A Direct Method for Synthesis of Quinoxalines and Quinazolinones Using Epoxides as Alkyl Precursor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization
2.2. Scope of Substrates
2.3. Large Scale Reaction and Synthetic Applications
2.4. Mechanism Investigation
3. Materials and Methods
3.1. General Information
3.2. General Experimental Procedures for 2-(1H-Pyrrol-1-yl) Anilines (1)
3.3. General Experimental Procedures for 2-(1H-Indolo-1-yl)anilines (1)
3.4. General Experimental Procedures for Compounds 3a–3t and 5a–5m
3.5. Characterization Data
- 4-benzylpyrrolo[1,2-a]quinoxaline (3a), purification on a silica gel (petroleum ether/ethyl acetate = 15:1) afforded compound 3a as a light yellow solid (98.2 mg, 76% yield); 1H NMR (400 MHz, CDCl3): δ 7.86–7.84 (m, 1 H), 7.65 (dd, J = 2.9, 1.4 Hz, 1 H), 7.60–7.57 (m, 1 H), 7.31–7.24 (m, 4 H), 7.14 (t, J = 8.0 Hz, 2 H), 7.10–7.03 (m, 1 H), 6.69 (dd, J = 4.0, 1.2 Hz, 1 H), 6.62–6.62 (m, 1 H), 4,23 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ 154.1, 136.9, 134.7, 128.5, 127.8, 127.8, 127.4, 126.1, 125.5, 124.7, 124.0, 113.2, 112.6, 112.5, 106.1, 41.5. HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H15N2+: 259.1229; found: 259.1233.
- 4-benzyl-8-methylpyrrolo[1,2-a]quinoxaline (3b), purification on a silica gel (petroleum ether/ethyl acetate = 15:1) afforded compound 3b as a yellow solid (84.4 mg, 62% yield); 1H NMR (400 MHz, CDCl3): δ 7.77 (d, J = 8.2 Hz, 1 H), 7.72 (dd, J = 2.7, 1.3 Hz, 1 H), 7.50 (s, 1 H), 7.32 (d, J = 7.4 Hz, 2 H), 7.20–7.10 (m, 4 H), 6.71 (dd, J = 4.0, 1.3 Hz, 1 H), 6.67 (dd, J = 4.0, 2.7 Hz, 1 H), 4.26 (s, 2 H), 2.43 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ 153.2, 137.1, 136.6, 132.8, 128.3, 127.8, 127.4, 126.0, 125.5, 125.3, 124.9, 112.8, 112.6, 112.5, 105.7, 41.5, 20.7. HRMS (ESI-TOF): m/z [M + H]+ calcd for C19H17N2+: 273.1385; found: 273.1381.
- 4-benzyl-8-methoxypyrrolo[1,2-a]quinoxaline (3c), purification on a silica gel (petroleum ether/ethyl acetate = 8:1) afforded compound 3c as a yellow solid (85.1 mg, 59% yield); 1H NMR (400 MHz, CDCl3): δ 7.77 (d, J = 8.9 Hz, 1 H), 7.57 (dd, J = 2.8, 1.3 Hz, 1 H), 7.29 (d, J = 6.8 Hz, 2 H), 7.14 (t, J = 7.4 Hz, 2 H), 7.08–7.03 (m, 2 H), 6.88 (dd, J = 8.9, 2.7 Hz, 1 H), 6.66–6.61(m, 2 H), 4.21 (s, 2 H), 3.75 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ 157.7, 151.5, 137.2, 129.8, 129.2, 127.8, 127.4, 126.9, 125.4, 124.7, 112.7, 112.6, 111.5, 105.5, 96.4, 54.6, 41.4. HRMS (ESI-TOF): m/z [M + H]+ calcd for C19H17ON2+: 289.1335; found: 289.1339.
- 4-benzyl-8-fluoropyrrolo[1,2-a]quinoxaline (3d), purification on a silica gel (petroleum ether/ethyl acetate = 15:1) afforded compound 3d as a yellow solid (102.3 mg, 74% yield); 1H NMR (400 MHz, CDCl3): δ 7.63 (dd, J = 2.8, 1.3 Hz, 1 H), 7.56–7.50 (m, 2 H), 7.31 (d, J = 7.2 Hz, 2 H), 7.16 (t, J = 7.5 Hz, 2 H), 7.11–7.00 (m, 2 H), 6.74 (d, J = 4.0 Hz, 1 H), 6.64 (dd, J = 4.1, 2.7 Hz, 1 H), 4.22 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ 158.7 (d, JC-F = 243.4 Hz), 155.4, 136.7, 136.0 (d, JC-F = 11.4 Hz), 127.65 (d, JC-F = 34.6 Hz), 125.6, 124.5, 122.86 (d, JC-F = 2.3 Hz), 113.9 (d, JC-F = 22.2 Hz), 113.7 (d, JC-F = 21.1 Hz), 113.6, 113.5, 113.4, 112.7, 106.4, 41.4. 19F NMR (377 MHz, CDCl3): δ −116.7 (s). HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H14FN2+: 277.1135; found: 277.1132.
- 4-benzyl-7-methylpyrrolo[1,2-a]quinoxaline (3e), purification on a silica gel (petroleum ether/ethyl acetate = 15:1) afforded compound 3e as a yellow solid (84.4 mg, 62% yield); 1H NMR (400 MHz, CDCl3): δ 7.67 (d, J = 1.5 Hz, 2 H), 7.52 (d, J = 8.3 Hz, 1 H), 7.31 (d, J = 7.2 Hz, 2 H), 7.18–7.12 (m, 3 H), 7.08 (t, J = 7.3 Hz, 1 H), 6.70 (dd, J = 4.0, 1.3 Hz, 1 H), 6.63 (dd, J = 4.0, 2.7 Hz, 1 H), 4.24 (s, 2 H), 2.36 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ 154.1, 137.0, 134.8, 133.8, 128.5, 127.8, 127.4, 127.2, 125.5, 124.7, 124.1, 112.9, 112.3, 112.2, 105.7, 41.5, 20.0. HRMS (ESI-TOF): m/z [M + H]+ calcd for C19H17N2+: 273.1385; found: 273.1384.
