Nocardioides: “Specialists” for Hard-to-Degrade Pollutants in the Environment
Abstract
:1. Introduction
2. Nocardioides
3. Applications of Nocardioides
3.1. The Degradation of Hydrocarbon and Haloalkane Pollutants
3.2. The Degradation of Aromatic Compounds
3.3. The Degradation of Nitrogen Neterocyclic Pollutants
3.4. The Degradation of Polyester Pollutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaudhary, P.; Ahamad, L.; Chaudhary, A.; Kumar, G.; Chen, W.-J.; Chen, S. Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants. J. Environ. Chem. Eng. 2023, 11, 109591. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, M.; Guo, X.; Yang, B.; Zhuo, R. Coupling of Fenton reaction and white rot fungi for the degradation of organic pollutants. Ecotoxicol. Environ. Saf. 2023, 254, 114697. [Google Scholar] [CrossRef]
- Malyan, S.K.; Singh, R.; Rawat, M.; Kumar, M.; Pugazhendhi, A.; Kumar, A.; Kumar, V.; Kumar, S.S. An overview of carcinogenic pollutants in groundwater of India. Biocatal. Agric. Biotechnol. 2019, 21, 101288. [Google Scholar] [CrossRef]
- Lin, S.; Wei, J.; Yang, B.; Zhang, M.; Zhuo, R. Bioremediation of organic pollutants by white rot fungal cytochrome P450: The role and mechanism of CYP450 in biodegradation. Chemosphere 2022, 301, 134776. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Han, Y.; Duan, Y.; Lai, X.; Fu, R.; Liu, S.; Leong, K.H.; Tu, Y.; Zhou, L. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environ. Res. 2022, 205, 112423. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.M.I.; Ong, H.C.; Chia, W.Y.; et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef] [PubMed]
- Ang, W.L.; McHugh, P.J.; Symes, M.D. Sonoelectrochemical processes for the degradation of persistent organic pollutants. Chem. Eng. J. 2022, 444, 136573. [Google Scholar] [CrossRef]
- Tampouris, S.; Papassiopi, N.; Paspaliaris, I. Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. J. Hazard. Mater. 2001, 84, 297–319. [Google Scholar] [CrossRef]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Sci. Total. Environ. 2022, 838, 156417. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Murphy, S.M.C.; Bautista, M.A.; Cramm, M.A.; Hubert, C.R.J. Diesel and Crude Oil Biodegradation by Cold-Adapted Microbial Communities in the Labrador Sea. Appl. Environ. Microbiol. 2021, 87, e0080021. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, R.; Gioia, R.; Jones, K.C.; Nizzetto, L.; Temme, C.; Xie, Z.; Schulz-Bull, D.; Hand, I.; Morgan, E.; Jantunen, L. Organochlorine pesticides and PAHs in the surface water and atmosphere of the North Atlantic and Arctic Ocean. Environ. Sci. Technol. 2009, 43, 5633–5639. [Google Scholar] [CrossRef] [PubMed]
- Li, W.W.; Yu, H.Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresour. Technol. 2014, 160, 15–23. [Google Scholar] [CrossRef]
- Ali, Q.; Ayaz, M.; Yu, C.; Wang, Y.; Gu, Q.; Wu, H.; Gao, X. Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. Chemosphere 2022, 303, 135206. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, G.; Li, C.; Liu, Y.; Jiang, N.; Dong, X.; Wang, H. Systematic characterization of sediment microbial community structure and function associated with anaerobic microbial degradation of PBDEs in coastal wetland. Mar. Pollut. Bull. 2023, 188, 114622. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Zhao, L.; Li, Z.; Yi, X.; Guo, T.; Cao, X. Enhanced trichloroethylene biodegradation: Roles of biochar-microbial collaboration beyond adsorption. Sci. Total. Environ. 2021, 792, 148451. [Google Scholar] [CrossRef]
- Arora, N.K.; Kumar, A.; Sharma, S. Microbes and Enzymes in Soil Health and Bioremediation; Springer: Singapore, 2019. [Google Scholar]
