Base-Catalyzed Nucleophilic Addition Reaction of Indoles with Vinylene Carbonate: An Approach to Synthesize 4-Indolyl-1,3-dioxolanones
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Information
3.2. Synthetic Procedures
3.2.1. The Typical Procedure for the Synthesis of 4-Indolyl-1,3-dioxolanones 3
- 4-(1H-indol-1-yl)-1,3-dioxolan-2-one (3a): Yield: 80%, 80.9 mg, white solid, mp 132–134 °C, Rf = 0.41 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.71 (d, J = 3.4 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.28 (t, J = 7.7 Hz, 1H), 7.23 (t, J = 6.3 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 6.69 (d, J = 3.3 Hz, 1H), 5.04 (d, J = 6.3 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 154.1, 136.0, 129.5, 126.2, 123.2, 121.6, 121.6, 110.4, 105.6, 82.3, 68.4. [M + H]+ calculated for C11H10NO3, 204.0661; found 204.0657.
- methyl 1-(2-oxo-1,3-dioxolan-4-yl)-1H-indole-3-carboxylate (3e): Yield: 66%, 86.6 mg, white solid, mp 206–208 °C, Rf = 0.32 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 8.53 (s, 1H), 8.10 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.42–7.33 (m, 2H), 7.28–7.21 (m, 1H), 5.17–4.99 (m, 2H), 3.86 (s, 3H). 13C NMR (101 MHz, d6-DMSO) δ 164.5, 153.8, 136.0, 133.5, 126.9, 124.4, 123.5, 121.7, 111.2, 109.5, 82.4, 68.3, 51.6. HRMS (ESI) m/z: [M + H]+ calculated for C13H12NO5, 262.0715; found 262.0714.
- 4-(4-methyl-1H-indol-1-yl)-1,3-dioxolan-2-one (3f): Yield: 53%, 57.7 mg, white solid, mp 118–120 °C, Rf = 0.36 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.68 (d, J = 3.4 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.23–7.14 (m, 2H), 6.98 (d, J = 7.2 Hz, 1H), 6.72 (d, J = 3.3 Hz, 1H), 5.03 (d, J = 6.4 Hz, 2H), 2.49 (s, 3H). 13C NMR (101 MHz, d6-DMSO) δ 154.1, 135.7, 130.6, 129.4, 125.6, 123.3, 121.7, 107.9, 104.1, 82.5, 68.4, 18.7. HRMS (ESI) m/z: [M + H]+ calculated for C12H12NO3, 218.0817; found 218.0815.
- 4-(4-methoxy-1H-indol-1-yl)-1,3-dioxolan-2-one (3g): Yield: 74%, 86.0 mg, white solid, mp 172–174 °C, Rf = 0.33 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.59 (d, J = 3.4 Hz, 1H), 7.23–7.15 (m, 3H), 6.69 (d, J = 7.6 Hz, 1H), 6.66 (d, J = 3.2 Hz, 1H), 5.01 (d, J = 6.4 Hz, 2H), 3.89 (s, 3H). 13C NMR (101 MHz, d6-DMSO) δ 154.0, 153.4, 137.3, 124.7, 124.4, 119.7, 103.5, 102.6, 101.9, 82.5, 68.4, 55.6. HRMS (ESI) m/z: [M + H]+ calculated for C12H12NO4, 234.0766; found 234.0765.
- 4-(4-(benzyloxy)-1H-indol-1-yl)-1,3-dioxolan-2-one (3h): Yield: 65%, 100.3 mg, white solid, mp 146–148 °C, Rf = 0.32 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.61 (d, J = 3.4 Hz, 1H), 7.51 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.34 (t, J = 7.1 Hz, 1H), 7.21–7.14 (m, 3H), 6.78 (d, J = 6.5 Hz, 1H), 6.71 (d, J = 3.3 Hz, 1H), 5.26 (s, 2H), 5.02 (d, J = 6.4 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 154.0, 152.4, 137.8, 137.4, 128.9, 128.2, 127.9, 124.9, 124.3, 120.1, 103.7, 103.4, 102.6, 82.5, 69.6, 68.4. HRMS (ESI) m/z: [M + H]+ calculated for C18H16NO4, 310.1079; found 310.1075.
- 4-(4-chloro-1H-indol-1-yl)-1,3-dioxolan-2-one (3i): Yield: 84%, 100.0 mg, white solid, mp 130–132 °C, Rf = 0.48 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.86 (d, J = 3.5 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.33–7.22 (m, 3H), 6.73 (d, J = 3.3 Hz, 1H), 5.05 (d, J = 6.3 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 153.9, 136.8, 127.8, 127.5, 125.5, 124.2, 121.2, 109.7, 103.4, 82.3, 68.5. HRMS (ESI) m/z: [M + H]+ calculated for C11H9ClNO3, 238.0271; found 238.0266.
