Pt(II) Complexes with Tetradentate C^N*N^C Luminophores: From Supramolecular Interactions to Temperature-Sensing Materials with Memory and Optical Readouts
Abstract
:1. Introduction
2. Synthesis
3. Photophysics in Diluted Conditions
PtLa-6 | PtLa-12 | PtLb-6 | PtLb-12 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
τav a (µs) | ΦL b | kr c/104 (s−1) | knr d/104 (s−1) | τav a (µs) | ΦL b | kr c/104 (s−1) | knr d/104 (s−1) | τav a (µs) | ΦL b | kr c/104 (s−1) | knr d/104 (s−1) | τav a (µs) | ΦL b | kr c/104 (s−1) | knr d/104 (s−1) | |
Air-equilibrated DCM solution (r.t.) | 0.203 ± 0.001 e | <0.02 | <10 | 480 < knr < 490 | 0.174 ± 0.001 e | <0.02 | <12 | 560 < knr < 570 | 0.163 ± 0.001 e | <0.02 | <12 | 600 < knr < 610 | 0.209 ± 0.001 f | <0.02 | <10 | 470 < knr < 480 |
Ar-purged DCM solution (r.t.) | 11.22 ± 0.02 e | 0.49 ± 0.02 | 4.4 ± 0.2 | 4.5 ± 0.2 | 10.60 ± 0.02 f | 0.57 ± 0.02 | 5.4 ± 0.2 | 4.1 ± 0.2 | 6.102 ± 0.003 e | 0.26 ± 0.02 | 4.3 ± 0.3 | 12.1 ± 0.3 | 8.55 ± 0.03 f | 0.27 ± 0.02 | 3.2 ± 0.2 | 8.5 ± 0.3 |
2-MeTHF glassy matrix (77 K) | 16.8 ± 0.1 e | 0.99 ± 0.01 | 6.0 ± 0.2 | <6 | 11.4 ± 0.8 f | 0.99 ± 0.01 | 8.8 ± 0.8 | <9 | 7.60 ± 0.03 f | 0.99 ± 0.01 | 13.2 ± 0.3 | <13 | 8.7 ± 0.1 f | 0.99 ± 0.01 | 11.6 ± 0.4 | <11 |
4. Thermochromic Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, A.; Du, P.; Sun, Z.; Wu, H.; Jia, H.; Zhang, R.; Liang, Z.; Cao, R.; Eisenberg, R. Reversible Mechanochromic Luminescence at Room Temperature in Cationic Platinum(II) Terpyridyl Complexes. Inorg. Chem. 2014, 53, 3338–3344. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.Y.; Ni, J.; Zhang, L.Y.; Chen, Z.N. Vapochromic and Mechanochromic Phosphorescence Materials Based on a Platinum(II) Complex with 4-Trifluoromethylphenylacetylide. Inorg. Chem. 2012, 51, 5569–5579. [Google Scholar] [CrossRef] [PubMed]
- Theiss, T.; Buss, S.; Maisuls, I.; López-Arteaga, R.; Brünink, D.; Kösters, J.; Hepp, A.; Doltsinis, N.L.; Weiss, E.A.; Strassert, C.A. Room-Temperature Phosphorescence from Pd(II) and Pt(II) Complexes as Supramolecular Luminophores: The Role of Self-Assembly, Metal-Metal Interactions, Spin-Orbit Coupling, and Ligand-Field Splitting. J. Am. Chem. Soc. 2023, 145, 3937–3951. [Google Scholar] [CrossRef]
- Gutierrez Suburu, M.E.; Maisuls, I.; Kösters, J.; Strassert, C.A. Room-Temperature Luminescence from Pd(II) and Pt(II) Complexes: From Mechanochromic Crystals to Flexible Polymer Matrices. Dalton Trans. 2022, 51, 13342–13350. [Google Scholar] [CrossRef] [PubMed]
- Köse, M.E.; Carroll, B.F.; Schanze, K.S. Preparation and Spectroscopic Properties of Multiluminophore Luminescent Oxygen and Temperature Sensor Films. Langmuir 2005, 21, 9121–9129. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Borsley, S.; Tu, T.; Cockroft, S.L. Reversible Stimuli-Responsive Chromism of a Cyclometallated Platinum(Ii) Complex. Chem. Commun. 2020, 56, 14705–14708. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, K.; Lu, J.; Shen, J.; Ma, C.; Liu, S.; Zhao, Q.; Wong, W.Y. Phosphorescent Soft Salt Based on Platinum(II) Complexes: Photophysics, Self-Assembly, Thermochromism, and Anti-Counterfeiting Application. Inorg. Chem. 2021, 60, 7510–7518. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kato, M. Vapochromic Platinum(II) Complexes: Crystal Engineering toward Intelligent Sensing Devices. Eur. J. Inorg. Chem. 2014, 27, 4469–4483. [Google Scholar] [CrossRef]