- He, Y.; Wang, Z.; Li, T.; Peng, X.; Tang, Y.; Jia, X. Biodegradation of phenol by Candida tropicalis sp.: Kinetics, identification of putative genes and reconstruction of catabolic pathways by genomic and transcriptomic characteristics. Chemosphere 2022, 308, 136443. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, R.; Liu, X.; Zhou, L. Selective recovery of soil-borne metal contaminants through integrated solubilization by biogenic sulfuric acid and precipitation by biogenic sulfide. J. Hazard. Mater. 2012, 219–220, 119–126. [Google Scholar] [CrossRef]
- Li, C.; Cui, C.; Zhang, J.; Shen, J.; He, B.; Long, Y.; Ye, J. Biodegradation of petroleum hydrocarbons based pollutants in contaminated soil by exogenous effective microorganisms and indigenous microbiome. Ecotoxicol. Environ. Saf. 2023, 253, 114673. [Google Scholar] [CrossRef]
- Raturi, G.; Chaudhary, A.; Rana, V.; Mandlik, R.; Sharma, Y.; Barvkar, V.; Salvi, P.; Tripathi, D.K.; Kaur, J.; Deshmukh, R.; et al. Microbial remediation and plant-microbe interaction under arsenic pollution. Sci. Total. Environ. 2023, 864, 160972. [Google Scholar] [CrossRef]
- Tóth, E.M.; Borsodi, A.K. The Family Nocardioidaceae. In The Prokaryotes: Actinobacteria; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 651–694. [Google Scholar]
- Anil Kumar, S.; Katti, S.A.; Sulochana, B.M. Diversity and Classification of Rare Actinomycetes. In Actinobacteria: Ecology, Diversity, Classification and Extensive Applications; Springer: Singapore, 2022; Volume 7, pp. 117–142. [Google Scholar] [CrossRef]
- Yan, L.; Liang, B.; Qi, M.-Y.; Wang, A.-J.; Liu, Z.-P. Degrading Characterization of the Newly Isolated Nocardioides sp. N39 for 3-Amino-5-methyl-isoxazole and the Related Genomic Information. Microorganisms 2022, 10, 1496. [Google Scholar] [CrossRef]
- Saito, A.; Iwabuchi, T.; Harayama, S. A novel phenanthrene dioxygenase from Nocardioides sp. Strain KP7: Expression in Escherichia coli. J. Bacteriol. 2000, 182, 2134–2141. [Google Scholar] [CrossRef]
- Kubota, M.; Kawahara, K.; Sekiya, K.; Uchida, T.; Hattori, Y.; Futamata, H.; Hiraishi, A. Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments. Syst. Appl. Microbiol. 2005, 28, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zhang, Y.; Zhao, L.; He, Q.; Jiang, J.; Hong, Q.; He, J. Isolation and characterization of the cotinine-degrading bacterium Nocardioides sp. Strain JQ2195. J. Hazard Mater. 2018, 353, 158–165. [Google Scholar] [CrossRef]
- Aulestia, M.; Flores, A.; Mangas, E.L.; Pérez-Pulido, A.J.; Santero, E.; Camacho, E.M. Isolation and genomic characterization of the ibuprofen-degrading bacterium Sphingomonas strain MPO218. Environ. Microbiol. 2021, 23, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Spain, J.C. Biodegradation of 2,4-dinitroanisole (DNAN) by Nocardioides sp. JS1661 in water, soil and bioreactors. J. Hazard. Mater. 2016, 312, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ebert, S.; Fischer, P.; Knackmuss, H.J. Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation 2001, 12, 367–376. [Google Scholar] [CrossRef]
- Chen, P.; Fu, Y.; Cai, Y.; Lin, Z. Nocardioides guangzhouensis sp. nov., an actinobacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 2020, 70, 112–119. [Google Scholar] [CrossRef]
- Benedek, T.; Pápai, M.; Gharieb, K.; Bedics, A.; Táncsics, A.; Tóth, E.; Daood, H.; Maróti, G.; Wirth, R.; Menashe, O.; et al. Nocardioides carbamazepini sp. nov., an ibuprofen degrader isolated from a biofilm bacterial community enriched on carbamazepine. Syst. Appl. Microbiol. 2022, 45, 126339. [Google Scholar] [CrossRef]
- Iwabuc hi, T.; Inomata-Yamauchi, Y.; Katsuta, A.; Harayama, S. Isolation and characterization of marine Nocardioides capable of growing and degrading phenanthrene at 42 ° C. Mar. Biotechnol. 1998, 6, 86–90. [Google Scholar]