- 4-(4-bromo-1H-indol-1-yl)-1,3-dioxolan-2-one (3j): Yield: 87%, 123.0 mg, white solid, mp 154–156 °C, Rf = 0.36 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.87 (d, J = 3.4 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.23 (t, J = 7.3 Hz, 2H), 6.65 (d, J = 3.4 Hz, 1H), 5.05 (d, J = 6.3 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 153.9, 136.4, 133.2, 129.7, 127.5, 124.5, 124.3, 114.5, 110.2, 105.1, 82.3, 68.5. HRMS (ESI) m/z: [M + H]+ calculated for C11H9BrNO3, 281.9766; found 281.9758.
- methyl 1-(2-oxo-1,3-dioxolan-4-yl)-1H-indole-4-carboxylate (3k): Yield: 91%, 119.0 mg, white solid, mp 146–148 °C, Rf = 0.39 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.92 (d, J = 7.5 Hz, 2H), 7.88 (d, J = 7.5 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.30 (t, J = 6.2 Hz, 1H), 7.19 (d, J = 3.3 Hz, 1H), 5.07 (dd, J = 8.6, 3.5 Hz, 2H), 3.92 (s, 3H). 13C NMR (101 MHz, d6-DMSO) δ 167.1, 153.9, 136.9, 128.8, 128.3, 124.5, 122.7, 121.8, 115.6, 106.2, 82.0, 68.5, 52.4. HRMS (ESI) m/z: [M + H]+ calculated for C13H12NO5, 262.0715; found 262.0708.
- 4-(4-nitro-1H-indol-1-yl)-1,3-dioxolan-2-one (3l): Yield: 90%, 111.7 mg, light yellow solid, mp 188–190 °C, Rf = 0.30 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 8.20 (d, J = 8.0 Hz, 1H), 8.15 (d, J = 8.5 Hz, 2H), 7.53 (t, J = 8.1 Hz, 1H), 7.36 (t, J = 6.2 Hz, 1H), 7.26 (d, J = 3.3 Hz, 1H), 5.13–5.04 (m, 2H). 13C NMR (101 MHz, d6-DMSO) δ 153.8, 140.2, 138.2, 131.0, 123.1, 122.8, 119.0, 118.1, 104.8, 81.9, 68.67. HRMS (ESI) m/z: [M + H]+ calculated for C11H9N2O5, 249.0511; found 249.0510.
- 1-(2-oxo-1,3-dioxolan-4-yl)-1H-indole-4-carbonitrile (3m): Yield: 91%, 112.2 mg, white solid, mp 166–168 °C, Rf = 0.35 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 8.05 (d, J = 3.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 7.4 Hz, 1H), 7.46 (t, J = 7.9 Hz, 1H), 7.30 (t, J = 6.3 Hz, 1H), 6.85 (d, J = 3.3 Hz, 1H), 5.06 (d, J = 6.3 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 153.8, 135.9, 130.4, 129.6, 126.9, 123.4, 118.4, 116.0, 103.5, 102.8, 82.0, 68.6. HRMS (ESI) m/z: [M + H]+ calculated for C12H9N2O3, 229.0613; found 229.0612.
- 4-(5-methyl-1H-indol-1-yl)-1,3-dioxolan-2-one (3n): Yield: 51%, 55.6 mg, light yellow solid, mp 112–114 °C, Rf = 0.36 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.64 (d, J = 3.4 Hz, 1H), 7.47–7.40 (m, 2H), 7.18 (t, J = 6.3 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.58 (d, J = 3.3 Hz, 1H), 5.02 (d, J = 6.3 Hz, 2H), 2.39 (s, 3H). 13C NMR (101 MHz, d6-DMSO) δ 154.1, 134.3, 133.2, 130.3, 129.9, 126.3, 124.6, 121.2, 110.1, 105.1, 82.5, 68.3, 21.4. HRMS (ESI) m/z: [M + H]+ calculated for C12H12NO3, 218.0817; found 218.0810.
- 4-(5-methoxy-1H-indol-1-yl)-1,3-dioxolan-2-one (3o): Yield: 28%, 33.0 mg, white solid, mp 141–143 °C, Rf = 0.32 (H/E = 2:1). 1H NMR (400 MHz, CDCl3) δ 7.32 (d, J = 8.6 Hz, 1H), 7.21 (d, J = 3.4 Hz, 1H), 7.15 (d, J = 1.9 Hz, 1H), 7.00 (dd, J = 8.9, 2.0 Hz, 1H), 6.73 (dd, J = 7.2, 5.1 Hz, 1H), 6.64 (d, J = 3.3 Hz, 1H), 4.98-4.85 (m, 2H), 3.91 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 155.5, 153.3, 130.5, 130.2, 124.9, 113.4, 110.1, 106.2, 103.7, 82.2, 67.9, 55.8. HRMS (ESI) m/z: [M + H]+ calculated for C12H12NO4, 234.0766; found 234.0758.