- 4-benzyl-7-(tert-butyl)pyrrolo[1,2-a]quinoxaline (3f), purification on a silica gel (petroleum ether/ethyl acetate = 20:1) afforded compound 3f as a yellow solid (114.8 mg, 73% yield); 1H NMR (400 MHz, CDCl3): δ 7.90 (s, 1 H), 7.68 (dd, J = 2.8, 1.3 Hz, 1 H), 7.59 (d, J = 8.6 Hz, 1 H), 7.40 (dd, J = 8.6, 2.3 Hz, 1 H), 7.30 (d, J = 6.8 Hz, 2 H), 7.14 (t, J = 7.5 Hz, 2 H), 7.08–7.04 (m, 1 H), 6.69 (d, J = 4.0 Hz, 1 H), 6.63 (dd, J = 4.0, 2.7 Hz, 1 H), 4.25 (s, 2 H), 1.30 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ 154.0, 147.3, 137.0, 134.5, 127.7, 127.4, 125.5, 125.0, 124.7, 124.0, 123.8, 112.9, 112.4, 112.1, 105.8, 41.6, 33.7, 30.4. HRMS (ESI-TOF): m/z [M + H]+ calcd for C22H23N2+: 315.1855; found: 315.1859.
- 4-benzyl-7-fluoropyrrolo[1,2-a]quinoxaline (3g), purification on a silica gel (petroleum ether/ethyl acetate = 20:1) afforded compound 3g as a yellow solid (98.1 mg, 71% yield); 1H NMR (400 MHz, CDCl3): δ 7.67 (dd, J = 2.8, 1.3 Hz, 1 H), 7.59 (dd, J = 9.0, 5.0 Hz, 1 H), 7.53 (dd, J = 9.5, 2.9 Hz, 1 H), 7.32 (d, J = 7.1 Hz, 2 H), 7.18 (t, J = 7.4 Hz, 2 H), 7.12–7.04 (m, 2 H), 6.76 (dd, J = 4.0, 1.3 Hz, 1 H), 6.66 (dd, J = 4.1, 2.7 Hz, 1 H), 4.23 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ 158.7 (d, JC-F= 243.5 Hz), 155.4, 136.7, 136.1 (d, JC-F = 11.6 Hz), 127.8, 127.5, 125.6, 124.5, 122.9 (d, JC-F= 2.2 Hz), 114.0 (d, JC-F = 22.0 Hz), 113.8 (d, JC-F = 24.0 Hz), 113.6 (d, JC-F= 9.0 Hz), 113.4, 112.7, 106.4, 41.4. 19F NMR (377 MHz, CDCl3): δ −116.8 (s). HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H14FN2+: 277.1135; found: 277.1332.
- 4-benzyl-7-chloropyrrolo[1,2-a]quinoxaline (3h), purification on a silica gel (petroleum ether/ethyl acetate = 20:1) afforded compound 3h as a yellow solid (92.2 mg, 63% yield); 1H NMR (400 MHz, CDCl3): δ 7.88 (d, J = 2.4 Hz, 1 H), 7.74 (d, J = 1.7 Hz, 1 H), 7.63 (d, J = 8.7 Hz, 1 H), 7.33 (d, J = 8.6 Hz, 3 H), 7.22–7.18 (m, 2 H), 7.14–7.11 (m, 1 H), 6.81 (d, J = 4.5 Hz, 1 H), 6.73–6.72 (m, 1 H), 4.27 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ 155.4, 136.6, 135.7, 129.1, 128.0, 127.8, 127.5, 126.0, 125.6, 124.8, 124.6, 113.6, 113.5, 112.9, 106.5, 41.4. HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H14ClN2+: 293.0839; found: 293.0837.
- 4-benzyl-7-bromopyrrolo[1,2-a]quinoxaline (3i), purification on a silica gel (petroleum ether/ethyl acetate = 20:1) afforded compound 3i as a yellow solid (69.1 mg, 41% yield); 1H NMR (400 MHz, CDCl3): δ 7.98 (d, J = 2.3 Hz, 1 H), 7.63 (d, J = 1.5 Hz, 1 H), 7.44 (d, J = 8.8 Hz, 1 H), 7.37 (dd, J = 8.8, 2.3 Hz, 1 H), 7.31 (d, J = 7.6 Hz, 2 H), 7.18 (t, J = 7.5 Hz, 2 H), 7.10 (t, J = 7.3 Hz, 1 H), 6.75 (d, J = 4.1 Hz, 1 H), 6.67–6.65 (m, 1 H), 4.23 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ 155.3, 136.6, 136.0, 131.1, 128.8, 127.8, 127.5, 125.7, 125.2, 124.6, 116.5, 113.9, 113.5, 113.0, 106.6, 41.4. HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H14BrN2+: 337.0334; found: 337.0333.
- 4-benzyl-7-iodopyrrolo[1,2-a]quinoxaline (3j), purification on a silica gel (petroleum ether/ethyl acetate = 20:1) afforded compound 3i as a yellow solid (76.8 mg, 40% yield); 1H NMR (400 MHz, CDCl3): δ 8.22 (d, J = 2.0 Hz, 1 H), 7.69 (dd, J = 2.8, 1.4 Hz, 1 H), 7.59 (dd, J = 8.6, 2.0 Hz, 1 H), 7.38 (d, J = 8.6 Hz, 1 H), 7.32 (d, J = 7.5 Hz, 2 H), 7.22–7.15 (m, 2 H), 7.11 (t, J = 7.3 Hz, 1 H), 6.78 (dd, J = 4.0, 1.4 Hz, 1 H), 6.70 (dd, J = 4.1, 2.7 Hz, 1 H), 4.24 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ 155.2, 137.3, 136.6, 136.2, 134.5, 127.8, 127.5, 125.9, 125.7, 124.6, 114.2, 113.5, 113.0, 106.7, 87.1, 41.4. HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H14IN2+: 385.0195; found: 385.0196.
- 4-benzyl-9-methylpyrrolo[1,2-a]quinoxaline (3k), purification on a silica gel (petroleum ether/ethyl acetate = 15:1) afforded compound 3k as a yellow solid (87.1 mg, 64% yield); 1H NMR (400 MHz, CDCl3): δ 8.03 (dd, J = 2.9, 1.4 Hz, 1 H), 7.72 (dd, J = 7.9, 1.8 Hz, 1 H), 7.28 (d, J = 6.8 Hz, 2 H), 7.16–7.10 (m, 3 H), 7.07–7.02 (m, 2 H), 6.72 (dd, J = 4.1, 1.3 Hz, 1 H), 6.59 (dd, J = 4.2, 2.8 Hz, 1 H), 4.21 (s, 2 H), 2.68 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ 153.7, 137.0, 136.4, 129.6, 127.7, 127.4, 127.1, 126.5, 126.0, 125.4, 124.2, 123.4, 118.8, 111.8, 105.4, 41.3, 22.7. HRMS (ESI-TOF): m/z [M + H]+ calcd for C19H17N2+: 273.1385; found: 273.1390.