- Yoon, J.-H.; Cho, Y.-G.; Lee, S.T.; Suzuki, K.-I.; Nakase, T.; Park, Y.-H. Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium. Int. J. Syst. Bacteriol. 1999, 49, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, D.-U.; Lee, H.; Yun, J.; Ka, J.-O. Syntrophic biodegradation of propoxur by Pseudaminobacter sp. SP1a and Nocardioides sp. SP1b isolated from agricultural soil. Int. Biodeterior. Biodegradation. 2017, 118, 1–9. [Google Scholar] [CrossRef]
- Rhee, S.-K.; Lee, S.-T.; Lee, K.-Y.; Chung, J.-C. Degradation of pyridine by Nocardioides sp. strain OS4 isolated from the oxic zone of a spent shale column. Can. J. Microbiol. 1997, 43, 205–209. [Google Scholar] [CrossRef]
- Woźniak-Karczewska, M.; Baranowski, D.; Framski, G.; Marczak, Ł.; Čvančarová, M.; Corvini, P.F.; Chrzanowski, Ł. Biodegradation of ritalinic acid by Nocardioides sp.—Novel imidazole-based alkaloid metabolite as a potential marker in sewage epidemiology. J. Hazard Mater. 2020, 385, 121554. [Google Scholar] [CrossRef] [PubMed]
- Satsuma, K. Mineralization of s-triazine herbicides by a newly isolated Nocardioides species strain DN36. Appl. Microbiol. Biotechnol. 2010, 86, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Fujii, K.; Yamazaki, K.; Harada, N.; Iwasaki, A. Biodegradation of melamine and its hydroxy derivatives by a bacterial consortium containing a novel Nocardioides species. Appl. Microbiol. Biotechnol. 2012, 94, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Mistry, A.N.; Kachenchart, B.; Pinyakong, O.; Assavalapsakul, W.; Jitpraphai, S.M.; Somwangthanaroj, A.; Luepromchai, E. Bioaugmentation with a defined bacterial consortium: A key to degrade high molecular weight polylactic acid during traditional composting. Bioresour. Technol. 2023, 367, 128237. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Tachibana, Y.; Takizawa, R.; Morikawa, T.; Takeno, H.; Kasuya, K.-i. A novel poly(3-hydroxybutyrate)-degrading actinobacterium that was isolated from plastisphere formed on marine plastic debris. Polym. Degrad. Stab. 2021, 183, 109461. [Google Scholar] [CrossRef]
- Schippers, A.; Schumann, P.; Spröer, C. Nocardioides oleivorans sp. nov., a novel crude-oil-degrading bacterium. Int. J. Syst. Evol. Microbiol. 2005, 55, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Ikunaga, Y.; Sato, I.; Grond, S.; Numaziri, N.; Yoshida, S.; Yamaya, H.; Hiradate, S.; Hasegawa, M.; Toshima, H.; Koitabashi, M.; et al. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Appl. Microbiol. Biotechnol. 2011, 89, 419–427. [Google Scholar] [CrossRef]
- Fontana, F.; Delsante, M.; Vicari, M.; Pala, C.; Alfano, G.; Giovanella, S.; Ligabue, G.; Leonelli, M.; Manenti, L.; Rossi, G.M.; et al. Mycophenolate mofetil plus steroids compared to steroids alone in IgA nephropathy: A retrospective study. J. Nephrol. 2023, 36, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Liu, S.; Pan, Y.-F.; Wu, N.-N.; Huang, Q.-Y.; Li, H.-X.; Lin, L.; Hou, R.; Xu, X.-R.; Cheng, Y.-Y. Steroid metabolites as overlooked emerging contaminants: Insights from multimedia partitioning and source–sink simulation in an estuarine environment. J. Hazard. Mater. 2023, 461, 132673. [Google Scholar] [CrossRef]
- Dunn, M.; Whiteside, B. Investigating the capacity of Australian drug information systems to detect changes in anabolic-androgenic steroid use and harms. Perform. Enhanc. Health 2023, 11, 100249. [Google Scholar] [CrossRef]
- Fokina, V.V.; Sukhodolskaya, G.V.; Gulevskaya, S.A.; Gavrish, E.Y.; Evtushenko, L.I.; Donova, M.V. The 1(2)-Dehydrogenation of Steroid Substrates by Nocardioides simplex VKM Ac-2033D. Microbiology 2003, 72, 24–29. [Google Scholar] [CrossRef]