- 4-(5-(benzyloxy)-1H-indol-1-yl)-1,3-dioxolan-2-one (3p): Yield: 41%, 63.3 mg, white solid, mp 146–148 °C, Rf = 0.32 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.66 (d, J = 3.2 Hz, 1H), 7.47 (d, J = 8.1 Hz, 3H), 7.40 (t, J = 7.4 Hz, 2H), 7.33 (d, J = 6.9 Hz, 1H), 7.23 (s, 1H), 7.16 (t, J = 6.2 Hz, 1H), 7.00 (d, J = 8.9 Hz, 1H), 6.59 (d, J = 3.2 Hz, 1H), 5.13 (s, 2H), 5.01 (d, J = 6.3 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 154.10, 154.08, 137.9, 131.0, 130.2, 128.9, 128.2, 128.1, 126.9, 113.5, 111.1, 105.4, 105.0, 82.6, 70.1, 68.3. HRMS (ESI) m/z: [M + H]+ calculated for C18H16NO4, 310.1079; found 310.1078.
- 4-(5-chloro-1H-indol-1-yl)-1,3-dioxolan-2-one (3q): Yield: 85%, 100.4 mg, white solid, mp 127–129 °C, Rf = 0.37 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.81–7.79 (m, 1H), 7.70 (s, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.30 (d, J = 8.7 Hz, 1H), 7.22 (t, J = 6.3 Hz, 1H), 6.68 (d, J = 3.4 Hz, 1H), 5.04 (d, J = 6.3 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 154.0, 134.6, 130.7, 127.8, 126.1, 123.1, 120.8, 112.0, 105.2, 82.2, 68.5. HRMS (ESI) m/z: [M + H]+ calculated for C11H9ClNO3, 238.0271; found 238.0265.
- 4-(5-bromo-1H-indol-1-yl)-1,3-dioxolan-2-one (3r): Yield: 80%, 112.5 mg, white solid, mp 108–110 °C, Rf = 0.37 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.85 (s, 1H), 7.79 (d, J = 3.3 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.42 (d, J = 8.6 Hz, 1H), 7.22 (t, J = 6.3 Hz, 1H), 6.68 (d, J = 3.2 Hz, 1H), 5.03 (d, J = 6.3 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 153.9, 134.9, 131.4, 127.7, 125.7, 123.8, 114.1, 112.5, 105.1, 82.2, 68.4. HRMS (ESI) m/z: [M + H]+ calculated for C11H9BrNO3, 281.9766; found 281.9757.
- 4-(5-iodo-1H-indol-1-yl)-1,3-dioxolan-2-one (3s): Yield: 86%, 141.6 mg, white solid, mp 134–136 °C, Rf = 0.36 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 8.02 (s, 1H), 7.73 (d, J = 3.3 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.45 (d, J = 8.7 Hz, 1H), 7.20 (t, J = 6.3 Hz, 1H), 6.65 (d, J = 3.2 Hz, 1H), 5.02 (d, J = 6.3 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 153.9, 135.3, 132.1, 131.1, 130.0, 127.2, 112.9, 104.8, 85.6, 82.1, 68.4. HRMS (ESI) m/z: [M + H]+ calculated for C11H9INO3, 329.9627; found 329.9619.
- methyl 1-(2-oxo-1,3-dioxolan-4-yl)-1H-indole-5-carboxylate (3t): Yield: 82%, 107.2 mg, white solid, mp 164–166 °C, Rf = 0.34 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 8.33 (s, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.86 (d, J = 3.3 Hz, 1H), 7.71 (d, J = 8.7 Hz, 1H), 7.28 (t, J = 6.3 Hz, 1H), 6.85 (d, J = 3.3 Hz, 1H), 5.05 (d, J = 6.2 Hz, 2H), 3.87 (s, 3H). 13C NMR (101 MHz, d6-DMSO) δ 167.2, 153.9, 138.7, 129.2, 127.7, 124.0, 123.8, 123.1, 110.6, 106.7, 82.1, 68.6, 52.4. HRMS (ESI) m/z: [M + H]+ calculated for C13H12NO5, 262.0715; found 262.0708.
- 4-(5-nitro-1H-indol-1-yl)-1,3-dioxolan-2-one (3u): Yield: 91%, 112.5 mg, light yellow solid, mp 188–190 °C, Rf = 0.40 (H/E = 1:1). 1H NMR (400 MHz, d6-DMSO) δ 8.64 (s, 1H), 8.18 (d, J = 9.1 Hz, 1H), 8.00 (d, J = 3.4 Hz, 1H), 7.83 (d, J = 9.1 Hz, 1H), 7.32 (t, J = 6.3 Hz, 1H), 6.97 (d, J = 3.4 Hz, 1H), 5.12–4.99 (m, 2H). 13C NMR (101 MHz, d6-DMSO) δ 153.8, 142.6, 139.2, 129.5, 128.9, 118.4, 118.3, 111.2, 107.6, 81.9, 68.7. HRMS (ESI) m/z: [M + H]+ calculated for C11H9N2O5, 249.0511; found 249.0503.
