 13, e0204869. [Google Scholar] [CrossRef]
Biochemical Class | Tentative Identification | m/z | Pseudomolecular Ion | Elemental Formula | Higher Metabolite Intensity | VIP Score |
---|---|---|---|---|---|---|
Vitamin D3 precursors and derivatives | 25-Azacholesterol | 388.3572 | [M+H]+ | C26H45NO | T1 | 1.7 |
Dehydrocholesterol | 385.3456 | [M+H]+ | C27H44O | T1 | 1.7 | |
Dihydroxy-oxavitamin D3 | 419.3160 | [M+H]+ | C26H42O4 | T1 | 1.9 | |
Dihydroxycholecalciferol | 399.3248 | [M+H]+ | C27H42O2 | T1 | 1.7 | |
Glycerophospholipids | PA(P-18:0) | 445.2691 | [M+Na]+ | C21H43O6P | T1 | 1.9 |
PE (24:0) | 580.3982 | [M+H]+ | C29H58NO8P | T1 | 1.8 | |
PG (22:4) | 697.4454 | [M+H-H2O]+ | C38H67O10P | T2 | 1.9 | |
PE (23:0) | 566.3806 | [M+H]+ | C28H56NO8P | T1 | 1.8 | |
PA(28:2) | 729.5450 | [M+H]+ | C41H77O8P | T1 | 1.7 | |
PI (18:0) | 583.3242 | [M+H-H2O]+ | C27H53O12P | T1 | 1.8 | |
PI (18:1) | 581.3091 | [M+H-H2O]+ | C27H51O12P | T1 | 1.8 | |
PS (25:0) | 620.3869 | [M+H-H2O]+ | C31H60NO10P | T1 | 1.6 | |
PG(35:2) | 806.5916 | [M+NH4]+ | C43H81O10P | T1 | 1.7 | |
4-Hydroxyphenylglyoxylate | 167.0341 | [M+H]+ | C8H6O4 | T1 | 1.8 | |
Fatty Acyls | Octadecatetraenoic acid | 277.2163 | [M+H]+ | C18H28O2 | T1 | 1.7 |
15 (16)-epODE | 295.2268 | [M+H]+ | C18H30O3 | T1 | 1.8 | |
12,13-DiHOME | 297.2433 | [M+H-H2O]+ | C18H34O4 | T1 | 1.3 | |
Fatty aldehydes | Octadecatrienal | 263.2369 | [M+H]+ | C18H30O | T1 | 1.7 |
Eicosenal | 312.3260 | [M+NH4]+ | C20H38O | T1 | 1.7 | |
Octadecenal | 284.2949 | [M+NH4]+ | C18H34O | T1 | 1.9 |
Biochemical Class | Tentative Identification | m/z | Pseudomolecular Ion | Elemental Formula | Higher Metabolite Intensity | VIP Value |
---|---|---|---|---|---|---|
Homocarnosine | 263.1115 | [M+Na]+ | C10H16N4O3 | LD | 2.0 | |
Pentylbenzene | 149.1323 | [M+H]+ | C11H16 | RF | 1.1 | |
Glycerophospholipids | PG (30:9) | 799.4918 | [M+H-H2O]+ | C46H73O10P | RF | 2.2 |
PI(35:2) | 871.5308 | [M+Na]+ | C44H81O13P | RF | 2.0 | |
PI(34:0) | 839.5584 | [M+H]+ | C43H83O13P | LD | 1.9 | |
PS(36:8) | 758.4370 | [M+H-H2O]+ | C42H66NO10P | RF | 2.0 | |
PS (34:3) | 740.4884 | [M+H-H2O]+ | C40H72NO10P | LD | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirlini, M.; Righetti, L.; Del Vecchio, L.; Tonni, E.; Lucini, L.; Dall’Asta, C.; Galaverna, G. Untargeted Metabolomics of Meat Digests: Its Potential to Differentiate Pork Depending on the Feeding Regimen. Molecules 2023, 28, 7306. https://doi.org/10.3390/molecules28217306
Cirlini M, Righetti L, Del Vecchio L, Tonni E, Lucini L, Dall’Asta C, Galaverna G. Untargeted Metabolomics of Meat Digests: Its Potential to Differentiate Pork Depending on the Feeding Regimen. Molecules. 2023; 28(21):7306. https://doi.org/10.3390/molecules28217306
Chicago/Turabian StyleCirlini, Martina, Laura Righetti, Lorenzo Del Vecchio, Elena Tonni, Luigi Lucini, Chiara Dall’Asta, and Gianni Galaverna. 2023. "Untargeted Metabolomics of Meat Digests: Its Potential to Differentiate Pork Depending on the Feeding Regimen" Molecules 28, no. 21: 7306. https://doi.org/10.3390/molecules28217306
APA StyleCirlini, M., Righetti, L., Del Vecchio, L., Tonni, E., Lucini, L., Dall’Asta, C., & Galaverna, G. (2023). Untargeted Metabolomics of Meat Digests: Its Potential to Differentiate Pork Depending on the Feeding Regimen. Molecules, 28(21), 7306. https://doi.org/10.3390/molecules28217306