- 4-Benzyl-9-chloropyrrolo[1,2-a]quinoxaline (3l). Purification on a silica gel (petroleum ether/ethyl acetate = 15:1) afforded compound 3l as a yellow solid (95.2 mg, 65% yield); 1H NMR (400 MHz, CDCl3): δ 8.90 (dd, J = 2.9, 1.3 Hz, 1 H), 7.72 (dd, J = 8.0, 1.5 Hz, 1 H), 7.27 (dd, J = 8.0, 1.5 Hz, 3 H), 7.15–7.09 (m, 3 H), 7.07–7.03 (m, 1 H), 6.76 (dd, J = 4.2, 1.3 Hz, 1 H), 6.60 (dd, J = 4.2, 2.9 Hz, 1 H), 4.18(s, 2 H). 13C NMR (100 MHz, CDCl3): δ 154.6, 137.7, 136.7, 128.5, 127.8, 127.7, 127.4, 125.8, 125.6, 124.4, 123.5, 119.8, 119.8, 112.0, 106.4, 41.2. HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H14ClN2+: 293.0839; found: 293.0844.
- 4-benzyl-7,8-dimethylpyrrolo[1,2-a]quinoxaline (3m), purification on a silica gel (petroleum ether/ethyl acetate = 10:1) afforded compound 3m as a yellow solid (91.6 mg, 64% yield); 1H NMR (400 MHz, CDCl3): δ 7.64 (s, 1 H), 7.62 (s, 1 H), 7.41 (d, J = 5.3 Hz, 1 H), 7.30 (d, J = 8.1 Hz, 2 H), 7.15 (t, J = 7.4 Hz, 2 H), 7.07 (t, J = 7.3 Hz, 1 H), 6.67 (dd, J = 4.0, 1.4 Hz, 1 H), 6.62–6.60 (m, 1 H), 4.23 (s, 2 H), 2.29 (s, 3 H), 2.25 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ 153.1, 137.2, 135.5, 133.0, 132.8, 128.8, 127.8, 127.4, 125.4, 124.8, 124.2, 113.0, 112.6, 112.2, 105.4, 41.5, 19.1, 18.5. HRMS (ESI-TOF): m/z [M + H]+ calcd for C20H19N2+: 287.1542; found: 287.1540.
- 4-benzyl-7,8-difluoropyrrolo[1,2-a]quinoxaline (3n), purification on a silica gel (petroleum ether/ethyl acetate = 15:1) afforded compound 3n as a yellow solid (108.8 mg, 76% yield); 1H NMR (400 MHz, CDCl3): δ 7.68 (dd, J = 11.0, 8.1 Hz, 1 H), 7.62 (dd, J = 2.7, 1.3 Hz, 1 H), 7.48 (dd, J = 10.5, 7.3 Hz, 1 H), 7.32 (d, J = 6.9 Hz, 2 H), 7.22–7.17 (m, 2 H), 7.14–7.11 (m, 1 H), 6.80 (dd, J = 4.1, 1.3 Hz, 1 H), 6.73 (dd, J = 4.0, 2.8 Hz, 1 H), 4.25 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ 154.8 (d, JC-F = 2.9 Hz), 148.3 (dd, JC-F = 248.7, 14.4 Hz), 146.9 (dd, JC-F = 245.2, 13.7 Hz), 136.6, 129.9, 127.8, 127.5, 125.7, 124.4, 122.6 (d, JC-F = 8.7 Hz), 116.2 (d, JC-F = 19.6 Hz), 113.5, 113.2, 106.6, 101.1 (d, JC-F = 22.2 Hz), 41.3. 19F NMR (377 MHz, CDCl3): δ -135.1 (s), -140.2 (s). HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H13F2N2+: 295.1041; found: 295.1039.
- 4-benzyl-7,8-dichloropyrrolo[1,2-a]quinoxaline (3o), purification on a silica gel (petroleum ether/ethyl acetate = 25:1) afforded compound 3o as a yellow solid (106.3 mg, 65% yield); 1H NMR (400 MHz, CDCl3): δ 7.94 (s, 1 H), 7.75 (s, 1 H), 7.64 (dd, J = 2.8, 1.3 Hz, 1 H), 7.31 (d, J = 6.9 Hz, 2 H), 7.22–7.11 (m, 3 H), 6.80 (dd, J = 4.0, 1.3 Hz, 1 H), 6.71 (dd, J = 4.0, 2.8 Hz, 1 H), 4.23 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ 155.6, 136.4, 134.3, 129.6, 129.6, 127.8, 127.6, 127.5, 125.7, 125.4, 124.5, 114.1, 113.8, 113.4, 107.1, 41.4. HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H13Cl2N2+: 327.0450; found: 327.0455.
- 6-benzylindolo[1,2-a]quinoxaline (3p), purification on a silica gel (petroleum ether/ethyl acetate = 25:1) afforded compound 3p as a yellow solid (74.1 mg, 48% yield); 1H NMR (400 MHz, CDCl3): δ 8.21 (dd, J = 15.8, 8.6 Hz, 2 H), 7.89 (dd, J = 7.9, 1.8 Hz, 1 H), 7.71 (d, J = 8.0 Hz, 1 H), 7.42–7.23 (m, 6 H), 7.17 (t, J = 7.8 Hz, 2 H), 7.09 (t, J = 8.1 Hz, 1 H), 6.95 (s, 1 H), 4.30 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ 155.6, 136.6, 134.7, 131.7, 129.2, 128.9, 128.1, 127.9, 127.7, 127.5, 127.0, 125.6, 123.1, 122.9, 121.6, 121.4, 113.5, 113.4, 99.5, 41.6. HRMS (ESI-TOF): m/z [M + H]+ calcd for C22H17N2+: 309.1385; found: 309.1382.
- 6-qenzyl-3-methylindolo[1,2-a]quinoxaline (3q), purification on a silica gel (petroleum ether/ethyl acetate = 20:1) afforded compound 3q as a yellow solid (61.3 mg, 38% yield); 1H NMR (400 MHz, CDCl3): δ 8.31 (d, J = 8.6 Hz, 1 H), 8.14 (s, 1 H), 7.79 (dd, J = 16.9, 8.0 Hz, 2 H), 7.42–7.27 (m, 3 H), 7.29 (t, J = 7.4 Hz, 1 H), 7.23–7.06 (m, 4 H), 6.98 (s, 1 H), 4.33(s, 2 H), 2.51(s, 3 H). 13C NMR (100 MHz, CDCl3): δ 154.6, 137.5, 136.7, 132.7, 131.7, 129.1, 128.7, 128.3, 128.0, 127.7, 127.5, 125.6, 124.0, 122.9, 121.6, 121.5, 113.9, 113.6, 99.4, 41.6, 21.1. HRMS (ESI-TOF): m/z [M + H]+ calcd for C23H19N2+: 323.1542; found: 323.1546.