- 1-(2-oxo-1,3-dioxolan-4-yl)-1H-indole-5-carbonitrile (3v): Yield: 97%, 111.0 mg, white solid, mp 186–188 °C, Rf = 0.40 (H/E = 1:1). 1H NMR (400 MHz, d6-DMSO) δ 8.19 (s, 1H), 7.95 (d, J = 3.4 Hz, 1H), 7.81 (d, J = 8.6 Hz, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.30 (t, J = 6.2 Hz, 1H), 6.83 (d, J = 3.3 Hz, 1H), 5.05 (d, J = 5.8 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 153.8, 137.9, 129.3, 128.6, 127.0, 126.1, 120.5, 111.9, 106.2, 103.9, 81.9, 68.6. HRMS (ESI) m/z: [M + H]+ calculated for C12H9N2O3, 229.0613; found 229.0607.
- 4-(6-methyl-1H-indol-1-yl)-1,3-dioxolan-2-one (3w): Yield: 47%, 51.2 mg, white solid, mp 130–132 °C, Rf = 0.36 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.61 (d, J = 3.4 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.38 (s, 1H), 7.18 (t, J = 6.3 Hz, 1H), 7.01 (d, J = 8.1 Hz, 1H), 6.61 (d, J = 3.2 Hz, 1H), 5.02 (d, J = 6.3 Hz, 2H), 2.44 (s, 3H). 13C NMR (101 MHz, d6-DMSO) δ 154.1, 133.2, 132.5, 127.3, 125.4, 123.2, 121.2, 110.3, 105.5, 82.3, 68.3, 22.0. [M + H]+ calcd for C12H12NO3, 218.0817; found 218.0810.
- 4-(6-methoxy-1H-indol-1-yl)-1,3-dioxolan-2-one (3x): Yield: 55%, 63.9 mg, white solid, mp 152–154 °C, Rf = 0.34 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.54 (d, J = 3.5 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.23 (t, J = 6.3 Hz, 1H), 7.19 (s, 1H), 6.82 (d, J = 8.6 Hz, 1H), 6.60 (d, J = 3.3 Hz, 1H), 5.02 (d, J = 6.3 Hz, 2H), 3.81 (s, 3H). 13C NMR (101 MHz, d6-DMSO) δ 157.0, 154.1, 137.2, 124.4, 123.2, 122.0, 111.2, 105.7, 94.4, 82.1, 68.4, 55.9. HRMS (ESI) m/z: [M + H]+ calculated for C12H12NO4, 234.0766; found 234.0765.
- 4-(6-(benzyloxy)-1H-indol-1-yl)-1,3-dioxolan-2-one (3y): Yield: 55%, 85.0 mg, white solid, mp 139–141 °C, Rf = 0.36 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.55 (d, J = 3.4 Hz, 1H), 7.52–7.48 (m, 3H), 7.41 (t, J = 7.4 Hz, 2H), 7.37–7.31 (m, 2H), 7.21 (t, J = 6.3 Hz, 1H), 6.90 (d, J = 8.7 Hz, 1H), 6.60 (d, J = 3.3 Hz, 1H), 5.19-5.12 (m, 2H), 5.02 (d, J = 6.3 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 156.0, 154.1, 137.6, 137.2, 133.2, 128.9, 128.3, 128.2, 124.6, 123.5, 122.1, 111.7, 105.7, 95.8, 82.1, 70.2, 68.3. HRMS (ESI) m/z: [M + H]+ calculated for C18H16NO4, 310.1079; found 310.1071.
- methyl 1-(2-oxo-1,3-dioxolan-4-yl)-1H-indole-6-carboxylate (3z): Yield: 90%, 116.9 mg, white solid, mp 140–142 °C, Rf = 0.37 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 8.28 (s, 1H), 7.98 (d, J = 3.3 Hz, 1H), 7.80-7.73 (m, 2H), 7.38 (t, J = 6.3 Hz, 1H), 6.80 (d, J = 3.3 Hz, 1H), 5.16–4.92 (m, 2H), 3.89 (s, 3H). 13C NMR (101 MHz, d6-DMSO) δ 167.3, 153.9, 135.6, 133.2, 129.7, 124.3, 122.2, 121.5, 112.2, 105.87, 82.0, 68.5, 52.5. HRMS (ESI) m/z: [M + H]+ calculated for C13H12NO5, 262.0715; found 262.0712.
- 4-(6-chloro-1H-indol-1-yl)-1,3-dioxolan-2-one (3aa): Yield: 92%, 109.0 mg, white solid, mp 152–154 °C, Rf = 0.38 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.76 (s, 2H), 7.64 (d, J = 8.4 Hz, 1H), 7.30–7.17 (m, 2H), 6.72 (d, J = 3.3 Hz, 1H), 5.03 (d, J = 6.0 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 153.9, 136.7, 133.2, 128.1, 128.0, 126.9, 122.9, 121.9, 110.6, 105.9, 82.0, 68.5. HRMS (ESI) m/z: [M + H]+ calculated for C11H9ClNO3, 238.0271; found 238.0264.
