New Thiazolyl-Pyrazoline Derivatives as Potential Dual EGFR/HER2 Inhibitors: Design, Synthesis, Anticancer Activity Evaluation and In Silico Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Anti-CancerActivity against MCF-7 and MCF-10A
2.2.2. SAR Studies
2.2.3. EGFR and HER2 Kinase Inhibitory Assay
2.2.4. Cell Cycle Analysis
2.2.5. Apoptosis Analysis
2.3. Computational Studies
Molecular Modelling
2.4. In Silico Evaluation of Pharmacokinetic Parameters
3. Conclusions
4. Experimental
4.1. Chemistry
4.1.1. Synthesis of the 5-(aryldiazinyl)-4-methylthiazoles 4a–d and 5-(arylhydrazineylidene)-thiazol-4(5H)-ones 5a–d
- 5-((4-Chlorophenyl)diazenyl)-2-(3-(3,4-dimethoxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-methylthiazole (4a): Reddish orange powder, 59% yield; mp 192–194 °C; IR νmax/cm−1 3061 (C-H Ar), 2967 (C-H Ali.), 1566 (C=N), 1508 (C=C), 1244 (C-O); 1H-NMR δ 2.48 (s, 3H, CH3), 3.38 (dd, J = 18, 4.8 Hz, 1H, Ha4 pyrazoline), 3.73 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 4.01 (dd, J = 18, 11.2 Hz, 1H, Hb4 pyrazoline), 5.78 (dd, J = 11.2, 4.8 Hz, 1H, H5 pyrazoline), 6.92 (d, J = 8.8 Hz, 2H, ArHs), 7.04 (d, J = 8.4 Hz, 1H, ArH), 7.21 (d, J = 8.5 Hz, 2H, ArHs), 7.33-7.40 (m, 2H, ArHs), 7.49 (d, J = 8.7 Hz, 2H, ArHs), 7.66 (d, J = 8.7 Hz, 2H, ArHs); 13C-NMR δ 16.55 (C of CH3), 44.01 (C4 of pyrazoline), 55.57 (C of OCH3), 56.05 (C of OCH3), 56.14 (C of OCH3), 62.95 (C5 of pyrazoline), 109.70, 112.04, 114.67 (2C), 121.63, 123.24, 123.49 (2C), 127.61 (2C), 129.78 (2C), 133.33, 133.45, 140.60, 149.34, 151.52, 151.90, 157.79, 159.22, 159.91, 165.00 (C2 of thiazole); MS m/z (%) 548.88 (M+), 550.3 (M++1); For C28H26ClN5O3S (548.06): Calc.: C, 61.36; H, 4.78; N, 12.78. Found: C, 61.62; H, 4.59; N, 12.97.
- 4-((2-(3-(3,4-Dimethoxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-methylthiazol-5-yl)diazenyl)benzenesulfonamide (4b): Red powder, 52% yield; mp 200–202 °C; IR νmax/cm−1 3342, 3241 (NH2), 2935 (C-H Ali.), 1554 (C=N), 1509 (C=C), 1245 (C-O); 1H-NMR δ 2.53 (s, 3H, CH3), 3.43 (dd, J = 18, 6.4 Hz, 1H, Ha4 pyrazoline), 3.73 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 4.05 (dd, J = 18, 12 Hz, 1H, Hb4 pyrazoline), 5.83 (dd, J = 11.2, 4.0 Hz, 1H, H5 pyrazoline), 6.93 (d, J = 8.8 Hz, 2H, ArHs), 7.06 (d, J = 8.4 Hz, 1H, ArH), 7.21 (d, J = 8.7 Hz, 2H, ArHs), 7.64-7.33 (m, 4H, 2ArH + 2H of D2O exchangeable NH2), 7.79 (d, J = 8.7 Hz, 2H, ArHs), 7.89 (d, J = 8.7 Hz, 2H, ArHs); 13C-NMR δ 16.25 (C of CH3), 43.56 (C4 of pyrazoline), 55.10 (C of OCH3), 55.57 (C of OCH3), 55.68 (C of OCH3), 62.55 (C5 of pyrazoline), 109.25, 111.54, 114.21 (2C), 121.28, 121.59 (2C), 122.68, 126.94, 127.15 (2C), 132.89, 140.38, 143.04, 148.88, 151.53, 154.22, 157.93, 158.78, 161.17, 162.31, 165.01 (C2 of thiazole); MS m/z (%) 592.98 (M+). For C28H28N6O5S2 (592.69): Calc.: C, 56.74; H, 4.76; N, 14.18. Found: C, 56.89; H, 4.92; N, 14.31.
- 2-(5-(4-Chlorophenyl)-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-5-((4-chlorophenyl)diazenyl)-4-methylthiazole (4c): Redish orange powder, 91% yield; mp 210–212 °C; IR νmax/cm−1 3070 (C-H Ar), 2963 (C-H Ali.), 1556 (C=N), 1509 (C=C), 1246 (C-O); 1H-NMR δ 2.5 (s, 3H, CH3), 3.43 (dd, J = 18, 3.6 Hz, 1H, Ha4 pyrazoline), 3.82 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 4.07 (dd, J = 18, 12 Hz, 1H, Hb4 pyrazoline), 5.87 (dd, J = 12, 4.0 Hz, 1H, H5 pyrazoline), 7.06 (d, J = 8 Hz, 1H, ArHs), 7.30–7.52 (m, 8H, ArHs), 7.66 (d, J = 8 Hz, 2H, ArHs); 13C-NMR δ 16.1 (C of CH3), 43.48 (C4 of pyrazoline), 55.60 (C of OCH3), 55.71 (C of OCH3), 62.28 (C5 of pyrazoline), 109.28, 111.57, 121.22, 122.63, 123.10 (2C), 127.82 (2C), 128.90 (2C), 129.36 (2C), 132.27, 132.66, 140.03, 140.32, 148.88, 151.03, 151.48, 157.26, 159.31, 164.53 (C2 of thiazole); MS m/z (%) 554.86 (M++2). For C27H23Cl2N5O2S (552.47): Calc.: C, 58.70; H, 4.20; N, 12.68. Found: C, 58.88; H, 4.35; N, 12.79.