- Grove, L.J.; Rennekamp, J.M.; Jude, H.; Connick, W.B. A New Class of Platinum(II) Vapochromic Salts. J. Am. Chem. Soc. 2004, 126, 1594–1595. [Google Scholar] [CrossRef]
- Wong, Y.S.; Ng, M.; Yeung, M.C.L.; Yam, V.W.W. Platinum(II)-Based Host-Guest Coordination-Driven Supramolecular Co-Assembly Assisted by Pt···Pt and π-ΠStacking Interactions: A Dual-Selective Luminescence Sensor for Cations and Anions. J. Am. Chem. Soc. 2021, 143, 973–982. [Google Scholar] [CrossRef]
- Soto, M.A.; Carta, V.; Cano, M.T.; Andrews, R.J.; Patrick, B.O.; MacLachlan, M.J. Multiresponsive Cyclometalated Crown Ether Bearing a Platinum(II) Metal Center. Inorg. Chem. 2022, 61, 2999–3006. [Google Scholar] [CrossRef] [PubMed]
- Sinn, S.; Biedermann, F.; De Cola, L. Platinum Complex Assemblies as Luminescent Probes and Tags for Drugs and Toxins in Water. Chem. Eur. J. 2017, 23, 1965–1971. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.S.; Chu, C.S.; Lo, Y.L. Highly Sensitive Optical Fiber Oxygen Sensor Using Pt(II) Complex Embedded in Sol-Gel Matrices. Sens. Actuators B Chem. 2006, 119, 701–707. [Google Scholar] [CrossRef]
- Maisuls, I.; Wang, C.; Gutierrez Suburu, M.E.; Wilde, S.; Daniliuc, C.-G.; Brünink, D.; Doltsinis, N.L.; Ostendorp, S.; Wilde, G.; Kösters, J.; et al. Ligand-Controlled and Nanoconfinement-Boosted Luminescence Employing Pt(II) and Pd(II) Complexes: From Color-Tunable Aggregation-Enhanced Dual Emitters towards Self-Referenced Oxygen Reporters. Chem. Sci. 2021, 12, 3270–3281. [Google Scholar] [CrossRef] [PubMed]
- De Cola, L.; Strassert, C.A.; Mydlak, M.; Felicetti, M.; Diener, G.; Leonhardt, J. Neu Platin(II)Komplexe Als Triplett-Emitter Für OLED Anwendungen. German Patent DE102012108129A1, 31 August 2012. [Google Scholar]
- Kostic, N.M.; Zhou, X.-Y. Thermochromic Platinum Complexes 1989. U.S. Patent No. 4,857,231, 6 June 1989. [Google Scholar]
- Resch-Genger, U.; Wang, C.; Strassert, C.A.; Gutierrez Suburu, M.E.; Maisuls, I. Verwendung von D8-Metallkomplexverbindungen Mit Liganden-Kontrollierten Aggregations- Und Lumineszenzeigenschaften. European Patent EP 3896138A1, 20 October 2021. [Google Scholar]
- Arzhakova, O.V.; Bakeev, N.F.; Volynskii, A.L.; Dolgova, A.A.; Yarusheva, L.M.; Vasilievich, P.G. Optochemical Sensor for Sensing O2, and Method of Its Preparation. U.S. Patent No. 8,834,795, 16 September 2014. [Google Scholar]
- Paw, W.; Cummings, S.D.; Mansour, M.A.; Connick, W.B.; Geiger, D.K.; Eisenberg, R. Luminescent Platinum Complexes: Tuning and Using the Excited State. Coord. Chem. Rev. 1998, 171, 125–150. [Google Scholar] [CrossRef]
- Yam, V.W.W.; Lo, K.K.W. Luminescent Polynuclear D10 Metal Complexes. Chem. Soc. Rev. 1999, 28, 323–334. [Google Scholar] [CrossRef]
- Mydlak, M.; Mauro, M.; Polo, F.; Felicetti, M.; Leonhardt, J.; Diener, G.; De Cola, L.; Strassert, C.A. Controlling Aggregation in Highly Emissive Pt(II) Complexes Bearing Tridentate Dianionic N^N^N Ligands. Synthesis, Photophysics, and Electroluminescence. Chem. Mater. 2011, 23, 3659–3667. [Google Scholar] [CrossRef]