3.2.2. The Typical Procedure for the Synthesis of 5
- 4-(naphthalen-2-yloxy)-1,3-dioxolan-2-one (5): Yield: 87%, 100.0 mg, white solid, mp 106–108 °C, Rf = 0.45 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 7.96 (d, J = 8.9 Hz, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.59 (s, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.32 (dd, J = 8.9, 2.3 Hz, 1H), 6.71 (d, J = 3.9 Hz, 1H), 4.88 (dd, J = 9.9, 5.5 Hz, 1H), 4.66 (d, J = 10.0 Hz, 1H). 13C NMR (101 MHz, d6-DMSO) δ 154.1, 153.3, 134.1, 130.5, 130.2, 128.1, 127.7, 127.3, 125.4, 118.9, 111.3, 98.1, 70.9. HRMS (ESI) m/z: [M + H]+ calculated for C13H11O4, 231.0657; found 231.0654.
3.2.3. The Typical Procedure for the Synthesis of 7 and 9
- 4-(1H-pyrrolo [3,2-b]pyridin-1-yl)-1,3-dioxolan-2-one (7): Yield: 81%, 82.2 mg, white solid, mp 176–178 °C, Rf = 0.31 (EtOAc). 1H NMR (400 MHz, d6-DMSO) δ 8.47 (d, J = 4.7 Hz, 1H), 8.05 (d, J = 3.5 Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.29 (dd, J = 8.3, 4.6 Hz, 1H), 7.23 (t, J = 6.3 Hz, 1H), 6.81 (d, J = 3.4 Hz, 1H), 5.05 (d, J = 6.2 Hz, 2H). 13C NMR (101 MHz, d6-DMSO) δ 153.9, 147.6, 144.8, 129.8, 128.9, 118.0, 117.9, 106.1, 82.3, 68.4. HRMS (ESI) m/z: [M + H]+ calculated for C10H9N2O3, 205.0613; found 205.0613.
- 4-(1H-pyrrolo [2,3-b]pyridin-1-yl)-1,3-dioxolan-2-one (9): Yield: 88%, 89.3 mg, white solid, mp 169-171 °C, Rf = 0.37 (H/E = 2:1). 1H NMR (400 MHz, d6-DMSO) δ 8.33 (d, J = 4.7 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 3.7 Hz, 1H), 7.28-7.12 (m, 2H), 6.66 (d, J = 3.7 Hz, 1H), 5.08-4.98 (m, 2H). 13C NMR (101 MHz, d6-DMSO) δ 154.3, 147.5, 143.8, 130.0, 128.0, 121.9, 118.0, 102.9, 81.6, 68.4. HRMS (ESI) m/z: [M + H]+ calculated for C10H9N2O3, 205.0613; found 205.0608.
3.3. X-ray Crystallographic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem. 2018, 150, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-H.; Shi, F. Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies and Applications. Acc. Chem. Res. 2022, 55, 2562–2580. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Dong, W.; Guo, Q.; Li, X.; Huang, L. The importance of indole and azaindole scaffold in the development ofantitumor agents. Eur. J. Med. Chem. 2020, 203, 112506. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.P.; Singh, O.M. Recent Progress in Biological Activities of Indole and Indole Alkaloids. Mini-Rev. Med. Chem. 2018, 18, 9–25. [Google Scholar] [CrossRef]
- Goel, B.; Jaiswal, S.; Jain, S.K. Indole derivatives targeting colchicine bindingsite as potential anticancer agents. Arch. Pharm. 2023, 356, e2300210. [Google Scholar] [CrossRef]
- Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem. 2017, 134, 159–184. [Google Scholar] [CrossRef]
- Neto, J.S.S.; Zeni, G. Recent advances in the synthesis of indoles from alkynes and nitrogen sources. Org. Chem. Front. 2020, 7, 155–210. [Google Scholar] [CrossRef]
- Ye, Z.-S.; Li, J.-C.; Wang, G. Transition-Metal-Catalyzed Enantioselective Synthesis of Indoles from 2-Alkynylanilines. Synthesis 2022, 54, 2133–2147. [Google Scholar] [CrossRef]
- Bandini, M.; Eichholzer, A. Catalytic Functionalization of Indoles in a New Dimension. Angew. Chem. Int. Ed. 2009, 48, 9608–9644. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, Y.; Qian, B.; Yang, L.; Xia, C.; Huang, H. Enantioselective N–H Functionalization of Indoles with α,β-Unsaturated γ-Lactams Catalyzed by Chiral Brønsted Acids. Angew. Chem. Int. Ed. 2011, 50, 5682–5686. [Google Scholar] [CrossRef]
- Chen, J.B.; Jia, Y.X. Recent Progress in Transition-Metal-Catalyzed Enantioselective Indole Functionalizations. Org. Biomol. Chem. 2017, 15, 3550–3567. [Google Scholar] [CrossRef]