- 4-((2-(5-(4-Chlorophenyl)-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4- methylthiazol-5-yl)diazenyl)benzenesulfonamide (4d): Red powder, 90% yield; mp 208–210 °C; IR νmax/cm−1 3314, 3233 (NH2), 3084 (C-H Ar), 2958 (C-H Ali.), 1600 (C=N), 1509 (C=C), 1250 (C-O); 1H-NMR δ 2.52 (s, 3H, CH3), 3.45 (dd, J = 18, 4 Hz, 1H, Ha4 pyrazoline), 3.83 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 4.09 (dd, J = 18, 11.4 Hz, 1H, Hb4 pyrazoline), 5.9 (dd, J = 11.4, 4.0 Hz, 1H, H5 pyrazoline), 7.06 (d, J = 8.4 Hz, 1H, ArH), 7.31 (d, J = 8.4 Hz, 2H, ArHs), 7.49-7.34 (m, 6H, 4ArHs + 2H of D2O exchangeable NH2), 7.80 (d, J = 8.5 Hz, 2H, ArHs), 7.89 (d, J = 8.7 Hz, 2H, ArHs); 13C-NMR δ 16.24 (C of CH3), 43.49 (C4 of pyrazoline), 55.60 (C of OCH3), 55.72 (C of OCH3), 62.63 (C5 of pyrazoline), 109.33, 111.59, 121.35, 121.66 (2C), 122.54, 126.98 (2C), 127.82 (2C), 128.93 (2C), 132.33, 140.55, 148.89, 151.59, 154.17, 157.83, 160.84, 162.35 (2C), 165.00 (C2 of thiazole); MS m/z (%) 597.83 (M+); For C27H25ClN6O4S2 (597.11): Calc.: C, 54.31; H, 4.22; N, 14.07. Found: C, 54.49; H, 4.34; N, 14.21.
- 5-(2-(4-Chlorophenyl)hydrazineylidene)-2-(3-(3,4-dimethoxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (5a): yellow powder, 32% yield; mp > 300 °C; IR νmax/cm−1 3077 (N-H), 3001 (C-H Ar), 2962 (C-H Ali.), 1668 (C=O), 1602 (C=N), 1512 (C=C); 1H-NMR δ 3.49 (dd, J = 18, 3.8 Hz, 1H, Ha4 pyrazoline), 3.74 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 4.13 (dd, J = 18, 12 Hz, 1H, Hb4 pyrazoline), 5.84 (dd, J = 12, 3.8 Hz, 1H, H5 pyrazoline), 6.94 (d, J = 7.0 Hz, 2H, ArHs), 7.10–7.14 (m, 1H, ArH), 7.20 (d, J = 8.4 Hz, 2H, ArHs), 7.26–7.35 (m, 4H, ArHs), 7.4-7.45 (m, 2H, ArHs), 10.76 (s, D2O exchangeable, 1H, NH); 13C-NMR δ 44.02 (C4 of pyrazoline), 55.62 (C of OCH3), 56.09 (C of OCH3), 56.23 (C of OCH3), 63.42 (C5 of pyrazoline), 110.07, 112.16, 114.76 (2C), 115.85 (2C), 122.23, 122.48, 125.48, 127.63 (2C), 129.50 (2C), 131.08, 132.54, 143.37, 149.33, 152.53, 159.39, 162.02, 167.19 (C2 of thiazolone), 175.63 (C=O); MS m/z (%) 551.03 (M++1), 550.52 (M+); For C27H24ClN5O4S (550.03): Calc.: C, 58.96; H, 4.40; N, 12.73. Found: C, 59.09; H, 4.28; N, 12.85.
- 4-(2-(2-(3-(3,4-Dimethoxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)hydrazineyl)benzenesulfonamide (5b): Yellow powder, 40% yield; mp 249–251 °C; IR νmax/cm−1 3254 (NH2), 2965 (C-H Ali.), 1699 (C=O), 1598 (C=N), 1509 (C=C); 1H-NMR δ 3.51 (dd, J = 18, 4 Hz, 1H, Ha4 pyrazoline), 3.74 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 4.13 (dd, J = 18, 11 Hz, 1H, Hb4 pyrazoline), 5.84 (dd, J = 11, 4 Hz, 1H, H5 pyrazoline), 6.94 (d, J = 8.8 Hz, 2H, ArHs), 7.05-7.27 (m, 4H, ArHs), 7.35-7.62 (m, 4H, 2ArHs + 2H of D2O exchangeable NH2), 7.40-7.45 (m, 2H, ArHs), 7.9 (s, 1H, ArH), 11.01 (s, D2O exchangeable, 1H, NH); 13C-NMR δ 43.57 (C4 of pyrazoline), 55.14 (C of OCH3), 55.60 (C of OCH3), 55.77 (C of OCH3), 63.02 (C5 of pyrazoline), 109.57, 111.67, 113.31, 114.25, 114.30, 114.32 (2C), 121.79, 122.00, 126.31, 127.21, 127.36, 132.03, 132.30, 136.38, 146.59, 148.88, 152.10, 158.94, 161.79, 166.64 (C2 of thiazolone), 174.92 (C=O); MS m/z (%) 594. 35 (M+); For C27H26N6O6S2 (594.66): Calc.: C, 54.53; H, 4.41; N, 14.13. Found: C, 54.68; H, 4.52; N, 14.26.
- 2-(5-(4-Chlorophenyl)-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-5-(2-(4-chlorophenyl)hydrazineylidene)thiazol-4(5H)-one (5c): Yellow powder, 70% yield; mp 278–280 °C; IR νmax/cm−1 3190 (N-H), 3065 (C-H Ar), 2930 (C-H Ali.), 1663 (C=O), 1601 (C=N), 1510 (C=C); 1H-NMR δ 3.52 (dd, J = 18.2, 4.5 Hz, 1H, Ha4 pyrazoline), 3.84 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 4.14 (dd, J = 18.2, 11.1 Hz, 1H, Hb4 pyrazoline), 5.9 (dd, J = 11.1, 4.0 Hz, 1H, H5 pyrazoline), 7.01 (d, J = 8.4 Hz, 1H, ArH), 7.22-7.35 (m, 6H, ArHs), 7.39-7.47 (m, 4H, ArHs), 10.58 (s, D2O exchangeable, 1H, NH); 13C-NMR δ 43.46 (C4 of pyrazoline), 55.58 (C of OCH3), 55.76 (C of OCH3), 62.67 (C5 of pyrazoline), 109.54, 111.64, 115.37, 121.79, 121.92, 125.03, 127.81 (2C), 128.96 (2C), 129.11, 132.53, 139.05, 148.87, 152.08, 161.34, 166.76 (C2 of thiazolone), 174.86 (C=O); MS m/z (%) 558.7 (M+ + 3), 554.39 (M+); For C26H21Cl2N5O3S (554.45): Calc.: C, 56.32; H, 3.82; N, 12.63. Found: C, 56.43; H, 3.98; N, 12.56.