- Fokina, V.V.; Sukhodolskaya, G.V.; Baskunov, B.P.; Turchin, K.F.; Grinenko, G.S.; Donova, M.V. Microbial conversion of pregna-4,9(11)-diene-17alpha,21-diol-3,20-dione acetates by Nocardioides simplex VKM Ac-2033D. Steroids 2003, 68, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Shtratnikova, V.Y.; Schelkunov, M.I.; Fokina, V.V.; Pekov, Y.A.; Ivashina, T.; Donova, M.V. Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D. Curr. Genet. 2016, 62, 643–656. [Google Scholar] [CrossRef]
- Shtratnikova, V.Y.; Schelkunov, M.I.; Fokina, V.V.; Bragin, E.Y.; Lobastova, T.G.; Shutov, A.A.; Kazantsev, A.V.; Donova, M.V. Genome-Wide Transcriptome Profiling Provides Insight on Cholesterol and Lithocholate Degradation Mechanisms in Nocardioides simplex VKM Ac-2033D. Genes 2020, 11, 1229. [Google Scholar] [CrossRef]
- Shtratnikova, V.Y.; Schelkunov, M.I.; Fokina, V.V.; Bragin, E.Y.; Shutov, A.A.; Donova, M.V. Different genome-wide transcriptome responses of Nocardioides simplex VKM Ac-2033D to phytosterol and cortisone 21-acetate. BMC Biotechnol. 2021, 21, 7. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Park, Y.-H. The Genus Nocardioides. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1099–1113. [Google Scholar]
- Prauser, H. Nocardioides, a New Genus of the Order Actinomycetales. Int. J. Syst. Evol. Micr. 1976, 26, 58–65. [Google Scholar] [CrossRef]
- Carucci, M.; Duez, J.; Tarning, J.; García-Barbazán, I.; Fricot-Monsinjon, A.; Sissoko, A.; Dumas, L.; Gamallo, P.; Beher, B.; Amireault, P.; et al. Safe drugs with high potential to block malaria transmission revealed by a spleen-mimetic screening. Nat. Commun. 2023, 14, 1951. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, Z.; Zhang, K.; Zhang, X.; Xu, S.; Liu, J.; Liu, B.; Hong, Q.; Qiu, J.; He, J. Cotinine Hydroxylase CotA Initiates Biodegradation of Wastewater Micropollutant Cotinine in Nocardioides sp. Strain JQ2195. Appl. Environ. Microbiol. 2021, 87, e0092321. [Google Scholar] [CrossRef]
- Hamamura, N.; Arp, D.J. Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8. FEMS Microbiol. Lett. 2000, 186, 21–26. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Sun, S.; Tang, F.; Chen, H.; Chen, S.; Zhao, C.; Li, L. A novel chitosan-biochar immobilized microorganism strategy to enhance bioremediation of crude oil in soil. Chemosphere 2023, 313, 137367. [Google Scholar] [CrossRef] [PubMed]
- Juck, D.; Charles, T.; Whyte, L.G.; Greer, C.W. Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microbiol. Ecol. 2000, 33, 241–249. [Google Scholar] [CrossRef]
- Ajona, M.; Vasanthi, P. Bioremediation of petroleum contaminated soils—A review. Mater. Today Proc. 2021, 45, 7117–7122. [Google Scholar] [CrossRef]
- Jones, J.G.; Knight, M.; Byrom, J.A. Effect of gross pollution by kerosine hydrocarbons on the Microflora of a moorland soil. Nature 1970, 227, 1166. [Google Scholar] [CrossRef] [PubMed]
- Pezeshki, S.R.; Hester, M.W.; Lin, Q.; Nyman, J.A. The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: A review. Environ. Pollut. 2000, 108, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Hamamura, N.; Storfa, R.T.; Semprini, L.; Arp, D.J. Diversity in butane monooxygenases among butane-grown bacteria. Appl. Environ. Microbiol. 1999, 65, 4586–4593. [Google Scholar] [CrossRef]
- Jung, C.M.; Broberg, C.; Giuliani, J.; Kirk, L.L.; Hanne, L.F. Characterization of JP-7 jet fuel degradation by the bacterium Nocardioides luteus strain BAFB. J. Basic. Microbiol. 2002, 42, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Adriaens, P.; Gruden, C.; McCormick, M.L. Biogeochemistry of Halogenated Hydrocarbons. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 511–533. [Google Scholar]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Bradley, P. History and ecology of chloroethene biodegradation: A review. Bioremediation J. 2003, 7, 81–109. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4516–4522. [Google Scholar] [CrossRef]