- Costa, R.D.; Ortí, E.; Bolink, H.J.; Monti, F.; Accorsi, G.; Armaroli, N. Luminescent Ionic Transition-Metal Complexes for Light-Emitting. Angew. Chem. Int. Ed. 2012, 51, 8178–8211. [Google Scholar] [CrossRef]
- Yoshida, M.; Kato, M. Cation-Controlled Luminescence Behavior of Anionic Cyclometalated Platinum(II) Complexes. Coord. Chem. Rev. 2020, 408, 213194. [Google Scholar] [CrossRef]
- Galstyan, A.; Naziruddin, A.R.; Cebrián, C.; Iordache, A.; Daniliuc, C.G.; De Cola, L.; Strassert, C.A. Correlating the Structural and Photophysical Features of Pincer Luminophores and Monodentate Ancillary Ligands in PtII Phosphors. Eur. J. Inorg. Chem. 2015, 2015, 5822–5831. [Google Scholar] [CrossRef]
- Fleetham, T.; Li, G.; Li, J. Phosphorescent Pt (II) and Pd (II) Complexes for Efficient High-Color-Quality and Stable OLEDs. Adv. Mater. 2017, 29, 1601861. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Tong, G.S.M.; Wan, Q.; Cheng, G.; Tong, W.Y.; Ang, W.H.; Kwong, W.L.; Che, C.M. Highly Phosphorescent Platinum(II) Emitters: Photophysics, Materials and Biological Applications. Chem. Sci. 2016, 7, 1653–1673. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, J.; Fattori, V.; Cocchi, M.; Williams, J.A.G. Light-Emitting Devices Based on Organometallic Platinum Complexes as Emitters. Coord. Chem. Rev. 2011, 255, 2401–2425. [Google Scholar] [CrossRef]
- Kui, S.C.F.; Keong Chow, P.; Cheng, G.; Kwok, C.C.; Lam Kwong, C.; Low, K.H.; Che, C.M. Robust Phosphorescent Platinum(Ii) Complexes with Tetradentate O^N^C^N Ligands: High Efficiency OLEDs with Excellent Efficiency Stability. Chem. Commun. 2013, 49, 1497–1499. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wolfe, A.; Brooks, J.; Zhu, Z.Q.; Li, J. Modifying Emission Spectral Bandwidth of Phosphorescent Platinum(II) Complexes Through Synthetic Control. Inorg. Chem. 2017, 56, 8244–8256. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.G.; Develay, S.; Rochester, D.L.; Murphy, L. Optimising the Luminescence of Platinum(II) Complexes and Their Application in Organic Light Emitting Devices (OLEDs). Coord. Chem. Rev. 2008, 252, 2596–2611. [Google Scholar] [CrossRef]
- Aliprandi, A.; Genovese, D.; Mauro, M.; De Cola, L. Recent Advances in Phosphorescent Pt (II) Complexes Featuring Metallophilic Interactions: Properties and Applications. Chem. Lett. 2015, 44, 1152–1169. [Google Scholar] [CrossRef]
- Carrara, S.; Aliprandi, A.; Hogan, C.F.; De Cola, L. Aggregation-Induced Electrochemiluminescence of Platinum(II) Complexes. J. Am. Chem. Soc. 2017, 139, 14605–14610. [Google Scholar] [CrossRef]
- Wilde, S.; González-Abradelo, D.; Daniliuc, C.G.; Böckmann, M.; Doltsinis, N.L.; Strassert, C.A. Fluorination-Controlled Aggregation and Intermolecular Interactions in Pt(II) Complexes with Tetradentate Luminophores. Isr. J. Chem. 2018, 58, 932–943. [Google Scholar] [CrossRef]
- Wilde, S.; Ma, D.; Koch, T.; Bakker, A.; Gonzalez-Abradelo, D.; Stegemann, L.; Daniliuc, C.G.; Fuchs, H.; Gao, H.; Doltsinis, N.L.; et al. Toward Tunable Electroluminescent Devices by Correlating Function and Submolecular Structure in 3D Crystals, 2D-Confined Monolayers, and Dimers. ACS Appl. Mater. Interfaces 2018, 10, 22460–22473. [Google Scholar] [CrossRef]