- 4-(2-(2-(5-(4-Chlorophenyl)-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)hydrazineyl)benzenesulfonamide (5d): Yellow powder, 80% yield; mp 292–294 °C; IR νmax/cm−1 3236 (NH2), 3098 (N-H), 3065 (C-H Ar), 2965 (C-H Ali.), 1681 (C=O), 1642 (C=N), 1513 (C=C);1H-NMR δ 3.53 (dd, J = 18.3, 4.4 Hz, 1H, Ha4 pyrazoline), 3.85 (s, 6H, 2OCH3), 4.17 (dd, J = 18.2, 11.2 Hz, 1H, Hb4 pyrazoline), 5.92 (dd, J = 11.2, 4.4 Hz, 1H, H5 pyrazoline), 7.13 (d, J = 8.5 Hz, 1H, ArH), 7.21 (s, 2H, ArHs), 7.31 (d, J = 8.6 Hz, 2H, ArHs), 7.37-7.47 (m, 6H, ArHs + 2H of D2O exchangeable NH2), 7.75 (d, J = 8.9 Hz, 2H, ArHs), 11.05 (s, D2O exchangeable, 1H, NH); 13C-NMR δ 43.50 (C4 of pyrazoline), 55.62 (C of OCH3), 55.78 (C of OCH3), 62.76 (C5 of pyrazoline), 109.68, 111.69, 113.36 (2C), 121.81, 121.87, 127.34, 127.81 (2C), 128.97 (2C), 132.07, 132.54, 132.60, 136.41, 139.01, 146.63, 148.86, 152.12, 161.58, 167.04 (C2 of thiazolone), 174.90 (C=O); For C26H23ClN6O5S2 (599.08): Calc.: C, 52.13; H, 3.87; N, 14.03. Found: C, 52.30; H, 4.02; N, 14.16.
4.1.2. Synthesis of 2-(3-(3,4-dimethoxyphenyl)-5-(aryl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-ones 6a, b
- 2-(3-(3,4-Dimethoxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (6a): White powder, 77% yield; mp 200–202 °C; IR νmax/cm−1 3008 (C-H Ar), 2963 (C-H Ali.), 1693 (C=O), 1620 (C=N), 1513 (C=C); 1H-NMR δ 3.42 (dd, J = 18.4, 4 Hz, 1H, Ha4 pyrazoline), 3.73 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 3.91 (s, 2H, thiazolone CH2), 4.05 (dd, J = 18.4, 11.2 Hz, 1H, Hb4 pyrazoline), 5.73 (dd, J = 11.2, 4.0 Hz, 1H, H5 pyrazoline), 6.92 (d, J = 8.6 Hz, 2H, ArHs), 7.08 (d, J = 8.4 Hz, 1H, ArH), 7.15 (d, J = 8.5 Hz, 2H, ArH), 7.38–7.42 (m, 2H, ArHs); 13C-NMR δ 39.18 (C5 of thiazolone), 43.90 (C4 of pyrazoline), 55.59 (C of OCH3), 56.07 (C of OCH3), 56.18 (C of OCH3), 63.63 (C5 of pyrazoline), 110.14, 112.09, 114.68 (2C), 121.87, 122.74, 127.52 (2C), 132.97, 149.31, 152.27, 159.30, 160.99, 177.27 (C2 of thiazolone), 187.27 (C=O). MS m/z (%) 411.67 (M+). For C21H21N3O4S (411.48): Calc.: C, 61.30; H, 5.14; N, 10.21. Found: C, 61.48; H, 5.22; N, 10.35.
- 2-(5-(4-Chlorophenyl)-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (6b): White powder, 83% yield; mp 208–210 °C; IR νmax/cm−1 3004 (C-H Ar), 2965 (C-H Ali.), 1740 (C=O), 1599 (C=N), 1510 (C=C); 1H-NMR δ 3.45 (dd, J = 18, 4 Hz, 1H, Ha4 pyrazoline), 3.82 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.93 (s, 2H, thiazolone CH2), 4.09 (dd, J = 18, 11.2 Hz, 1H, Hb4 pyrazoline), 5.79 (dd, J = 11.2, 4.0 Hz, 1H, H5 pyrazoline), 7.09 (d, J = 8.4 Hz, 1H, ArH), 7.25 (d, J = 8.4 Hz, 2H, ArHs), 7.36–7.44 (m, 4H, ArHs); 13C-NMR δ 39.28 (C of thiazolone), 43.79 (C4 of pyrazoline), 56.05 (C of OCH3), 56.16 (C of OCH3), 63.42 (C5 of pyrazoline), 110.17, 112.04, 121.90, 122.60, 128.15 (2C), 129.35 (2C), 132.89, 139.90, 149.30, 152.31, 160.83, 177.47 (C2 of thiazolone), 187.15 (C=O); MS m/z (%) 417.82 (M+ +2), 415.78 (M+). For C20H18ClN3O3S (415.89): Calc.: C, 57.76; H, 4.36; N, 10.10. Found: C, 57.67; H, 4.48; N, 10.34.
4.1.3. Synthesis of 5-arylidene-2-(3-(3,4-dimethoxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-ones 7a–d
- 5-Benzylidene-2-(3-(3,4-dimethoxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (7a): Yellow powder, 66% yield; mp 294–296 °C; IR νmax/cm−1 3004 (C-H Ar), 2965 (C-H Ali.), 1682 (C=O), 1610 (C=N), 1511 (C=C); 1H-NMR δ 3.51 (dd, J = 18.2, 4 Hz, 1H, Ha4 pyrazoline), 3.73 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 4.12 (dd, J = 18.2, 11.2 Hz, 1H, Hb4 pyrazoline), 5.85 (dd, J = 11.2, 4.0 Hz, 1H, H5 pyrazoline), 6.94 (d, J = 8.8 Hz, 2H, ArHs), 7.11 (d, J = 8.6 Hz, 1H, ArH), 7.2 (d, J = 8.8 Hz, 2H, ArH), 7.41 (d, J = 2.1 Hz, 1H, ArH), 7.44–7.76 (m, 6H, ArHs), 7.88–7.98 (m, 1H, ArH); 13C-NMR δ 43.60 (C4 of pyrazoline), 55.14 (C of OCH3), 55.75 (C of OCH3), 55.80 (C of OCH3), 63.32 (C5 of pyrazoline), 110.21, 111.69, 114.30 (2C), 121.67, 122.06, 127.18 (2C), 128.18, 129.29 (2C), 129.67 (2C), 129.85, 130.61, 132.17, 133.92, 148.89, 152.06, 158.94, 161.73, 169.67 (C2 of thiazolone), 179.05 (C=O); MS m/z (%) 499.59 (M+). For C28H25N3O4S (499.59): Calc.: C, 67.32; H, 5.04; N, 8.41. Found: C, 67.19; H, 5.15; N, 8.58.