- Cruz, F.A.; Zhu, Y.; Tercenio, Q.D.; Shen, Z.; Dong, V.M. Alkyne Hydroheteroarylation: Enantioselective Coupling of Indoles and Alkynes via Rh-Hydride Catalysis. J. Am. Chem. Soc. 2017, 139, 10641–10644. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Kim, S.-T.; Jeong, J.; Baik, M.-H.; Buchwald, S.L. CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence. J. Am. Chem. Soc. 2019, 141, 3901–3909. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.A.; Fandrick, K.R.; Song, H.-J. Enantioselective Friedel-Crafts Alkylations of α,β-Unsaturated 2-Acyl Imidazoles Catalyzed by Bis(oxazolinyl)pyridine-Scandium(III) Triflate Complexes. J. Am. Chem. Soc. 2005, 127, 8942–8943. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.A.; Fandrick, K.R.; Song, H.-J.; Scheidt, K.A.; Xu, R. Enantioselective Friedel-Crafts Alkylations Catalyzed by Bis(oxazolinyl)pyridine-Scandium(III) Triflate Complexes. J. Am. Chem. Soc. 2007, 129, 10029–10041. [Google Scholar] [CrossRef]
- Rueping, M.; Nachtsheim, B.J.; Moreth, S.A.; Bolte, M. Asymmetric Brønsted Acid Catalysis: Enantioselective Nucleophilic Substitutions and 1,4-Additions. Angew. Chem. Int. Ed. 2008, 47, 593–596. [Google Scholar] [CrossRef]
- Ganesh, M.; Seidel, D. Catalytic Enantioselective Additions of Indoles to Nitroalkenes. J. Am. Chem. Soc. 2008, 130, 16464–16465. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, V.K. Highly Enantioselective Friedel-Crafts Reaction of Indoles with 2-EnoylPyridine 1-Oxides Catalyzed by Chiral Pyridine 2,6-Bis(5′,5′-diphenyloxazoline)-Cu(II) Complexes. Org. Lett. 2008, 10, 4121–4124. [Google Scholar] [CrossRef]
- Trubitsõn, D.; Kanger, T. Enantioselective Catalytic Synthesis of N-alkylated Indoles. Symmetry 2020, 12, 1184. [Google Scholar] [CrossRef]
- Clanton, N.A.; Spiller, T.E.; Ortiz, E.; Gao, Z.; Rodriguez-Poirier, J.M.; DelMonte, A.J.; Frantz, D.E. A Metal-Free Reductive N-Alkylation of Indoles with Aldehydes. Org. Lett. 2021, 23, 3233–3236. [Google Scholar] [CrossRef]
- Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Chemoselective Asymmetric N-Allylic Alkylation of Indoles with Morita-Baylis-Hillman Carbonates. Angew. Chem. Int. Ed. 2009, 48, 5737–5740. [Google Scholar] [CrossRef] [PubMed]
- Stanley, L.M.; Hartwig, J.F. Iridium-Catalyzed Regio- and Enantioselective N-Allylation of Indoles. Angew. Chem. Int. Ed. 2009, 48, 7841–7844. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Sun, W.-S.; Liu, C.-X.; Wang, L.; Wang, R. Asymmetric Organocatalytic N- Alkylation of Indole-2-carbaldehydes with α,β-Unsaturated Aldehydes: One-Pot Synthesis of Chiral Pyrrolo[1,2-a]indole-2-carbaldehydes. Chem. Eur. J. 2010, 16, 440–444. [Google Scholar] [CrossRef]
- Bandini, M.; Bottoni, A.; Eichholzer, A.; Miscione, G.P.; Stenta, M. Asymmetric Phase-Transfer-Catalyzed Intramolecular N-Alkylation of Indoles and Pyrroles: A Combined Experimental and Theoretical Investigation. Chem. Eur. J. 2010, 16, 12462–12473. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Y.; Yu, X.-Y.; Chen, J.-R.; Feng, B.; Zhang, H.; Qi, Y.-H.; Xiao, W.-J. Enantioselective Direct Functionalization of Indoles by Pd/Sulfoxide-Phosphine-Catalyzed N-Allylic Alkylation. Org. Lett. 2015, 17, 1381–1384. [Google Scholar] [CrossRef]
- Yagil, G. The proton dissociation constant of pyrrole, indole and related compounds. Tetrahedron 1967, 23, 2855–2861. [Google Scholar] [CrossRef]
- Ghosh, K.; Nishii, Y.; Miura, M. Rhodium-Catalyzed Annulative Coupling Using Vinylene Carbonate as an Oxidizing Acetylene Surrogate. ACS Catal. 2019, 9, 11455–11460. [Google Scholar] [CrossRef]