- Cupples, A.M.; Spormann, A.M.; McCarty, P.L. Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl. Environ. Microbiol. 2003, 69, 953–959. [Google Scholar] [CrossRef]
- Czinnerová, M.; Nguyen, N.; Nemecek, J.; Mackenzie, K.; Boothman, C.; Lloyd, J.; Laszlo, T.; Špánek, R.; Cernik, M.; Ševců, A. In situ pilot application of nZVI embedded in activated carbon for remediation of chlorinated ethene-contaminated groundwater: Effect on microbial communities. Environ. Sci. Eur. 2020, 32, 154. [Google Scholar] [CrossRef]
- Mattes, T.E.; Coleman, N.V.; Spain, J.C.; Gossett, J.M. Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614. Arch. Microbiol. 2005, 183, 95–106. [Google Scholar] [CrossRef]
- Wilson, F.P.; Liu, X.; Mattes, T.E.; Cupples, A.M. Nocardioides, Sediminibacterium, Aquabacterium, Variovorax, and Pseudomonas linked to carbon uptake during aerobic vinyl chloride biodegradation. Environ. Sci. Pollut. Res. 2016, 23, 19062–19070. [Google Scholar] [CrossRef] [PubMed]
- Imam, A.; Kumar Suman, S.; Kanaujia, P.K.; Ray, A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. Bioresour. Technol. 2022, 343, 126121. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Li, S.; Zhang, A.; Liu, Z.; Li, Z. Metabolic fates and response strategies of microorganisms to aromatic compounds with different structures. Bioresour. Technol. 2022, 366, 128210. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tong, D.; Allinson, G.; Jia, C.; Gong, Z.; Liu, W. Adsorption of Pyrene onto the Agricultural By-Product: Corncob. Bull. Environ. Contam. Toxicol. 2016, 96, 113–119. [Google Scholar] [CrossRef]
- Lenke, H.; Pieper, D.H.; Bruhn, C.; Knackmuss, H.J. Degradation of 2,4-Dinitrophenol by Two Rhodococcus erythropolis Strains, HL 24-1 and HL 24-2. Appl. Environ. Microbiol. 1992, 58, 2928–2932. [Google Scholar] [CrossRef]
- Behrend, C.; Heesche-Wagner, K. Formation of hydride-Meisenheimer complexes of picric acid (2,4, 6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Appl. Environ. Microbiol. 1999, 65, 1372–1377. [Google Scholar] [CrossRef]
- Kim, S.-J.; Kweon, O.; Jones, R.C.; Edmondson, R.D.; Cerniglia, C.E. Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 2008, 19, 859–881. [Google Scholar] [CrossRef] [PubMed]
- Brezna, B.; Kweon, O.; Stingley, R.L.; Freeman, J.P.; Khan, A.A.; Polek, B.; Jones, R.C.; Cerniglia, C.E. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1. Appl. Microbiol. Biotechnol. 2006, 71, 522–532. [Google Scholar] [CrossRef]
- Yoon, J.H.; Rhee, S.-K.; Lee, J.S.; Park, Y.H.; Lee, S.T. Nocardioides pyridinolyticus sp. nov., a pyridine-degrading bacterium isolated from the oxic zone of an oil shale column. Int. J. Syst. Bacteriol. 1997, 47, 933–938. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, S.; Zhong, Q.; Gong, G.; Wang, G.; Guo, X.; Xu, X. Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities. Sci. Total. Environ. 2020, 715, 136904. [Google Scholar] [CrossRef] [PubMed]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef]
- Koad, R.B.A.; Zobaa, A.F. Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energetic Electron. Commun. Eng. 2014, 8, 690–695. [Google Scholar]
- Hiraishi, A. Biodiversity of Dioxin-Degrading Microorganisms and Potential Utilization in Bioremediation. Microbes Environ. 2003, 18, 105–125. [Google Scholar] [CrossRef]
- Goris, J.; De Vos, P.; Caballero-Mellado, J.; Park, J.; Falsen, E.; Quensen, J.F.; Tiedje, J.M.; Vandamme, P. Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. Int. J. Syst. Evol. Microbiol. 2004, 54, 1677–1681. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, H.; Wittich, R.; Timmis, K.N.; Fortnagel, P.; Francke, W. Degradation of Chlorinated Dibenzofurans and Dibenzo-p-Dioxins by Sphingomonas sp. Strain RW1. Appl. Environ. Microbiol. 1996, 62, 367–371. [Google Scholar] [CrossRef]