- 2-(3-(3,4-Dimethoxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-5-(4-methoxybenzylidene)thiazol-4(5H)-one (7b): Orange powder, 54% yield; mp 245–247 °C; IR νmax/cm−1 1682 (C=O), 1601 (C=N), 1510 (C=C); 1H-NMR δ 3.49 (dd, J = 18, 3.8 Hz, 1H, Ha4 pyrazoline), 3.74 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 4.10 (dd, J = 18, 10.8 Hz, 1H, Hb4 pyrazoline), 5.83 (dd, J = 10.8, 3.8 Hz, 1H, H5 pyrazoline), 6.94 (d, J = 8.7 Hz, 2H, ArHs), 7.09 (d, J = 6.4 Hz, 3H, ArHs), 7.2 (d, J = 8.8 Hz, 2H, ArHs), 7.41 (s, 1H, ArH), 7.47 (d, J = 8.3 Hz, 1H, ArH), 7.60 (d, J = 8.8 Hz, 3H, ArHs); 13C-NMR δ 43.57 (C4 of pyrazoline), 55.12 (C of OCH3), 55.43 (C of OCH3), 55.74 (C of OCH3), 55.76 (C of OCH3), 63.22 (C5 of pyrazoline), 110.11, 111.66, 114.28 (2C), 114.83 (2C), 121.60, 122.13, 125.23, 126.34 (2C), 127.15, 130.63, 131.57 (2C), 132.26, 148.87, 151.99, 158.91, 160.54, 161.31, 169.59 (C2 of thiazolone), 179.31 (C=O). For C29H27N3O5S (529.61): Calc.: C, 65.77; H, 5.14; N, 7.93. Found: 65.59; H, 5.31; N, 7.86.
- 5-Benzylidene-2-(5-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (7c): Yellow powder, 78% yield; mp 283–285 °C; IR νmax/cm−1 3001 (C-H Ar), 2956 (C-H Ali.), 1687 (C=O), 1609 (C=N), 1513 (C=C); 1H-NMR δ 3.54 (dd, J = 18, 4 Hz, 1H, Ha4 pyrazoline), 3.85 (s, 3H, OCH3), 3.87 (s, 3H, OCH3), 4.16 (dd, J = 18, 11.6 Hz, 1H, Hb4 pyrazoline), 5.93 (dd, J = 11.6, 4 Hz, 1H, H5 pyrazoline), 7.1–7.13 (m, 1H, ArHs), 7.24–7.58 (m, 9H, ArHs), 7.67–7.69 (m, 2H, ArHs), 7.96 (s, 1H, ArH); 13C-NMR δ 46.45 (C4 of pyrazoline), 56.07 (C of OCH3), 56.50 (C of OCH3), 63.55 (C5 of pyrazoline), 110.19, 110.73, 112.09, 122.22, 128.17 (2C), 128.28, 129.37 (2C), 129.46, 129.79 (2C), 129.80, 130.17, 131.59, 139.99, 148.84, 149.34, 152.34, 152.43, 166.19, 177.46 (C2 of thiazolone), 187.16 (C=O). MS m/z (%) 503.71 (M+). For C27H22ClN3O3S (504.00): Calc.: C, 64.34; H, 4.40; N, 8.34. Found: C, 64.61; H, 4.52; N, 8.39.
- 2-(5-(4-Chlorophenyl)-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-5-(4-methoxybenzylidene)thiazol-4(5H)-one (7d): Yellow powder, 82% yield; m.p. 250–252 °C; IR νmax/cm−1 3047 (C-H Ar), 2930 (C-H Ali.), 1688 (C=O), 1600 (C=N), 1508 (C=C); 1H-NMR δ 3.48 (dd, J = 18, 4 Hz, 1H, Ha4 pyrazoline), 3.82 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 4.13 (dd, J = 18, 11.2 Hz, 1H, Hb4 pyrazoline), 5.89 (dd, J = 11.2, 4.0 Hz, 1H, H5 pyrazoline), 7.07-7.09 (m, 3H, ArHs), 7.24-7.58 (m, 9H, ArHs); 13C-NMR δ 43.50 (C4 of pyrazoline), 55.45 (C of OCH3), 55.59 (C of OCH3), 55.77 (C of OCH3), 62.97 (C5 of pyrazoline), 110.16, 111.67, 114.86 (2C), 121.65, 121.98, 125.11, 126.28, 127.77 (2C), 128.95 (2C), 130.90, 131.60 (2C), 132.49, 139.20, 148.85, 152.03, 160.60, 161.19, 169.81 (C2 of thiazolone), 179.22 (C=O); MS m/z (%) 536.57 (M++1), 534.27 (M+). For C28H24ClN3O4S (534.03): Calc.: C, 62.98; H, 4.53; N, 7.87. Found: C, 63.23; H, 4.63; N, 7.66.
4.1.4. Synthesis of 2-(3-(3,4-dimethoxyphenyl)-5-(aryl)-4,5-dihydro-1H-pyrazol-1-yl)-5-(2-oxoindolin-3-ylidene)thiazol-4(5H)-ones 8a, b
- 2-(3-(3,4-Dimethoxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-5-(2-oxoindolin-3-ylidene)thiazol-4(5H)-one (8a): Orange powder, 84% yield; mp > 300 °C; IR νmax/cm−1 3307 (N-H), 3012 (C-H Ar), 2932 (C-H Ali.), 1697 (C=O), 1613 (C=N), 1510 (C=C); 1H-NMR δ 3.51 (dd, J = 18, 4 Hz, 1H, Ha4 pyrazoline), 3.73 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 4.12 (dd, J = 18, 11 Hz, 1H, Hb4 pyrazoline), 5.9 (dd, J = 11, 4.0 Hz, 1H, H5 pyrazoline), 6.91–6.95 (m, 3H, ArHs), 7.02–7.05 (m, 1H, ArH), 7.11 (d, J = 8.4 Hz, 1H, ArH), 7.21 (d, J = 8.7 Hz, 2H, ArHs), 7.31–7.41 (m, 2H, ArHs), 7.50 (d, J = 8.4 Hz, 1H, ArH), 8.92 (d, J = 7.8 Hz, 1H, ArH), 11.13 (s, D2O exchangeable, 1H, NH); 13C-NMR δ 43.43 (C4 of pyrazoline), 55.15 (C of OCH3), 55.67 (C of OCH3), 55.72 (C of OCH3), 63.35 (C5 of pyrazoline), 109.88, 110.11, 111.63, 114.30 (2C), 120.41, 121.83, 122.00, 125.80, 127.18 (2C), 128.01, 131.64, 132.19, 137.24, 143.11, 148.87, 152.13, 158.94, 162.38, 169.00 (C2 of thiazolone), 172.03, 172.20 (C=O), 178.92 (C=O); MS m/z (%) 540.33 (M+). For C29H24N4O5S (540.59): Calc.: C, 64.43; H, 4.48; N, 10.36. Found: C, 64.56; H, 4.53; N, 10.51.