- Hara, H.; Hirano, M.; Tanaka, K. A New Route to Substituted Phenols by Cationic Rhodium(I)/BINAP Complex-Catalyzed Decarboxylative [2+2+2] Cycloaddition. Org. Lett. 2009, 11, 1337–1340. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, F.; Hayashi, T. Synthesis of Arylacetaldehydes by Iridium-Catalyzed Arylation of Vinylene Carbonate with Arylboronic Acids. Angew. Chem. Int. Ed. 2019, 58, 11054–11057. [Google Scholar] [CrossRef]
- Kato, M.; Ghosh, K.; Nishii, Y.; Miura, M. Rhodium-Catalyzed Direct Formylmethylation Using Vinylene Carbonate and Sequential Dehydrogenative Esterification. Chem. Commun. 2021, 57, 8280–8283. [Google Scholar] [CrossRef]
- Hu, W.; Wang, X.; Yu, X.; Zhu, X.; Hao, X.; Song, M. Rh(III)-Catalyzed Divergent C2-carboxymethylation of Indoles and C7-formylmethylation of Indolines with Vinylene Carbonate. Asian J. Org. Chem. 2021, 10, 2557–2561. [Google Scholar] [CrossRef]
- Nishii, Y.; Miura, M. Cp*M-Catalyzed Direct Annulation with Terminal Alkynes and Their Surrogates for the Construction of Multi-Ring Systems. ACS Catal. 2020, 10, 9747–9757. [Google Scholar] [CrossRef]
- Mihara, G.; Ghosh, K.; Nishii, Y.; Miura, M. Concise Synthesis of Isocoumarins through Rh-Catalyzed Direct Vinylene Annulation: Scope and Mechanistic Insight. Org. Lett. 2020, 22, 5706–5711. [Google Scholar] [CrossRef] [PubMed]
- Nan, J.; Ma, Q.; Yin, J.; Liang, C.; Tian, L.; Ma, Y. RhIII-Catalyzed formal [5+1] cyclization of 2-pyrrolyl/indolylanilines using vinylene carbonate as a C1 synthon. Org. Chem. Front. 2021, 8, 1764–1769. [Google Scholar] [CrossRef]
- Wang, C.; Fan, X.; Chen, F.; Qian, P.-C.; Cheng, J. Vinylene carbonate: Beyond the ethyne surrogate in rhodium-catalyzed annulation with amidines toward 4-methylquinazolines. Chem. Commun. 2021, 57, 3929–3932. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, H.K.; Kang, J.Y.; Mishra, N.K.; Kim, I.S. Assembly of the Hydroxycinnoline Core via Hydrazide-Assisted Rh(III)-Catalyzed C–H Functionalization and Annulation. Synthesis 2022, 54, 4461–4471. [Google Scholar] [CrossRef]
- Shivarkar, A.B.; Gupte, S.P.; Chaudhari, R.V. Synthesis of β-Amino Alcohols from Aromatic Amines and Alkylene Carbonates Using Na-Y Zeolite Catalyst. Synlett 2006, 9, 1374–1378. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, L.; Xia, C. A method for the synthesis of 2-oxazolidinones and 2-imidazolidinones from five-membered cyclic carbonates and β-aminoalcohols or 1,2-diamines. Green Chem. 2007, 9, 369–372. [Google Scholar] [CrossRef]
- Gong, H.; Yang, N.-F.; Deng, G.-J.; Xu, G.-Y. An Eco-friendly, Convenient, and Practical Conversion of Arylamines to Oxazolidinones. Chem. Lett. 2009, 38, 584–589. [Google Scholar] [CrossRef]
- Mei, C.; Zhao, Y.; Zou, K.; Cao, C.; Pang, G.; Shi, Y. Synthesis of N-aryl-2-oxazolidinones from cyclic carbonates and aromatic amines catalyzed by bio-catalyst. Res. Chem. Intermed. 2018, 44, 2179–2194. [Google Scholar] [CrossRef]
- Chong, S.Y.; Wang, T.T.; Cheng, L.C.; Lv, H.Y.; Ji, M. Metal–Organic Framework MIL-101-NH2-Supported Acetate-Based Butylimidazolium Ionic Liquid as a Highly Efficient Heterogeneous Catalyst for the Synthesis of 3-Aryl-2-oxazolidinones. Langmuir 2019, 35, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, X.-Y. Ruthenium-Catalyzed Regio-Selective Synthesis of C3-Alkylated Indoles following Transfer Hydrogenation or Borrowing Hydrogen Strategy. Synthesis 2023, 55, 1460–1466. [Google Scholar]
- Zhou, X.-Y.; Chen, X. Halogen Bond-Catalyzed Friedel-Crafts Alkylation of Indole with Ketones and Aldehydes for the Synthesis of Symmetrical 3,3’-diindolylmethanes Using Simple Halogen Donor Catalyst. Lett. Org. Chem. 2021, 18, 604–610. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Chen, X. Pd/C-Catalyzed transfer hydrogenation of N–H indoles with trifluoroethanol and tetrahydroxydiboron as the hydrogen source. Org. Biomol. Chem. 2021, 19, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-Y.; Chen, X.; Liu, H.-L. Ru-catalyzed oxidative dearomatization-hydroxylation of N-Boc indoles. Syn. Commun. 2021, 51, 453–460. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, X.-Y.; Feng, X.-J.; Bao, M. Ruthenium-Catalyzed Oxidative Dearomatization of N-Boc Indoles. Synthesis 2021, 53, 1121–1126. [Google Scholar]