- 6-Benzyl-7-methylindolo[1,2-a]quinoxaline (3r). Purification on a silica gel (petroleum ether/ethyl acetate = 15:1) afforded compound 3r as a yellow solid (56.4 mg, 35% yield); 1H NMR (400 MHz, CDCl3): δ 8.44 (t, J = 7.9 Hz, 2 H), 7.99 (s, 1 H), 7.88 (d, J = 8.1 Hz, 1 H), 7.56 (q, J = 7.1 Hz, 2 H), 7.41 (dt, J = 14.1, 7.1 Hz, 2 H), 7.27–7.25 (m, 4 H), 7.20 (q, J = 4.3 Hz, 1 H), 4.64 (s, 2 H), 2.63 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ 156.8, 137.9, 132.1, 130.6, 130.0, 129.5, 128.9, 128.6, 128.5, 128.4, 128.2, 126.5, 124.8, 124.0, 123.8, 122.0, 120.7, 114.5, 114.4, 29.7, 11.0. HRMS (ESI-TOF): m/z [M + H]+ calcd for C23H19N2+: 323.1542; found: 323.1543.
- 4-propylpyrrolo[1,2-a]quinoxaline (3s), purification on a silica gel (petroleum ether/ethyl acetate = 10:1) afforded compound 3s as a yellow solid (42.1 mg, 40% yield); 1H NMR (500 MHz, CDCl3): δ 7.84 (dd, J = 7.9, 1.5 Hz, 1 H), 7.81–7.79 (m, 1 H), 7.73 (d, J = 8.0 Hz, 1 H), 7.35 (dtd, J = 21.0, 7.4, 1.4 Hz, 2 H), 6.82 (dd, J = 3.9, 1.2 Hz, 1 H), 6.75 (dd, J = 3.8, 2.8 Hz, 1 H), 2.91 (dd, J = 8.5, 7.1 Hz, 2 H), 1.86 (dq, J = 15.0, 7.4 Hz, 2 H), 1.00 (t, J = 7.4 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ 156.4, 135.0, 128.4, 126.2, 125.8, 125.1, 124.0, 113.0, 112.6, 112.4, 105.2, 36.8, 20.9, 13.3. HRMS (ESI-TOF): m/z [M + H]+ calcd for C14H15N2+: 211.1229; found: 211.1233.
- (E)-4-(prop-1-en-1-yl)pyrrolo[1,2-a]quinoxaline (3t), purification on a silica gel (petroleum ether/ethyl acetate = 10:1) afforded compound 3t as a yellow solid (52.1 mg, 40% yield); 1H NMR (500 MHz, CDCl3): δ 7.90–7.82 (m, 2 H), 7.77–7.72 (dd, J = 8.0, 1.0 Hz, 1 H), 7.42–7.29 (m, 2 H), 7.18–7.09 (qd, J = 13.5, 7.0 Hz, 1 H), 6.93–6.90 (dd, J = 4.0, 1.0 Hz, 1 H), 6.80 (dd, J = 4.0, 1.5 Hz, 1 H), 6.78 (dd, J = 7.0, 2.5 Hz, 1 H), 1.98 (dd, J = 6.8, 1.7 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ 149.2, 135.1, 134.4, 128.6, 126.2, 125.9, 125.7, 124.6, 124.2, 113.3, 112.6, 112.5, 105.0, 17.8. HRMS (ESI-TOF): m/z [M + H]+ calcd for C14H14N2+: 209.1072; found: 209.1071.
- 2-benzylquinazolin-4(3H)-one (5a), purification on a silica gel (petroleum ether/ethyl acetate = 2:1) afforded compound 5a as a white solid (82.7 mg, 70% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.43 (s, 1 H), 8.09 (dd, J = 7.9, 1.6 Hz, 1 H), 7.78 (ddd, J = 8.4, 7.0, 1.6 Hz, 1 H), 7.62 (d, J = 8.5 Hz, 1 H), 7.50–7.44 (m, 1 H), 7.39 (d, J = 7.9 Hz, 2 H), 7.33 (t, J = 7.6 Hz, 2 H), 7.28–7.22 (m, 1 H), 3.95 (s, 2 H). 13C NMR (100 MHz, DMSO-d6): δ 167.1, 161.2, 154.1, 141.8, 139.6, 134.1, 133.7, 132.2, 132.0, 131.4, 130.9, 126.0, 46.0. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H13ON2+: 237.1002; found: 237.1005.
- 2-benzyl-6-methylquinazolin-4(3H)-one (5b), purification on a silica gel (petroleum ether/ethyl acetate = 5:1) afforded compound 5b as a white solid (92.6 mg, 74% yield). 1H NMR (400 MHz, DMSO-d6): δ 12.32 (s, 1 H), 7.87 (s, 1 H), 7.59 (dd, J = 8.3, 2.2 Hz, 1 H), 7.51 (d, J = 8.2 Hz, 1 H), 7.38 (d, J = 6.8 Hz, 2 H), 7.32 (t, J = 7.5 Hz, 2 H), 7.24 (t, J = 7.2 Hz, 1 H), 3.92 (s, 2 H), 2.42 (s, 3H). 13C NMR (100 MHz, DMSO-d6): δ 162.3, 155.5, 147.4, 137.1, 136.3, 136.1, 129.3, 129.0, 127.3, 127.2, 125.5, 121.0, 41.2, 21.2. HRMS (ESI-TOF): m/z [M + H]+ calcd for C16H15ON2+: 251.1178; found: 251.1177.
- 2-benzyl-6-methoxyquinazolin-4(3H)-one (5c), purification on a silica gel (petroleum ether/ethyl acetate = 1:1) afforded compound 5c as a white solid (77.3 mg, 58% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.38 (s, 1 H), 7.57 (d, J = 8.8 Hz, 1 H), 7.48 (d, J = 2.9 Hz, 1 H), 7.41–7.36 (m, 3 H), 7.32 (d, J = 15.0 Hz, 2 H), 7.24 (t, J = 7.2 Hz, 1 H), 3.92 (s, 2 H), 3.85 (s, 3 H). 13C NMR (100 MHz, DMSO-d6): δ 162.2, 157.8, 154.1, 143.9, 137.2, 129.3, 129.1, 129.0, 127.2, 124.3, 122.0, 106.2, 56.0, 41.1. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H15ON2+: 267.1127; found: 267.1123.