- 2-(5-(4-Chlorophenyl)-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-5-(2-oxoindolin-3-ylidene)thiazol-4(5H)-one (8b): Orange powder, 87% yield; mp > 300 °C; IR νmax/cm−1 3311 (N-H), 3010 (C-H Ar), 2932 (C-H Ali.), 1681 (C=O), 1612 (C=N), 1510 (C=C); 1H-NMR δ 3.52 (d, J = 15.2 Hz, 1H, Ha4 pyrazoline), 3.84 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 4.12 (d, J = 15.2 Hz, 1H, Hb4 pyrazoline), 5.9 (d, J = 12 Hz, 1H, H5 pyrazoline), 6.93–6.95 (m, 2H, ArHs), 7.01–7.16 (m, 3H, ArHs), 7.23–7.61 (m, 5H, ArHs), 8.92 (d, J = 8.4 Hz, 1H, ArH), 11.18 (s, D2O exchangeable, 1H, NH); MS m/z (%) 547.03 (M++1). For C28H21ClN4O4S (545.01): Calc.: C, 61.71; H, 3.88; N, 10.28. Found: C, 62.03; H, 4.13; N, 10.36.
4.1.5. Synthesis of 3-(2-(3-(3,4-dimethoxyphenyl)-5-(aryl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4-yl)-2H-chromen-2-ones 10a, b
- 3-(2-(3-(3,4-Dimethoxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4-yl)-2H-chromen-2-one (10a): Green powder, 53% yield; mp 228–231 °C; IR νmax/cm−1 3066 (C-H Ar), 2995 (C-H Ali.), 1711 (C=O), 1605 (C=N), 1511 (C=C); 1H-NMR δ 3.42 (dd, J = 18, 6.8 Hz, 1H, Ha4 pyrazoline), 3.72 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 4.02 (dd, J = 18, 12 Hz, 1H, Hb4 pyrazoline), 5.6 (dd, J = 12, 6.8 Hz, 1H, H5 pyrazoline), 6.96–7.06 (m, 4H, ArHs), 7.32–7.43 (m, 5H, ArHs), 7.60–7.70 (m, 2H, ArHs), 7.78 (d, J = 7.6 Hz, 1H, ArH), 8.35 (s, 1H, ArH); 13C-NMR δ 43.16 (C4 of pyrazoline), 55.06 (C of OCH3), 55.52 (C of OCH3), 55.61 (C of OCH3), 63.68 (C5 of pyrazoline), 108.97, 110.80, 111.55, 113.86 (2C), 115.90, 119.10, 120.23, 120.46, 123.52, 124.78, 126.60, 128.36 (2C), 128.61, 131.66, 133.56, 138.29, 143.75, 148.82, 150.68, 152.26, 153.37, 158.7 (C=O), 163.58 (C2 of thiazole); MS m/z (%) 539.68 (M+). For C30H25N3O5S (539.61): Calc.: C, 66.78; H, 4.67; N, 7.79. Found: C, 66.53; H, 4.78; N, 7.85.
- 3-(2-(5-(4-Chlorophenyl)-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4-yl)-2H-chromen-2-one (10b): Green powder, 69% yield; mp 238–240 °C; IR νmax/cm−1 3066 (C-H Ar), 2987 (C-H Ali.), 1731 (C=O), 1603 (C=N), 1543 (C=C); 1H-NMR δ 3.34 (s, 1H, Ha4 pyrazoline), 3.92 (s, 3H, OCH3), 3.96 (s,1H, Hb4 pyrazoline), 4.01 (s, 3H, OCH3), 5.56 (s, 1H, H5 pyrazoline), 6.86 (d, J = 8.4 Hz, 1H, ArH), 7.14 (d, J = 8 Hz, 1H, ArH), 7.27–7.3 (m, 2H, ArHs), 7.35–7.40 (m, 4H, ArHs), 7.45–7.6 (m, 3H, ArHs), 7.82 (s, 1H, ArH), 8.47 (s, 1H, ArH); 13C-NMR δ 44.68 (C4 of pyrazoline), 56.13 (C of OCH3), 56.47 (C of OCH3), 64.51 (C5 of pyrazoline), 109.01, 110.72, 116.30 (2C), 119.62, 119.75, 120.98, 123.44, 124.65 (3C), 128.24 (3C), 128.75, 129.27 (2C), 131.48, 134.13, 139.45, 149.43, 151.60, 152.95, 159.80 (C=O), 164.00 (C2 of thiazole); MS m/z (%) 545.59 (M++1), 544.19 (M+). For C29H22ClN3O4S (544.02): Calc.: C, 64.03; H, 4.08; N, 7.72. Found: C, 64.24; H, 3.98; N, 7.86.