- Zhou, X.-Y.; Chen, X. Ru-catalyzed oxidation and C–C bond formation of indoles for the synthesis of 2-indolyl indolin-3-ones under mild reaction conditions. Can. J. Chem. 2020, 98, 667–669. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Chen, X. An Easy-to-Operate N-Carbonylation of Indoles with Diaryl Carbonates as Reagent and Na2CO3 as Catalyst. Syn. Commun. 2020, 80, 1854–1862. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Chen, X. Na2CO3-Catalyzed N-Acylation of Indoles with Alkenyl Carboxylates. Synthesis 2019, 51, 516–521. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Chen, X.; Wang, L.-G.; Yang, D.; Li, J.-H. Ruthenium-Catalyzed Oxidative Dearomatization of Indoles for the Construction of C2-Quaternary Indolin-3-ones. Synlett 2018, 29, 835–839. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Chen, X.; Wang, L.-G.; Yang, D.; Li, Z. Palladium-catalyzed Oxidation-hydroxylation and -methoxylation of N-Boc Indoles for the Synthesis of 3-Oxoindolines. Synthesis 2017, 49, 3662–3669. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, H.; Meng, X.; Cao, Z.; Chen, G.; Tian, L.; Sun, X.; You, J. Base-Mediated Domino Reaction of ortho-Carbonylated Alkynyl-Substituted Arenealdehydes with Indoles: Access to Indole-Functionalized Isobenzofurans. Eur. J. Org. Chem. 2017, 2017, 2615–2620. [Google Scholar] [CrossRef]
Entry | Cat. (x mol) | Solvent | Temp. (°C) | Yield (%) b |
---|---|---|---|---|
1 | NEt3 (20) | CH3CN | 70 | 47 |
2 | KHCO3 (20) | CH3CN | 70 | 29 |
3 | Na2CO3 (20) | CH3CN | 70 | trace |
4 | NaOAc (20) | CH3CN | 70 | trace |
5 | K2CO3 (20) | CH3CN | 70 | 71 |
6 | HCO2Na∙2H2O (20) | CH3CN | 70 | n.d. c |
7 | DABCO (20) | CH3CN | 70 | n.d. c |
8 | DBU (20) | CH3CN | 70 | n.d. c |
9 | K2CO3 (30) | CH3CN | 70 | 74 |
10 | K2CO3 (40) | CH3CN | 70 | 79 |
11 | K2CO3 (50) | CH3CN | 70 | 68 |
12 | K2CO3 (40) | CH3CN | 80 | 50 |
13 | K2CO3 (40) | CH3CN | 60 | 80 |
14 | K2CO3 (40) | CH3CN | 50 | 56 |
15 | K2CO3 (40) | benzene | 60 | n.d. c |
16 | K2CO3 (40) | toluene | 60 | n.d. c |
17 | K2CO3 (40) | MTBE | 60 | n.d. c |
18 | K2CO3 (40) | DME | 60 | n.d. c |
19 | K2CO3 (40) | THF | 60 | n.d. c |
20 | K2CO3 (40) | 1,4-dioxane | 60 | n.d. c |
21 d | K2CO3 (40) | CH3CN | 60 | 51 |
22 e | K2CO3 (40) | CH3CN | 60 | 74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhou, X.-Y.; Bao, M. Base-Catalyzed Nucleophilic Addition Reaction of Indoles with Vinylene Carbonate: An Approach to Synthesize 4-Indolyl-1,3-dioxolanones. Molecules 2023, 28, 7450. https://doi.org/10.3390/molecules28217450
Chen X, Zhou X-Y, Bao M. Base-Catalyzed Nucleophilic Addition Reaction of Indoles with Vinylene Carbonate: An Approach to Synthesize 4-Indolyl-1,3-dioxolanones. Molecules. 2023; 28(21):7450. https://doi.org/10.3390/molecules28217450
Chicago/Turabian StyleChen, Xia, Xiao-Yu Zhou, and Ming Bao. 2023. "Base-Catalyzed Nucleophilic Addition Reaction of Indoles with Vinylene Carbonate: An Approach to Synthesize 4-Indolyl-1,3-dioxolanones" Molecules 28, no. 21: 7450. https://doi.org/10.3390/molecules28217450
APA StyleChen, X., Zhou, X. -Y., & Bao, M. (2023). Base-Catalyzed Nucleophilic Addition Reaction of Indoles with Vinylene Carbonate: An Approach to Synthesize 4-Indolyl-1,3-dioxolanones. Molecules, 28(21), 7450. https://doi.org/10.3390/molecules28217450