- Nojiri, H.; Nam, J.W.; Kosaka, M.; Morii, K.I.; Takemura, T.; Furihata, K.; Yamane, H.; Omori, T. Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. Strain CA10. J. Bacteriol. 1999, 181, 3105–3113. [Google Scholar] [CrossRef] [PubMed]
- Iida, T.; Mukouzaka, Y.; Nakamura, K.; Yamaguchi, I.; Kudo, T. Isolation and characterization of dibenzofuran-degrading actinomycetes: Analysis of multiple extradiol dioxygenase genes in dibenzofuran-degrading Rhodococcus species. Biosci. Biotechnol. Biochem. 2002, 66, 1462–1472. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Yin, G.; Gai, Z.; Tang, H.; Ma, C.; Deng, Z.; Xu, P. New Metabolites in Dibenzofuran Cometabolic Degradation by a Biphenyl-Cultivated Pseudomonas putida Strain B6-2. Environ. Sci. Technol. 2009, 43, 8635–8642. [Google Scholar] [CrossRef]
- Gibson, D.T.; Parales, R.E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 2000, 11, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.-M.; Finster, K.W.; Karlson, U. Degradation of carbazole, dibenzothiophene, and dibenzofuran at low temperature by Pseudomonas sp. strain C3211. Environ. Toxicol. Chem. 2003, 22, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Jerry, S.; O’Loughlin, E.; Crawford, R. Degradation of Pyridines in the Environment. Crit. Rev. Environ. Sci. Technol. 1989, 19, 309–340. [Google Scholar] [CrossRef]
- Topp, E.; Mulbry, W.; Zhu, H.; Nour, S.; Cuppels, D. Characterization of S-Triazine Herbicide Metabolism by a Nocardioides sp. Isolated from Agricultural Soils. Appl. Environ. Microbiol. 2000, 66, 3134–3141. [Google Scholar] [CrossRef]
- Woźniak-Karczewska, M.; Čvančarová, M.; Chrzanowski, Ł.; Corvini, P.F.; Cichocka, D. Bacterial isolates degrading ritalinic acid-human metabolite of neuro enhancer methylphenidate. N. Biotechnol. 2018, 43, 30–36. [Google Scholar] [CrossRef]
- Li, Q.; Luo, Y.; Song, J.; Wu, L. Risk assessment of atrazine polluted farmland and drinking water: A case study. Bull. Environ. Contam. Toxicol. 2007, 78, 187–190. [Google Scholar] [CrossRef]
- Hayes, T.B.; Collins, A.; Lee, M.; Mendoza, M.; Noriega, N.; Stuart, A.A.; Vonk, A. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Natl. Acad. Sci. USA 2002, 99, 5476–5480. [Google Scholar] [CrossRef]
- Mulbry, W.W.; Zhu, H.; Nour, S.M.; Topp, E. The triazine hydrolase gene trzN from Nocardioides sp. strain C190:Cloning and construction of gene-specific primers. FEMS Microbiol. 2002, 206, 75–79. [Google Scholar] [CrossRef]
- Xu, Y.; Teng, Y.; Wang, X.; Li, R.; Christie, P. Exploring bacterial community structure and function associated with polychlorinated biphenyl biodegradation in two hydrogen-amended soils. Sci. Total. Environ. 2020, 745, 140839. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, W.S.; El-Baz, A.F.; Othman, A.M. Biodegradation of melamine formaldehyde by Micrococcus sp. strain MF-1 isolated from aminoplastic wastewater effluent. Int. Biodeterior. Biodegrad. 2006, 57, 75–81. [Google Scholar] [CrossRef]
- Mistry, A.N.; Kachenchart, B.; Wongthanaroj, A.; Somwangthanaroj, A.; Luepromchai, E. Rapid biodegradation of high molecular weight semi-crystalline polylactic acid at ambient temperature via enzymatic and alkaline hydrolysis by a defined bacterial consortium. Polym. Degrad. Stab. 2022, 202, 110051. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Bartholomäus, A.; Lipus, D.; Mitzscherling, J.; MacLean, J.; Wagner, D. Draft Genome Sequence of Nocardioides alcanivorans NGK65(T), a Hexadecane-Degrading Bacterium. Microbiol. Resour. Announc. 2022, 11, e0121321. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.K.; Kohli, S.; Gopal, M.; Thakur, I.S. Isolation and characterization of alkalotolerant Pseudomonas sp. strain ISTDF1 for degradation of dibenzofuran. J. Ind. Microbiol. Biotechnol. 2011, 38, 503–511. [Google Scholar] [CrossRef]