4.2. Biological Evaluation
4.2.1. Cytotoxicity
4.2.2. EGFR and HER2 Enzyme Inhibition
4.2.3. Cell Cycle Analysis and Apoptotic Assay
4.3. Computational Studies
4.3.1. Molecular Modeling
4.3.2. In Silico SwissADME Predictions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2023, 10, 451. [Google Scholar]
- Eroles, P.; Bosch, A.; Alejandro Pérez-Fidalgo, J.; Lluch, A. Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat. Rev. 2012, 38, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Burris, H.A. Overcoming acquired resistance to anticancer therapy: Focus on the PI3K/AKT/mTOR pathway. Cancer Chemother. Pharmacol. 2013, 71, 829–842. [Google Scholar] [CrossRef] [PubMed]
- Sidney, S.; Go, A.S.; Rana, J.S. Transition from Heart Disease to Cancer as the Leading Cause of Death in the United States. Ann. Intern. Med. 2019, 171, 225. [Google Scholar] [CrossRef] [PubMed]
- Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 2005, 14 (Suppl. S1), 35–48. [Google Scholar] [CrossRef]
- DeVita, V.T.; Chu, E. A history of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653. [Google Scholar] [CrossRef]
- Kannaiyan, R.; Mahadevan, D.J. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev. Anticancer. Ther. 2018, 18, 1249–1270. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 2016, 103, 26–48. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol. Res. 2015, 100, 1–23. [Google Scholar] [CrossRef]
- Witton, C.J.; Reeves, J.R.; Going, J.J.; Cooke, T.G.; Bartlett, J.M. Expression of the HER1–4 family of receptor tyrosine kinases in breast cancer. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2003, 200, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res. 2023, 187, 106552. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, L.; Chen, C.; Nie, J.; Jiao, B. Can EGFR be a therapeutic target in breast cancer? Biochim. Et Biophys. Acta (BBA)—Rev. Cancer 2022, 1877, 188789. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.F.; Wong, C.; Wu, J.M. Anti-EGFR therapy: Mechanism and advances in clinical efficacy in breast cancer. J. Oncol. 2009, 2009, 526963. [Google Scholar] [CrossRef] [PubMed]
- Ignatiadis, M.; Desmedt, C.; Sotiriou, C.; de Azambuja, E.; Piccart, M. HER-2 as a Target for Breast Cancer Therapy. Clin. Cancer Res. 2009, 15, 1848–1852. [Google Scholar] [CrossRef]
- Fung, C.; Chen, X.; Grandis, J.R.; Duvvuri, U. EGFR tyrosine kinase inhibition induces autophagy in cancer cells. Cancer Biol. Ther. 2012, 13, 1417–1424. [Google Scholar] [CrossRef]
- Ryan, Q.; Ibrahim, A.; Cohen, M.H.; Johnson, J.; Ko, C.W.; Sridhara, R.; Justice, R.; Pazdur, R. FDA drug approval summary: Lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncol. 2008, 13, 1114–1119. [Google Scholar] [CrossRef]
- Tebbutt, N.; Pedersen, M.W.; Johns, T.G. Targeting the ERBB family in cancer: Couples therapy. Nat. Rev. Cancer 2013, 13, 663–673. [Google Scholar] [CrossRef]
- Nelson, M.H.; Dolder, C.R. Lapatinib: A novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann. Pharmacother. 2006, 40, 261–269. [Google Scholar] [CrossRef]
- Ripain, I.H.A.; Ngah, N. A brief review on the thiazole derivatives: Synthesis methods and biological activities. Malays. J. Anal. Sci. 2021, 25, 257–267. [Google Scholar]
- Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem. 2020, 188, 112016. [Google Scholar] [CrossRef] [PubMed]
- Menzies, A.M.; Long, G.V.; Murali, R. Dabrafenib and its potential for the treatment of metastatic melanoma. Drug Des. Dev. Ther. 2012, 6, 391–405. [Google Scholar]
- Ballantyne, A.D.; Garnock-Jones, K.P. Dabrafenib: First global approval. Drugs 2013, 73, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Merino, P.; Tejero, T.; Unzurrunzaga, F.J.; Franco, S.; Chiacchio, U.; Saita, M.G.; Iannazzo, D.; Piperno, A.; Romeo, G. An efficient approach to enantiomeric isoxazolidinyl analogues of tiazofurin based on nitrone cycloadditions. Tetrahedron Asymmetry 2005, 16, 3865–3876. [Google Scholar] [CrossRef]
- Olivieri, A.; Manzione, L. Dasatinib: A new step in molecular target therapy. Ann. Oncol. 2007, 18, vi42–vi46. [Google Scholar] [CrossRef]
- Lee, F.Y.F.; Borzilleri, R.; Fairchild, C.R.; Kamath, A.; Smykla, R.; Kramer, R.; Vite, G. Preclinical discovery of ixabepilone, a highly active antineoplastic agent. Cancer Chemother. Pharmacol. 2008, 63, 157–166. [Google Scholar] [CrossRef]
- George, R.F.; Samir, E.M.; Abdelhamed, M.N.; Abdel-Aziz, H.A.; Abbas, S.E.S. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorganic Chem. 2019, 83, 186–197. [Google Scholar] [CrossRef]
- Abolibda, T.Z.; Fathalla, M.; Farag, B.; Zaki, M.E.A.; Gomha, S.M. Synthesis and molecular docking of some novel 3-thiazolyl-coumarins as inhibitors of VEGFR-2 kinase. Molecules 2023, 28, 689. [Google Scholar] [CrossRef]
- Sharma, D.; Malhotra, A.; Bansal, R. An overview of discovery of thiazole containing heterocycles as potent GSK-3β inhibitors. Curr. Drug Discov. Technol. 2018, 15, 229–235. [Google Scholar] [CrossRef]
- Zhao, M.-Y.; Yin, Y.; Yu, X.-W.; Sangani, C.B.; Wang, S.-F.; Lu, A.-M.; Yang, L.-F.; Lv, P.-C.; Jiang, M.-G.; Zhu, H.-L. Synthesis, biological evaluation and 3D-QSAR study of novel 4,5-dihydro-1H-pyrazole thiazole derivatives as BRAFV600E inhibitors. Bioorganic Med. Chem. 2015, 23, 46–54. [Google Scholar] [CrossRef]