- 2-benzyl-6-fluoroquinazolin-4(3H)-one (5d), purification on a silica gel (petroleum ether/ethyl acetate = 5:1) afforded compound 5d as a white solid (90.3 mg, 71% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.60 (s, 1 H), 7.76 (dd, J = 8.6, 2.7 Hz, 1 H), 7.71–7.65 (m, 2 H), 7.39 (d, J = 6.9 Hz, 2 H), 7.33 (t, J = 7.6 Hz, 2 H), 7.25 (t, J = 7.3 Hz, 1 H), 3.95 (s, 2 H). 13C NMR (100 MHz, DMSO-d6): δ 161.8 (d, JC-F = 3.3 Hz), 160.2 (d, JC-F = 244.9 Hz), 156.0 (d, JC-F = 2.2 Hz), 146.2 (d, JC-F = 1.8 Hz), 136.9, 130.2 (d, JC-F = 8.0 Hz), 129.4, 129.0, 127.3, 123.3 (d, JC-F = 24.0 Hz), 122.4 (d, JC-F = 8.4 Hz), 110.8 (d, JC-F = 23.3 Hz), 41.1. 19F NMR (377 MHz, DMSO-d6): δ −114.1 (s). HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H12OFN2+: 255.0927; found: 255.0928.
- 2-benzyl-6-chloroquinazolin-4(3H)-one (5e), purification on a silica gel (petroleum ether/ethyl acetate = 5:1) afforded compound 5e as a white solid (101.55 mg, 75% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.61 (s, 1 H), 8.01 (d, J = 2.5 Hz, 1 H), 7.80 (dd, J = 8.8, 2.6 Hz, 1 H), 7.64 (d, J = 8.7 Hz, 1 H), 7.38 (d, J = 6.8 Hz, 2 H), 7.33 (t, J = 7.5 Hz, 2 H), 7.25 (t, J = 7.2 Hz, 1 H), 3.95 (s, 2 H). 13C NMR (100 MHz, DMSO-d6): δ 161.4, 157.1, 148.1, 136.8, 135.0, 130.9, 129.7, 129.4, 129.0, 127.3, 125.2, 122.5, 41.2. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H12OClN2+:271.0632; found: 271.0635.
- 2-benzyl-6-bromoquinazolin-4(3H)-one (5f), purification on a silica gel (petroleum ether/ethyl acetate = 5:1) afforded compound 5f as a white solid (93.0 mg, 59% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.65 (s, 1 H), 8.15 (d, J = 2.4 Hz, 1 H), 7.92 (dd, J = 8.7, 2.4 Hz, 1 H), 7.57 (d, J = 8.8 Hz, 1 H), 7.38 (d, J = 6.9 Hz, 2 H), 7.33 (t, J = 7.5 Hz, 2 H), 7.25 (t, J = 7.2 Hz, 1 H), 3.94 (s, 2 H). 13C NMR (100 MHz, DMSO-d6): δ 161.2, 157.2, 148.4, 137.7, 136.8, 129.8, 129.4, 129.0, 128.3, 127.3, 122.9, 119.0, 41.2. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H12OBrN2+: 315.0127; found: 315.0124.
- 2-benzyl-7-methylquinazolin-4(3H)-one (5g), purification on a silica gel (petroleum ether/ethyl acetate = 2:1) afforded compound 5g as a white solid (75.2 mg, 60% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.31 (s, 1 H), 7.97 (d, J = 8.1 Hz, 1 H), 7.47–7.37 (m, 3 H), 7.35–7.20 (m, 4 H), 3.93 (s, 2 H), 2.43 (s, 3 H). 13C NMR (100 MHz, DMSO-d6): δ 162.2, 156.5, 149.5, 145.3, 137.1, 129.3, 128.9, 128.0, 127.2, 127.1, 126.0, 118.8, 41.2, 21.8. HRMS (ESI-TOF): m/z [M + H]+ calcd for C16H15ON2+: 251.1178; found: 251.1175.
- 2-benzyl-7-fluoroquinazolin-4(3H)-one (5h), purification on a silica gel (petroleum ether/ethyl acetate = 2:1) afforded compound 5h as a white solid (85.2 mg, 67% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.54 (s, 1 H), 8.15 (dd, J = 8.9, 6.4 Hz, 1 H), 7.42–7.37 (m, 3 H), 7.36–7.30 (m, 3 H), 7.25 (t, J = 7.3 Hz, 1 H), 3.95 (s, 2 H). 13C NMR (100 MHz, DMSO-d6): δ = 166.2 (d, J C-F = 250.7 Hz), 161.6, 158.0, 151.6 (d, J C-F = 13.2 Hz), 136.8, 129.4, 129.2, 129.0, 127.3, 118.3 (d, JC-F = 1.8 Hz), 115.2 (d, JC-F = 23.6 Hz), 112.5 (d, JC-F = 21.8 Hz), 41.2. 19F NMR (377 MHz, DMSO-d6): δ −104.5 (s). HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H12OFN2+: 255.0927; found: 255.0930.
- 2-benzyl-7-chloroquinazolin-4(3H)-one (5i), purification on a silica gel (petroleum ether/ethyl acetate = 2:1) afforded compound 5i as a white solid (88.1 mg, 65% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.58 (s, 1 H), 8.07 (d, J = 8.4 Hz, 1 H), 7.66 (d, J = 2.1 Hz, 1 H), 7.50 (dd, J = 8.6, 2.1 Hz, 1 H), 7.39 (d, J = 7.0 Hz, 2 H), 7.33 (t, J = 7.5 Hz, 2 H), 7.25 (t, J = 7.2 Hz, 1 H), 3.95 (s, 2 H). 13C NMR (100 MHz, DMSO-d6): δ 161.8, 158.1, 150.5, 139.5, 136.8, 129.4, 129.0, 128.3, 127.3, 127.0, 126.6, 120.1, 41.2. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H12OClN2+: 271.0632; found: 271.0630.
- 2-benzyl-7-bromoquinazolin-4(3H)-one (5j), purification on a silica gel (petroleum ether/ethyl acetate = 3:1) afforded compound 5j as a white solid (100.9 mg, 64% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.58 (s, 1 H), 7.99 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 2.1 Hz, 1 H), 7.62 (dd, J = 8.4, 2.0 Hz, 1 H), 7.39 (d, J = 6.8 Hz, 2 H), 7.33 (t, J = 7.5 Hz, 2 H), 7.25 (t, J = 7.2 Hz, 1 H), 3.95 (s, 2 H). 13C NMR (100 MHz, DMSO-d6): δ 161.9, 158.1, 150.6, 136.8, 129.7, 129.7, 129.4, 129.0, 128.5, 128.3, 127.3, 120.4, 41.2. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H12OBrN2+: 315.0127; found: 315.0131.
- 2-(4-chlorobenzyl)quinazolin-4(3H)-one (5k), purification on a silica gel (petroleum ether/ethyl acetate = 2:1) afforded compound 5k as a white solid (89.4 mg, 66% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.43 (s, 1 H), 8.09 (dd, J = 7.9, 1.6 Hz, 1 H), 7.78 (ddd, J = 8.6, 7.1, 1.6 Hz, 1 H), 7.60 (dd, J = 8.3, 1.1 Hz, 1 H), 7.50–7.45 (m, 1 H), 7.44–7.37 (m, 4 H), 3.95 (s, 2 H). 13C NMR (100 MHz, DMSO-d6): δ 162.3, 156.1, 149.3, 136.0, 134.9, 132.0, 131.3, 128.9, 127.4, 126.8, 126.2, 121.3, 40.4. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H12OClN2+: 271.0632; found: 271.0633.