- Ali, F.; Hu, H.; Wang, W.; Zhou, Z.; Shah, S.B.; Xu, P.; Tang, H. Characterization of a Dibenzofuran-degrading strain of Pseudomonas aeruginosa, FA-HZ1. Environ. Pollut. 2019, 250, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, H.; Abe, K.; Hasegawa, Y. Isolation and characterization of a new 2,4-dinitrophenol-degrading bacterium Burkholderia sp. strain KU-46 and its degradation pathway. FEMS Microbiol. Lett. 2007, 274, 112–117. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, X.; Chen, D.; Liu, X.; Wang, L. Characteristics of pyridine biodegradation by a novel bacterial strain, Rhizobium sp. NJUST18. Desalination Water Treat. 2014, 53, 2005–2013. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, X.; Liu, X.; Sun, X.; Han, W.; Li, J.; Wang, L.; Shen, J. Microbial degradation mechanism of pyridine by Paracoccus sp. NJUST30 newly isolated from aerobic granules. Chem. Eng. J. 2018, 344, 86–94. [Google Scholar] [CrossRef]
- Xavier, J.C.; Costa, P.E.S.; Hissa, D.C.; Melo, V.M.M.; Falcão, R.M.; Balbino, V.Q.; Mendonça, L.A.R.; Lima, M.G.S.; Coutinho, H.D.M.; Verde, L.C.L. Evaluation of the microbial diversity and heavy metal resistance genes of a microbial community on contaminated environment. Appl. Geochem. 2019, 105, 1–6. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Tao, Y.; Yan, Z.; Ao, Y. Deciphering the bacterial microbiome in response to long-term mercury contaminated soil. Ecotoxicol. Environ. Saf. 2022, 229, 113062. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Z.; Li, F.; Ma, X.; Chen, F.; Chen, M.; Tuo, L. Description and genomic characterization of Nocardioides bruguierae sp. nov., isolated from Bruguiera gymnorhiza. Syst. Appl. Microbiol. 2023, 46, 126391. [Google Scholar] [CrossRef]
- Bagade, A.V.; Bachate, S.P.; Dholakia, B.B.; Giri, A.P.; Kodam, K.M. Characterization of Roseomonas and Nocardioides spp. for arsenic transformation. J. Hazard. Mater. 2016, 318, 742–750. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, L.; Wang, X.; Chen, M.; Chen, J.; Tian, B.-Y.; Zhang, B.-H. Nocardioides lacusdianchii sp. nov., an attached bacterium of Microcystis aeruginosa. Antonie. Van. Leeuwenhoek. 2022, 115, 141–153. [Google Scholar] [CrossRef]
- Eggerichs, D.; Zilske, K.; Tischler, D. Large scale production of vanillin using an eugenol oxidase from Nocardioides sp. YR527. Molecular. Catalysis. 2023, 546, 113277. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, S.; Chen, S.; Su, Y.; Wang, Y.; Tang, F.; Zhao, C.; Li, L. A novel dehydrocoenzyme activator combined with a composite microbial agent TY for enhanced bioremediation of crude oil-contaminated soil. J. Environ. Manage. 2023, 331, 117246. [Google Scholar] [CrossRef] [PubMed]
- Vasileva-Tonkova, E.; Gesheva, V. Glycolipids produced by Antarctic Nocardioides sp. during growth on n-paraffin. Process Biochem. 2005, 40, 2387–2391. [Google Scholar] [CrossRef]
Pollutant Type | Strain Name | Degradation Efficiency and Initial Concentration | Degradation Time | Strain Source | Medium Type | Culture Conditions | References |
---|---|---|---|---|---|---|---|
Nitrophenol | Nocardioides sp. KP7 | 100% - | 24 h | Marine | BSM medium | 30 °C PH 7 | [33] |
Nocardioides nitrophenolicus sp. NSP41T | - Initial conc.: 200 mg/L | - | Industrial wastewater | Difo medium | 30 °C PH 7 | [34] | |
Dibenzofuran | Nocardioides aromaticivorans | 100% 33 mg/L | 96 h | Surface water | PBY medium | 30 °C PH 7 | [26] |
2,4,6-Trinitrophenol (picric acid) | Nocardioides simplex FJ2-1A | 78% Initial conc.: 146 mg/L | 28 d | Picric acid-containing wastewater | BSV medium | 30 °C PH 7.4 | [30] |