- Karabacak, M.; Altıntop, M.D.; İbrahim Çiftçi, H.; Koga, R.; Otsuka, M.; Fujita, M.; Özdemir, A. Synthesis and Evaluation of New Pyrazoline Derivatives as Potential Anticancer Agents. Molecules 2015, 20, 19066–19084. [Google Scholar] [CrossRef] [PubMed]
- Mantzanidou, M.; Pontiki, E.; Hadjipavlou-Litina, D. Pyrazoles and pyrazolines as anti-inflammatory agents. Molecules 2021, 26, 3439. [Google Scholar] [CrossRef] [PubMed]
- Chandra, T.; Garg, N.; Lata, S.; Saxena, K.K.; Kumar, A. Synthesis of substituted acridinyl pyrazoline derivatives and their evaluation for anti-inflammatory activity. Eur. J. Med. Chem. 2010, 45, 1772–1776. [Google Scholar] [CrossRef] [PubMed]
- Vijesh, A.M.; Isloor, A.M.; Shetty, P.; Sundershan, S.; Fun, H.K. New pyrazole derivatives containing 1, 2, 4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur. J. Med. Chem. 2013, 62, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Kaplancıklı, Z.A.; Özdemir, A.; Turan-Zitouni, G.; Altıntop, M.D.; Can, Ö.D. New pyrazoline derivatives and their antidepressant activity. Eur. J. Med. Chem. 2010, 45, 4383–4387. [Google Scholar] [CrossRef]
- Thach, T.-D.; Nguyen, T.M.-T.; Nguyen, T.A.-T.; Dang, C.-H.; Luong, T.-B.; Dang, V.-S.; Banh, K.-S.; Luc, V.-S.; Nguyen, T.-D. Synthesis and antimicrobial, antiproliferative and anti-inflammatory activities of novel 1,3,5-substituted pyrazoline sulphonamides. Arab. J. Chem. 2021, 14, 103408. [Google Scholar] [CrossRef]
- Kini, S.; Gandhi, A.M. Novel 2-pyrazoline derivatives as potential antibacterial and antifungal agents. Indian J. Pharm. Sci. 2008, 70, 105–108. [Google Scholar] [CrossRef]
- Takate, S.J.; Shinde, A.D.; Karale, B.K.; Akolkar, H.; Nawale, L.; Sarkar, D.; Mhaske, P.C. Thiazolyl-pyrazole derivatives as potential antimycobacterial agents. Bioorganic Med. Chem. Lett. 2019, 29, 1199–1202. [Google Scholar] [CrossRef]
- Lv, P.-C.; Li, D.-D.; Li, Q.-S.; Lu, X.; Xiao, Z.-P.; Zhu, H.-L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorganic Med. Chem. Lett. 2011, 21, 5374–5377. [Google Scholar] [CrossRef]
- Wang, H.-H.; Qiu, K.-M.; Cui, H.-E.; Yang, Y.-S.; Xing, M.; Qiu, X.-Y.; Bai, L.-F.; Zhu, H.-L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorganic Med. Chem. 2013, 21, 448–455. [Google Scholar] [CrossRef]
- Sever, B.; Altıntop, M.D.; Radwan, M.O.; Özdemir, A.; Otsuka, M.; Fujita, M.; Ciftci, H.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. Eur. J. Med. Chem. 2019, 182, 111648. [Google Scholar] [CrossRef] [PubMed]
- Al-Warhi, T.; Almahli, H.; Maklad, R.M.; Elsayed, Z.M.; El Hassab, M.A.; Alotaibi, O.J.; Aljaeed, N.; Ayyad, R.R.; Ghabour, H.A.; Eldehna, W.M.; et al. 1-Benzyl-5-bromo-3-hydrazonoindolin-2-ones as Novel Anticancer Agents: Synthesis, Biological Evaluation and Molecular Modeling Insights. Molecules 2023, 28, 3203. [Google Scholar] [CrossRef] [PubMed]
- Elgohary, M.K.; Abd El Hadi, S.R.; Abo-Ashour, M.F.; Abo-El Fetoh, M.E.; Afify, H.; Abdel-Aziz, H.A.; Abou-Seri, S.M. Fragment merging approach for the design of thiazole/thiazolidine clubbed pyrazoline derivatives as anti-inflammatory agents: Synthesis, biopharmacological evaluation and molecular modeling studies. Bioorg. Chem. 2023, 139, 106724. [Google Scholar] [CrossRef] [PubMed]
- Masoud, D.M.; Azzam, R.A.; Hamdy, F.; Mekawey, A.A.I.; Abdel-Aziz, H.A. Synthesis of some novel pyrazoline-thiazole hybrids and their antimicrobial activities. J. Heterocycl. Chem. 2019, 56, 3030–3041. [Google Scholar] [CrossRef]
- Abdel-Wahab, B.F.; Abdel-Aziz, H.A.; Ahmed, E.M. Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4, 5-dihydro-5-aryl-1-[4-(aryl)-1, 3-thiazol-2-yl]-1H-pyrazoles. Eur. J. Med. Chem. 2009, 44, 2632–2635. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, E.A.; Abd El-Hafeez, A.A.; Eldehna, W.M.; El Hassab, M.A.; Marzouk, H.M.M.; Elaasser, M.M.; Abou Taleb, N.A.; Amin, K.M.; Abdel-Aziz, H.A.; Ghosh, P. Discovery of novel thiazolyl-pyrazolines as dual EGFR and VEGFR-2 inhibitors endowed with in vitro antitumor activity towards non-small lung cancer. J. Enzym. Inhib. Med. Chem. 2022, 37, 2265–2282. [Google Scholar] [CrossRef]
- Al-Warhi, T.; El Kerdawy, A.M.; Said, M.A.; Albohy, A.; Elsayed, Z.M.; Aljaeed, N.; Elkaeed, E.B.; Eldehna, W.M.; Abdel-Aziz, H.A.; Abdelmoaz, M.A. Novel 2-(5-Aryl-4, 5-dihydropyrazol-1-yl) thiazol-4-one as EGFR inhibitors: Synthesis, biological assessment and molecular docking insights. Drug Des. Devel. Ther. 2022, 16, 1457–1471. [Google Scholar] [CrossRef]
- Fakhry, M.M.; Mahmoud, K.; Nafie, M.S.; Noor, A.O.; Hareeri, R.H.; Salama, I.; Kishk, S.M. Rational Design, Synthesis and Biological Evaluation of Novel Pyrazoline-Based Antiproliferative Agents in MCF-7 Cancer Cells. Pharmaceuticals 2022, 15, 1245. [Google Scholar] [CrossRef]
- Comşa, Ş.; Cimpean, A.M.; Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar]
- Vale, N.; Silva, S.; Duarte, D.; Crista, D.M.A.; da Silva, L.P.; da Silva, J.C.G.E. Normal breast epithelial MCF-10A cells to evaluate the safety of carbon dots. RSC Med. Chem. 2021, 12, 245–253. [Google Scholar] [CrossRef]
- Liu, Y.; Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2006, 2, 358–364. [Google Scholar] [CrossRef]