- 2-(4-bromobenzyl)quinazolin-4(3H)-one (5l), purification on a silica gel (petroleum ether/ethyl acetate = 3:1) afforded compound 5l as a white solid (99.3 mg, 63% yield); 1H NMR (400 MHz, DMSO-d6): δ 12.43 (s, 1 H), 8.09 (d, J = 9.6 Hz, 1 H), 7.82–7.73 (m, 1 H), 7.60 (d, J = 7.4 Hz, 1 H), 7.53 (d, J = 8.4 Hz, 2 H), 7.48 (t, J = 7.5 Hz, 1 H), 7.35 (d, J = 8.5 Hz, 2 H), 3.93 (s, 2 H). 13C NMR (100 MHz, DMSO-d6): δ 162.3, 156.0, 149.3, 136.4, 134.9, 131.8, 131.7, 127.4, 126.8, 126.2, 121.3, 120.5, 40.5. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H12OBrN2+: 315.0127; found: 315.0125.
- (E)-2-(prop-1-en-1-yl)quinazolin-4(3H)-one (5m). Purification on a silica gel (petroleum ether/ethyl acetate = 1:1) afforded compound 5m as a white solid (44.7 mg, 48% yield); 1H NMR (500 MHz, DMSO-d6): δ 12.17 (s, 1 H), 8.14–8.01 (m, 1 H), 7.82–7.72 (m, 1 H), 7.60 (d, J = 8.1 Hz, 1 H), 7.44 (t, J = 7.5 Hz, 1 H), 7.21–7.04 (m, 1 H), 6.27 (dd, J = 15.7, 1.7 Hz, 1 H), 1.92 (dd, J = 6.9, 1.5 Hz, 3 H). 13C NMR (125 MHz, DMSO-d6): δ 162.3, 151.6, 149.5, 138.7, 134.9, 127.5, 126.4, 126.2, 125.1, 121.4, 18.7. HRMS (ESI-TOF): m/z [M + H]+ calcd for C11H11ON2+: 187.0865; found: 187.0867.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef]
- Li, R.; Li, B.; Zhang, H.; Ju, C.; Qin, Y.; Xue, X.; Zhao, D. A ring expansion strategy towards diverse azaheterocycles. Nat. Chem. 2021, 13, 1006–1016. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, Y.; Sun, Z.; Dai, Z.; Tang, Z.; Ma, J.; Ma, C. Direct Olefination of Fluorinated Quinoxalines via Cross-Dehydrogenative Coupling Reactions: A New Near-Infrared Probe for Mitochondria. Adv. Synth. Catal. 2017, 359, 2259–2268. [Google Scholar] [CrossRef]
- Jonet, A.; Guillon, J.; Mullié, C.; Cohen, A.; Sonnet, P. Synthesis and Antimalarial Activity of New Enantiopure Aminoalcohol pyrrolo [1,2-a]quinoxaline. Med. Chem. 2018, 14, 293–303. [Google Scholar] [CrossRef]
- Liu, K.; Li, D.; Zheng, W.; Shi, M.; Chen, Y.; Tang, M.; Yang, T.; Zhao, M.; Deng, D.; Zhang, C.; et al. Discovery, Optimization, and Evaluation of Quinazolinone Derivatives with Novel Linkers as Orally Efficacious Phosphoinositide-3-Kinase Delta Inhibitors for Treatment of Inflammatory Diseases. J. Med. Chem. 2021, 64, 8951–8970. [Google Scholar] [CrossRef]
- Safakish, M.; Hajimahdi, Z.; Aghasadeghi, M.R.; Vahabpour, R.; Zarghi, A. Design, Synthesis, Molecular Modeling and Anti-HIV Assay of Novel Quinazolinone Incorporated Coumarin Derivatives. Curr. HIV Res. 2020, 18, 41–51. [Google Scholar]
- Li, Z.; Zhao, L.; Bian, Y.; Li, Y.; Qu, J.; Song, F. The Antibacterial Activity of Quinazoline and Quinazolinone Hybrids. Curr. Top. Med. Chem. 2022, 22, 1035–1044. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Design, synthesis and antiviral activity of novel quinazolinones. Eur. J. Med. Chem. 2012, 53, 275–282. [Google Scholar] [CrossRef]
- Sakr, A.; Rezq, S.; Ibrahim, S.M.; Soliman, E.; Baraka, M.M.; Romero, D.G.; Kothayer, H. Design and synthesis of novel quinazolinones conjugated ibuprofen, indoleacetamide, or thioacetohydrazide as selective COX-2 inhibitors: Anti-inflammatory, analgesic and anticancer activities. J. Enzym. Inhib. Med. Chem. 2021, 36, 1810–1828. [Google Scholar] [CrossRef]
- He, L.; Li, H.; Chen, J.; Wu, X.F. Recent Advances in 4(3H)-quinazolinone Syntheses. RSC Adv. 2014, 4, 12065–12077. [Google Scholar] [CrossRef]
- El-Subbagh, H.I.; Sabry, M.A. 2-Substituted-mercapto-quinazolin-4(3H)-ones as DHFR Inhibitors. Mini-Rev. Med. Chem. 2021, 21, 2249–2260. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, B.; Wang, Y.; Wang, X.; Gou, S. Discovery of phthalazino [1,2-b]-quinazolinone derivatives as multitarget HDAC inhibitors for the treatment of hepatocellular carcinoma via activating the p53 signal pathway. Eur. J. Med. Chem. 2022, 229, 114058. [Google Scholar] [CrossRef]
- Chatterjee, A.; Majumdar, S.G. Alkaloids of Glycosmis pentaphylla (Retz.) DC. Part I. J. Am. Chem. Soc. 1954, 76, 2459–2463. [Google Scholar] [CrossRef]
- Cao, L.; Huo, H.; Zeng, H.; Yu, Y.; Lu, D.; Gong, Y. One-Pot Synthesis of Quinazolin-4(3H)-ones through Anodic Oxidation and the Related Mechanistic Studies. Adv. Synth. Catal. 2018, 360, 4764–4773. [Google Scholar] [CrossRef]
- Cheeseman, G.W.H.; Tuck, B. The Synthesis of pyrrolo[l,2-a]quinoxalines from N-(2-acylaminophenyl)-pyrroles. J. Chem. Soc. C 1966, 852–855. [Google Scholar] [CrossRef]
- Geng, M.; Huang, M.; Kuang, J.; Fang, W.; Miao, M.; Ma, Y. Application of N,N-Dimethylethanolamine as a One-Carbon Synthon for the Synthesis of Pyrrolo [1,2-a]quinoxalines, Quinazolin-4-ones, and Benzo [4,5]imidazoquinazolines via [5 + 1] Annulation. J. Org. Chem. 2022, 87, 14753–14762. [Google Scholar] [CrossRef]