- Ren, J.; Cnudde, M.; Brünink, D.; Buss, S.; Daniliuc, C.G.; Liu, L.; Fuchs, H.; Strassert, C.A.; Gao, H.Y.; Doltsinis, N.L. On-Surface Reactive Planarization of Pt(II) Complexes. Angew. Chem. Int. Ed. 2019, 58, 15396–15400. [Google Scholar] [CrossRef] [PubMed]
- Grushin, V.V.; Herron, N.; Le Cloux, D.D.; Marshall, W.J.; Petrov, V.A.; Wang, Y. New, Efficient Electroluminescent Materials Based on Organometallic Ir Complexes. Chem. Commun. 2001, 1, 1494–1495. [Google Scholar] [CrossRef]
- Hasan, K.; Bansal, A.K.; Samuel, I.D.W.; Roldán-Carmona, C.; Bolink, H.J.; Zysman-Colman, E. Tuning the Emission of Cationic Iridium (III) Complexes towards the Red through Methoxy Substitution of the Cyclometalating Ligand. Sci. Rep. 2015, 5, 12325. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.; Babayan, Y.; Lamansky, S.; Djurovich, P.I.; Tsyba, I.; Bau, R.; Thompson, M.E. Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes. Inorg. Chem. 2002, 41, 3055–3066. [Google Scholar] [CrossRef] [PubMed]
- Vezzu, D.A.K.; Deaton, J.C.; Jones, J.S.; Bartolotti, L.; Harris, C.F.; Marchetti, A.P.; Kondakova, M.; Pike, R.D.; Huo, S. Highly Luminescent Tetradentate Bis-Cyclometalated Platinum Complexes: Design, Synthesis, Structure, Photophysics, and Electroluminescence Application. Inorg. Chem. 2010, 49, 5107–5119. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09 Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Dunning, T.H.; Hay, P.J. Modern Theoretical Chemistry; Schaefer, H.F., III, Ed.; Plenum: New York, NY, USA, 1977; ISBN 9781475708899. [Google Scholar]
- Grimme, S.; Ehrlich, S.; Georigk, L. Software News and Updates Gabedit—A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef]
- Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A., III; Skiff, W.M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curits, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminfomatics 2012, 4, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Plasser, F. TheoDORE: A Toolbox for a Detailed and Automated Analysis of Electronic Excited State Computations. J. Chem. Phys. 2020, 152, 084108. [Google Scholar] [CrossRef] [PubMed]
- Garbe, S.; Krause, M.; Klimpel, A.; Neundorf, I.; Lippmann, P.; Ott, I.; Brünink, D.; Strassert, C.A.; Doltsinis, N.L.; Klein, A. Cyclometalated Pt Complexes of Cnc Pincer Ligands: Luminescence and Cytotoxic Evaluation. Organometallics 2020, 39, 746–756. [Google Scholar] [CrossRef]
- Maisuls, I.; Boisten, F.; Hebenbrock, M.; Alfke, J.; Schürmann, L.; Jasper-Peter, B.; Hepp, A.; Esselen, M.; Müller, J.; Strassert, C.A. Monoanionic C^N^N Luminophores and Monodentate C-Donor Co-Ligands for Phosphorescent Pt(II) Complexes: A Case Study Involving Their Photophysics and Cytotoxicity. Inorg. Chem. 2022, 61, 9195–9204. [Google Scholar] [CrossRef] [PubMed]
- Gangadharappa, S.C.; Maisuls, I.; Schwab, D.A.; Kösters, J.; Doltsinis, N.L.; Strassert, C.A. Compensation of Hybridization Defects in Phosphorescent Complexes with Pnictogen-Based Ligands—A Structural, Photophysical, and Theoretical Case-Study with Predictive Character. J. Am. Chem. Soc. 2020, 142, 21353–21367. [Google Scholar] [CrossRef] [PubMed]