- Fabbro, D.; Ruetz, S.; Buchdunger, E.; Cowan-Jacob, S.W.; Fendrich, G.; Liebetanz, J.; Mestan, J.; O’Reilly, T.; Traxler, P.; Chaudhuri, B. Protein kinases as targets for anticancer agents: From inhibitors to useful drugs. Pharmacol. Ther. 2002, 93, 79–98. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, F.; Carradori, S.; Secci, D.; Bolasco, A.; Bizzarri, B.; Chimenti, P.; Granese, A.; Yáñez, M.; Orallo, F. Synthesis and inhibitory activity against human monoamine oxidase of N1-thiocarbamoyl-3,5-di(hetero)aryl-4,5-dihydro-(1H)-pyrazole derivatives. Eur. J. Med. Chem. 2010, 45, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, M.A.; Ibrahim, H.S.; Nocentini, A.; Eldehna, W.M.; Bonardi, A.; Abdel-Aziz, H.A.; Gratteri, P.; Abou-Seri, S.M.; Supuran, C.T. Novel 3-substituted coumarins as selective human carbonic anhydrase IX and XII inhibitors: Synthesis, biological and molecular dynamics analysis. Eur. J. Med. Chem. 2021, 209, 112897. [Google Scholar] [CrossRef] [PubMed]
- Wood, E.R.; Truesdale, A.T.; McDonald, O.B.; Yuan, D.; Hassell, A.; Dickerson, S.H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib) relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 2004, 64, 6652–6659. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Seto, M.; Banno, H.; Kawakita, Y.; Oorui, M.; Taniguchi, T.; Ohta, Y.; Tamura, T.; Nakayama, A.; Miki, H. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo [3, 2-d] pyrimidine scaffold. J. Med. Chem. 2011, 54, 8030–8050. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Tolosa, L.; Donato, M.T.; Gómez-Lechón, M.J. General Cytotoxicity Assessment by Means of the MTT Assay. In Protocols in In Vitro Hepatocyte Research; Vinken, M., Rogiers, V., Eds.; Springer: New York, NY, USA, 2015; pp. 333–348. [Google Scholar]
- Bahuguna, A.; Khan, I.; Bajpai, V.K.; Kang, S.C. MTT assay to evaluate the cytotoxic potential of a drug. ||| Bangladesh J. Pharmacol. 2017, 12, 115–118. [Google Scholar] [CrossRef]
- Hisham, M.; Youssif, B.G.M.; Osman, E.E.A.; Hayallah, A.M.; Abdel-Aziz, M. Synthesis and biological evaluation of novel xanthine derivatives as potential apoptotic antitumor agents. Eur. J. Med. Chem. 2019, 176, 117–128. [Google Scholar] [CrossRef]
- Gad, E.M.; Nafie, M.S.; Eltamany, E.H.; Hammad, M.S.A.G.; Barakat, A.; Boraei, A.T.A. Discovery of new apoptosis-inducing agents for breast cancer based on ethyl 2-amino-4, 5, 6, 7-tetra hydrobenzo [b] thiophene-3-carboxylate: Synthesis, in vitro, and in vivo activity evaluation. Molecules 2020, 25, 2523. [Google Scholar] [CrossRef]
- Darzynkiewicz, Z.; Bedner, E.; Smolewski, P. Flow cytometry in analysis of cell cycle and apoptosis. Semin. Hematol. 2001, 38, 179–193. [Google Scholar] [CrossRef] [PubMed]
- SwissADME Is an Online Utility. Available online: http://www.swissadme.ch/ (accessed on 15 September 2023).
Compound | IC50 (µM) |
---|---|
4a | 18.55 ± 0.19 |
4b | 17.12 ± 0.15 |
4c | 18.74 ± 0.22 |
4d | 17.08 ± 0.21 |
5a | 30.24 ± 0.24 |
5b | 27.31 ± 0.26 |
5c | 28.03 ± 0.25 |
5d | 25.70 ± 0.12 |
6a | 4.08 ± 0.08 |
6b | 5.64 ± 0.11 |
7a | 17.79 ± 0.14 |
7b | 20.03 ± 0.22 |
7c | 21.16 ± 0.24 |
7d | 20.17 ± 0.19 |
8a | 21.33 ± 0.21 |
8b | 19.46 ± 0.27 |
10a | 3.37 ± 0.13 |
10b | 3.54 ± 0.07 |
Lapatinib | 5.88 ± 0.04 |
Compound | IC50 (µM) |
---|---|
6a | ≥50 |
6b | 32.81 ± 1.27 |
10a | ≥50 |
10b | 27.14 ± 1.98 |
Lapatinib | ≥50 |
Compound | IC50 (µM) | |
---|---|---|
EGFR Kinase | HER2 Kinase | |
6a | 0.024 ± 0.005 | 0.047 ± 0.008 |
6b | 0.026 ± 0.002 | 0.081 ± 0.006 |
10a | 0.005 ± 0.002 | 0.022 ± 0.005 |
10b | 0.029 ± 0.004 | 0.065 ± 0.007 |
Lapatinib | 0.007 ± 0.001 | 0.018 ± 0.001 |
Compound/MCF-7 | DNA Content | ||
---|---|---|---|
%G0-G1 | %S | %G2/M | |
6a/MCF-7 | 69.82 | 22.06 | 8.12 |
10a/MCF-7 | 66.41 | 29.55 | 4.04 |
Cont. MCF-7 | 62.59 | 26.33 | 11.08 |
Compound/Cell Line | Apoptosis | Necrosis | ||
---|---|---|---|---|
Total | Early | Late | ||
6a/MCF-7 | 51.03 | 28.17 | 17.98 | 4.88 |
10a/MCF-7 | 42.66 | 19.22 | 15.91 | 7.53 |
Cont. MCF-7 | 2.27 | 0.76 | 0.13 | 1.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakhry, M.M.; Mattar, A.A.; Alsulaimany, M.; Al-Olayan, E.M.; Al-Rashood, S.T.; Abdel-Aziz, H.A. New Thiazolyl-Pyrazoline Derivatives as Potential Dual EGFR/HER2 Inhibitors: Design, Synthesis, Anticancer Activity Evaluation and In Silico Study. Molecules 2023, 28, 7455. https://doi.org/10.3390/molecules28217455
Fakhry MM, Mattar AA, Alsulaimany M, Al-Olayan EM, Al-Rashood ST, Abdel-Aziz HA. New Thiazolyl-Pyrazoline Derivatives as Potential Dual EGFR/HER2 Inhibitors: Design, Synthesis, Anticancer Activity Evaluation and In Silico Study. Molecules. 2023; 28(21):7455. https://doi.org/10.3390/molecules28217455
Chicago/Turabian StyleFakhry, Mariam M., Amr A. Mattar, Marwa Alsulaimany, Ebtesam M. Al-Olayan, Sara T. Al-Rashood, and Hatem A. Abdel-Aziz. 2023. "New Thiazolyl-Pyrazoline Derivatives as Potential Dual EGFR/HER2 Inhibitors: Design, Synthesis, Anticancer Activity Evaluation and In Silico Study" Molecules 28, no. 21: 7455. https://doi.org/10.3390/molecules28217455
APA StyleFakhry, M. M., Mattar, A. A., Alsulaimany, M., Al-Olayan, E. M., Al-Rashood, S. T., & Abdel-Aziz, H. A. (2023). New Thiazolyl-Pyrazoline Derivatives as Potential Dual EGFR/HER2 Inhibitors: Design, Synthesis, Anticancer Activity Evaluation and In Silico Study. Molecules, 28(21), 7455. https://doi.org/10.3390/molecules28217455