- Jayaram, A.; Govindan, K.; Kannan, V.R.; Seenivasan, V.T.; Chen, N.Q.; Lin, W.Y. Iodine-Promoted Oxidative Cyclization of Acylated and Alkylated Derivatives from Epoxides toward the Synthesis of Aza Heterocycles. J. Org. Chem. 2023, 88, 1749–1761. [Google Scholar] [CrossRef]
- Ding, C.; Li, S.; Feng, K.; Ma, C. PEG-400 as a carbon synthon: Highly selective synthesis of quinolines and methylquinolines under metal-free conditions. Green Chem. 2021, 23, 5542–5548. [Google Scholar] [CrossRef]
- Li, S.; Ren, J.; Ding, C.; Wang, Y.; Ma, C. N,N-Dimethylformamide as Carbon Synthons for the Synthesis of N-Heterocycles: Pyrrolo/Indolo [1,2-a]quinoxalines and Quinazolin-4-ones. J. Org. Chem. 2021, 86, 16848–16857. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, Z.; Li, D.; Gong, J.; Han, X.; Liu, X.; Ma, C. Dimethyl Sulfoxide Involved One-Pot Synthesis of Quinoxaline Derivatives. J. Org. Chem. 2017, 82, 3491–3499. [Google Scholar] [CrossRef]
- Liu, H.; Mai, X.; Xian, J.; Liu, S.; Zhang, X.; Li, B.; Chen, X.; Li, Y.; Xie, F. Construction of Spirocyclic Pyrrolo [1,2-a]quinoxalines via Palladium-Catalyzed Hydrogenative Coupling of Phenols and Nitroarenes. J. Org. Chem. 2022, 87, 16449–16457. [Google Scholar] [CrossRef] [PubMed]
- Nan, J.; Ma, Q.; Yin, J.; Liang, C.; Tian, L.; Ma, Y. RhIII-Catalyzed formal [5 + 1] cyclization of 2-pyrrolyl/indolylanilines using vinylene carbonate as a C1 synthon. Org. Chem. Front. 2021, 8, 1764–1769. [Google Scholar] [CrossRef]
- Nan, J.; Chen, P.; Gong, X.; Hu, Y.; Ma, Q.; Wang, B.; Ma, Y. Metal-Free C-H [5 + 1] Carbonylation of 2-Alkenyl/Pyrrolylanilines Using Dioxazolones as Carbonylating Reagents. Org. Lett. 2021, 23, 3761–3766. [Google Scholar] [CrossRef]
- He, Z.; Bae, M.; Wu, J.; Jamison, T. Synthesis of Highly Functionalized Polycyclic Quinoxaline Derivatives Using Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2014, 53, 14451–14455. [Google Scholar] [CrossRef]
- Liu, S.; Liang, J.; Zhang, P.; Li, Z.; Jiao, L.Y.; Jia, W.; Ma, Y.; Szostak, M. Ruthenium-catalyzed divergent deaminative and denitrative C–N cleavages: Facile access to quinoxalines. Org. Chem. Front. 2023, 10, 22–29. [Google Scholar] [CrossRef]
- Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. A Simple and Efficient Approach to Quinazolinones under Mild Copper-Catalyzed Conditions. Angew. Chem. Int. Ed. 2009, 48, 348–351. [Google Scholar] [CrossRef]
- Huang, D.; Li, X.; Xu, F.; Li, L.; Lin, X. Highly Enantioselective Synthesis of Dihydroquinazolinones Catalyzed by SPINOL-Phosphoric Acids. ACS Catal. 2013, 3, 2244–2247. [Google Scholar] [CrossRef]
- Li, H.; He, L.; Neumann, H.; Beller, M.; Wu, X. Cascade synthesis of quinazolinones from 2-aminobenzonitriles and aryl bromides via palladium-catalyzed carbonylation reaction. Green Chem. 2014, 16, 1336–1343. [Google Scholar] [CrossRef]
- Li, Z.; Dong, J.; Chen, X.; Li, Q.; Zhou, Y.; Yin, S. Metal- and Oxidant-Free Synthesis of Quinazolinones from β-Ketoesters with o-Aminobenzamides via Phosphorous Acid Catalyzed Cyclocondensation and Selective C−C Bond Cleavage. J. Org. Chem. 2015, 80, 9392–9400. [Google Scholar] [CrossRef]
- Sharma, R.; Vishwakarma, R.A.; Bharate, S.B. Ligand-Free Copper-Manganese Spinel Oxide-Catalyzed Tandem One-Pot C-H Amidation and N-Arylation of Benzylamines: A Facile Access to 2-Arylquinazolin-4(3H)-ones. Adv. Synth. Catal. 2016, 358, 3027–3033. [Google Scholar] [CrossRef]
- An, J.; Wang, Y.; Zhang, Z.; Zhao, Z.; Zhang, J.; Wang, F. The Synthesis of Quinazolinones from Olefins, CO, and Amines over a Heterogeneous Ru-clusters/Ceria Catalyst. Angew. Chem. Int. Ed. 2018, 57, 12308–12312. [Google Scholar] [CrossRef] [PubMed]
- Jing, D.; Lu, C.; Chen, Z.; Jin, S.; Xie, L.; Meng, Z.; Su, Z.; Zheng, K. Light-Driven Intramolecular C-N Cross-Coupling via a Long-Lived Photoactive Photoisomer Complex. Angew. Chem. Int. Ed. 2019, 58, 14666–14672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Guo, S.; Fan, J.; Fan, X. t-BuOK-Catalyzed Regio-and Stereoselective Intramolecular Hydroamination Reaction Leading to Phthalazinoquinazolinone Derivatives. J. Org. Chem. 2023, 88, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Fan, S.; Wu, X.; Fang, L.; Zhu, J. Cobalt Homeostatic Catalysis for Coupling of Enaminones and Oxadiazolones to Quinazolinones. J. Org. Chem. 2023, 88, 1945–1962. [Google Scholar] [CrossRef]
- Meinwald, J.; Labana, S.S.; Chadha, M.S. Peracid Reactions. III. The Oxidation of Bicyclo [2.2.1]heptadiene. J. Am. Chem. Soc. 1963, 85, 582–585. [Google Scholar] [CrossRef]