- Sanning, J.; Ewen, P.R.; Stegemann, L.; Schmidt, J.; Daniliuc, C.G.; Koch, T.; Doltsinis, N.L.; Wegner, D.; Strassert, C.A. Scanning-Tunneling-Spectroscopy-Directed Design of Tailored Deep-Blue Emitters. Angew. Chem. Int. Ed. 2015, 54, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Kourkoulos, D.; González-Abradelo, D.; Meerholz, K.; Strassert, C.A.; Klein, A. Luminescent PtII Complexes of Tridentate Cyclometalating 2,5-Bis(Aryl)-Pyridine Ligands. Eur. J. Inorg. Chem. 2017, 5215–5223. [Google Scholar] [CrossRef]
- Sillen, A.; Engelborghs, Y. The Correct Use of “Average” Fluorescence Parameters. Photochem. Photobiol. 1998, 67, 475–486. [Google Scholar] [CrossRef]
- Lin, C.J.; Liu, Y.H.; Peng, S.M.; Shinmyozu, T.; Yang, J.S. Excimer-Monomer Photoluminescence Mechanochromism and Vapochromism of Pentiptycene-Containing Cyclometalated Platinum(II) Complexes. Inorg. Chem. 2017, 56, 4978–4989. [Google Scholar] [CrossRef]
- Suarez, S.A.; Muller, F.; Gutierrez Suburu, M.E.; Fonrouge, A.; Baggio, R.F.; Cukiernik, F.D. Br⋯Br and van Der Waals Interactions along a Homologous Series: Crystal Packing of 1,2-Dibromo-4,5-Dialkoxybenzenes. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 693–701. [Google Scholar] [CrossRef]
- Fonrouge, A.; Cecchi, F.; Alborés, P.; Baggio, R.; Cukiernik, F.D. Relative Influence of Noncovalent Interactions on the Melting Points of a Homologous Series of 1,2-Dibromo-4,5-Dialkoxybenzenes. Acta Crystallogr. Sect. C Struct. Chem. 2013, 69, 204–208. [Google Scholar] [CrossRef] [PubMed]
Complex | Huang–Rhys Factor S | |
---|---|---|
Fluid Solution at r.t. | Glassy Matrix at 77 K | |
PtLa-6 | 0.61 | 0.57 |
PtLa-12 | 0.66 | 0.46 |
PtLb-6 | 0.83 | 0.61 |
PtLb-12 | 0.80 | 0.54 |
Phase Transitions | ||
---|---|---|
n | 6 | 12 |
PtLa-n | Cr 245 Idecomp | Cr 197 (22.3) I |
PtLb-n | Cr 127 (30.8) I | Cr 132 (45.4) I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez Suburu, M.E.; Blanke, M.; Hepp, A.; Maus, O.; Schwab, D.; Doltsinis, N.L.; Zeier, W.G.; Giese, M.; Voskuhl, J.; Strassert, C.A. Pt(II) Complexes with Tetradentate C^N*N^C Luminophores: From Supramolecular Interactions to Temperature-Sensing Materials with Memory and Optical Readouts. Molecules 2023, 28, 7353. https://doi.org/10.3390/molecules28217353
Gutierrez Suburu ME, Blanke M, Hepp A, Maus O, Schwab D, Doltsinis NL, Zeier WG, Giese M, Voskuhl J, Strassert CA. Pt(II) Complexes with Tetradentate C^N*N^C Luminophores: From Supramolecular Interactions to Temperature-Sensing Materials with Memory and Optical Readouts. Molecules. 2023; 28(21):7353. https://doi.org/10.3390/molecules28217353
Chicago/Turabian StyleGutierrez Suburu, Matias E., Meik Blanke, Alexander Hepp, Oliver Maus, Dominik Schwab, Nikos L. Doltsinis, Wolfgang G. Zeier, Michael Giese, Jens Voskuhl, and Cristian A. Strassert. 2023. "Pt(II) Complexes with Tetradentate C^N*N^C Luminophores: From Supramolecular Interactions to Temperature-Sensing Materials with Memory and Optical Readouts" Molecules 28, no. 21: 7353. https://doi.org/10.3390/molecules28217353
APA StyleGutierrez Suburu, M. E., Blanke, M., Hepp, A., Maus, O., Schwab, D., Doltsinis, N. L., Zeier, W. G., Giese, M., Voskuhl, J., & Strassert, C. A. (2023). Pt(II) Complexes with Tetradentate C^N*N^C Luminophores: From Supramolecular Interactions to Temperature-Sensing Materials with Memory and Optical Readouts. Molecules, 28(21), 7353. https://doi.org/10.3390/molecules28217353