2,4-Dinitrophenol | Nocardioides sp. JS1661 | 100% Initial conc.: 150 mg/L | 45 h | Soil | MSB medium | 30 °C PH 6.5 | [29] |
Ibuprofen | Nocardioides carbamazepini sp. nov. | 70% Initial conc.: 1.6 mg/L | Seven weeks | Groundwater | R2A medium | 28 °C PH 7 | [32] |
Propoxur | Nocardioides sp. SP1b | 100% Initial conc.: 100 mg/L | 60 h | Soil | PTYG medium | 28 °C PH 7 | [35] |
Pyridine | Nocardioides sp. strain OS4 | 100% 5 g/L | Two weeks | Oxic zone of a spent shale column | R2A medium | 28 °C PH 7 | [36] |
Ritalinic acid | Nocardioides sp. strain MW5 | 100% Initial conc.: 1 g/L | 4 h | Arsenic springs | Mineral medium + ritalinic acid | 30 °C PH 7 | [37] |
Atrazine | Nocardioides sp. strain DN36 | 100% 0.9 mg/L | 7 d | Soil | R2A medium | 30 °C PH 7 | [38] |
Cotinine | Nocardioides sp. strain JQ2195 | 100% Initial conc.: 500 mg/L | 30 h | Wastewater | MSM medium + cotinine | 30 °C PH 7 | [27] |
Melamine | Nocardioides sp. | 100% Initial conc.: 5.04 g/L | 20 d | Soil | LMM medium | 30 °C PH 7 | [39] |
Polylactic acid | Nocardioides zeae EA12 | 2.82% Initial conc.: 6.9 mg/L | 35 d | Plastics | TSB medium | 30 °C PH 7 | [40] |
Poly-3-hydroxybutyrate | Nocardioides. marinisabuli strain OK12 | 100% Initial conc.: 318 ± 75 μg/cm2 | 10 d | Plastic film | R2A medium | 30 °C PH 7 | [41] |
Crude oil | Nocardioides oleivorans sp. nov. | 40% Initial conc.: 50 mg/mL | 3 weeks | Crude oil | MSM medium + crude oil | 30 °C PH 7 | [42] |
Vomitoxin (DON) | Nocardioides sp. strain WSN05-2 | 100% Initial conc.: 1 mg/L | 10 d | Soil | Mineral medium + vomitoxin | 30 °C PH 7 | [43] |
Pollutant Type | The Degradability of Nocardioides sp. | Other Degrading Bacteria and Degradation Ability | References |
---|---|---|---|
Poly-3-hydroxybutyrate | 100% degradation of 318 ± 75 μg/cm2 | Shewanella sp. (100% degradation of 47 μg/cm2) | [41] |
Dibenzofuran | 100% degradation of 33 mg/L in 96 h | Pseudomonas sp. strain ISTDF1 (40% degradation of 200 mg/L in 36 h) | [102] |
Pseudomonas aeruginosa FA-HZ1 (100% degradation of 20 mg/L in 70 h) | [103] | ||
Pseudomonas sp. strain C3211 (100% degradation of 0.585 mg/L in 67 h) | [90] | ||
2,4-Dinitrophenol | 100% degradation of 150 mg/L in 45 h | Rhodococcus erythropolis strain HL 24-1 and Rhodococcus erythropolis strain HL 24-2 (100% degradation of 92 mg/L in 25 h) | [75] |
Burkholderia sp. strain KU-46 (100% degradation of 92 mg/L in 6 h) | [104] | ||
Pyridine | 100% degradation of 5 g/L in two weeks | Rhizobium sp. NJUST18 (100% degradation of 2600 mg/L) | [105] |
Paracoccus sp. NJUST30 (100% degradation of 500 mg/L in 54 h) | [106] | ||
Melamine | 100% degradation of 5.04 g/L in 20 d | Micrococcus sp. strain MF-1 (100% degradation of 100 mg/L in 35 h) | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wang, J.; Liu, Y.; Wang, X.; Zhang, B.; Zhang, W.; Chen, T.; Liu, G.; Xue, L.; Cui, X. Nocardioides: “Specialists” for Hard-to-Degrade Pollutants in the Environment. Molecules 2023, 28, 7433. https://doi.org/10.3390/molecules28217433
Ma Y, Wang J, Liu Y, Wang X, Zhang B, Zhang W, Chen T, Liu G, Xue L, Cui X. Nocardioides: “Specialists” for Hard-to-Degrade Pollutants in the Environment. Molecules. 2023; 28(21):7433. https://doi.org/10.3390/molecules28217433
Chicago/Turabian StyleMa, Yecheng, Jinxiu Wang, Yang Liu, Xinyue Wang, Binglin Zhang, Wei Zhang, Tuo Chen, Guangxiu Liu, Lingui Xue, and Xiaowen Cui. 2023. "Nocardioides: “Specialists” for Hard-to-Degrade Pollutants in the Environment" Molecules 28, no. 21: 7433. https://doi.org/10.3390/molecules28217433
APA StyleMa, Y., Wang, J., Liu, Y., Wang, X., Zhang, B., Zhang, W., Chen, T., Liu, G., Xue, L., & Cui, X. (2023). Nocardioides: “Specialists” for Hard-to-Degrade Pollutants in the Environment. Molecules, 28(21), 7433. https://doi.org/10.3390/molecules28217433