- Muller, C.; Horky, F.; Vayer, M.; Golushko, A.; Leboeuf, D.; Moran, J. Synthesis of functionalised isochromans: Epoxides as aldehyde surrogates in hexafluoroisopropanol. Chem. Sci. 2023, 14, 2983. [Google Scholar] [CrossRef]
- Xu, J.; Song, Y.; He, J.; Dong, S.; Lin, L.; Feng, X. Asymmetric Catalytic Vinylogous Addition Reactions Initiated by Meinwald Rearrangement of Vinyl Epoxides. Angew. Chem. Int. Ed. 2021, 60, 14521–14527. [Google Scholar] [CrossRef]
- Mehedi, M.S.A.; Tepe, J.J. Sc(OTf)3-Mediated One-Pot Synthesis of 2,3-Disubstituted Quinolines from Anilines and Epoxides. J. Org. Chem. 2020, 85, 6741–6746. [Google Scholar] [CrossRef]
- Mehedi, M.S.A.; George, D.E.; Tepe, J.J. Sc(OTf)3-Mediated One-Pot Synthesisof 3,4-Disubstituted 1H-Pyrazolesand 3,5-Disubstituted Pyridinesfrom Hydrazine or Ammonia with Epoxides. J. Org. Chem. 2022, 87, 16820–16828. [Google Scholar] [CrossRef]
- Rao, C.J.; Sudheer, M.; Battula, V.R. Triflic-Acid-Catalyzed Tandem Epoxide Rearrangement and Annulation with Alkynes: An Efficient Approach for Regioselective Synthesis of Naphthalenes. ChemistrySelect 2022, 7, e20220047. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.T. Ytterbium(III) triflate catalyzed domino reaction of arylamines and styrene oxides: Synthesis of 2-benzyl-3-arylquinoline derivatives. Tetrahedron Lett. 2021, 70, 152981. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.T. An environmentally benign regioselective synthesis of 2-benzyl-4-arylquinoline derivatives using aryl amines, styrene oxides and aryl acetylenes. Org. Biomol. Chem. 2021, 19, 8772–8782. [Google Scholar] [CrossRef] [PubMed]
- Akyuz, G. Synthesis and urease inhibition studies of some new quinazolinones. J. Heterocycl. Chem. 2021, 58, 1164–1170. [Google Scholar] [CrossRef]
- Purandare, A.V.; Gao, A.; Wan, H.; Somerville, J.; Burke, C.; Seachord, C.; Vaccaro, W.; Wityak, J.; Poss, M.A. Identification of chemokine receptor CCR4 antagonist. Bioorg. Med. Chem. Lett. 2005, 15, 2669–2672. [Google Scholar] [CrossRef]
- Yun, E.S.; Akhtar, M.S.; Mohandoss, S.; Lee, Y.R. Microwave-assisted annulation for the construction of pyrido-fused heterocycles and their application as photoluminescent chemosensors. Org. Biomol. Chem. 2022, 20, 3397–3407. [Google Scholar] [CrossRef]
- Bao, Y.; Yan, Y.; Xu, K.; Su, J.; Zha, Z.; Wang, Z. Copper-catalyzed radical methylation/C−H amination/oxidation cascade for the synthesis of quinazolinones. J. Org. Chem. 2015, 80, 4736–4742. [Google Scholar] [CrossRef]
- Dai, C.; Meschini, F.; Narayanam, J.M.R.; Stephenson, C.R.J. Friedel−Crafts Amidoalkylation via Thermolysis and Oxidative Photocatalysis. J. Org. Chem. 2012, 77, 4425–4431. [Google Scholar] [CrossRef]
Entry | Acid/Equiv. | Solvent | Temp. (°C) | Yield (%) b |
---|---|---|---|---|
1 | AcOH/1.0 | CH3CN | 120 | 52 |
2 | HCOOH/1.0 | CH3CN | 120 | 55 |
3 | TFA/1.0 | CH3CN | 120 | 56 |
4 | TfOH/1.0 | CH3CN | 120 | 63 |
5 | TsOH/1.0 | CH3CN | 120 | 76 |
6 | TsOH/1.0 | CH3CN | 120 | 27 c |
7 | - | CH3CN | 120 | 50 |
8 | TsOH/0.5 | CH3CN | 120 | 56r |
9 | TsOH/1.5 | CH3CN | 120 | 71 |
10 | TsOH/1.0 | DCE | 120 | 47 |
11 | TsOH/1.0 | EtOH | 120 | 43 |
12 | TsOH/1.0 | toluene | 120 | trace |
13 | TsOH/1.0 | NMP | 120 | 48 |
14 | TsOH/1.0 | PhCl | 120 | 26 |
15 | TsOH/1.0 | CH3CN | 100 | 62 |
16 | TsOH/1.0 | CH3CN | 80 | 58 |
+ | |||||
1 | 2 | 3 | |||
3a, 76% | 3b, 62% | 3c, 59% | 3d, 74% | ||
3e, 62% | 3f, 73% | 3g, 71% | 3h, 63% | ||
3i, 41% | 3j, 40% | 3k, 64% | 3l, 65% | ||
3m, 64% | 3n, 76% | 3o, 65% | 3p, 48% | ||
3q, 38% | 3r, 35% | 3s, 40% | 3t’ | 3t, 50% |
+ | ||||
4 | 2 | 5 | ||
5a, 70% | 5b, 74% | 5c, 58% | 5d, 71% | |
5e, 75% | 5f, 59% | 5g, 60% | 5h, 67% | |
5i, 65% | 5j, 64% | 5k, 60% | 5l, 65% | |
5m’ | 5m, 48% | 5n, 0% | 5o, 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Lv, L.; Li, S.; Ding, C.; Yang, B.; Ma, C. A Direct Method for Synthesis of Quinoxalines and Quinazolinones Using Epoxides as Alkyl Precursor. Molecules 2023, 28, 7391. https://doi.org/10.3390/molecules28217391
Lv X, Lv L, Li S, Ding C, Yang B, Ma C. A Direct Method for Synthesis of Quinoxalines and Quinazolinones Using Epoxides as Alkyl Precursor. Molecules. 2023; 28(21):7391. https://doi.org/10.3390/molecules28217391
Chicago/Turabian StyleLv, Xueyan, Lili Lv, Shichen Li, Chengcheng Ding, Bingchuan Yang, and Chen Ma. 2023. "A Direct Method for Synthesis of Quinoxalines and Quinazolinones Using Epoxides as Alkyl Precursor" Molecules 28, no. 21: 7391. https://doi.org/10.3390/molecules28217391
APA StyleLv, X., Lv, L., Li, S., Ding, C., Yang, B., & Ma, C. (2023). A Direct Method for Synthesis of Quinoxalines and Quinazolinones Using Epoxides as Alkyl Precursor. Molecules, 28(21), 7391. https://doi.org/10.3390/molecules28217391