Hydrothermal Assembly, Structural Multiplicity, and Catalytic Knoevenagel Condensation Reaction of a Series of Coordination Polymers Based on a Pyridine-Tricarboxylic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrothermal Synthesis of Polymers 1–7
2.2. Crystal Structure of 1
2.3. Crystal Structure of 2
2.4. Crystal Structures of 3 and 4
2.5. Crystal Structure of 5
2.6. Crystal Structure of 6
2.7. Crystal Structure of 7
2.8. TGA and PXRD Data
2.9. Catalytic Knoevenagel Condensation
3. Experiments
3.1. Materials and Measurements
3.2. Synthesis of [Co(μ3-Hdpna)(μ-dpey)]n·nH2O (1)
3.3. Synthesis of [Zn4.5(μ6-dpna)3(phen)3]n (2)
3.4. Synthesis of [Co1.5(μ6-dpna)(2,2′-bipy)]n (3)
3.5. Synthesis of [Zn1.5(μ6-dpna)(2,2′-bipy)]n (4)
3.6. Synthesis of [Co3(μ3-dpna)2(4,4′-bipy)2(H2O)8]n·2nH2O (5)
3.7. Synthesis of [Co(bpb)2(H2O)4]n[Co2(μ3-dpna)2(H2O)4]n·3nH2O (6)
3.8. Synthesis of [Mn1.5(μ6-dpna)(μ-dpea)]n (7)
3.9. Single Crystal X-ray Diffraction and Topological Analysis
3.10. Catalytic Activity in Knoevenagel Condensation Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chakraborty, G.; Park, I.H.; Medishetty, R.; Vittal, J.J. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751–3891. [Google Scholar]
- Deng, Y.; Liu, H.; Yu, B.; Yao, M. Supramolecular Coordination Assemblies Constructed from Multifunctional Azole-Containing Carboxylic Acids. Molecules 2010, 15, 3478–3506. [Google Scholar] [CrossRef]
- Singh, Y.; Patel, R.N.; Singh, Y.P.; Patel, A.K.; Patel, N.; Singh, R.; Butcher, R.J.; Jasinski, J.P.; Colacio, E.; Palacios, M.A. Unprecedented tetranuclear complexes with “weighing balance shaped” topology: Single crystal structures, unusual EPR spectra, magnetic properties and antioxidant activity. Dalton Trans. 2017, 46, 11860–11874. [Google Scholar] [PubMed]
- Fan, L.; Liu, Z.; Zhang, Y.; Zhao, D.; Yang, J.; Zhang, X. p-Terphenyl-2,2″,5″,5‴-tetracarboxylate acid based bifunctional 1D Zinc(II) metal-organic platform for luminescent sensing and gas adsorption. Inorg. Chem. Commun. 2019, 107, 107463. [Google Scholar]
- Wu, D.; Liu, J.; Jin, J.; Cheng, J.; Wang, M.; Yang, G.; Wang, Y.Y. New Doubly Interpenetrated MOF with [Zn4O] Clusters and Its Doped Isomorphic MOF: Sensing, Dye, and Gas Adsorption Capacity. Cryst. Growth Des. 2019, 19, 6774–6783. [Google Scholar]
- Zhao, Y.; Wang, L.; Fan, N.N.; Han, M.L.; Yang, G.P.; Ma, L.F. Porous Zn(II)-Based Metal-Organic Frameworks Decorated with Carboxylate Groups Exhibiting High Gas Adsorption and Separation of Organic Dyes. Cryst. Growth Des. 2018, 18, 7114–7121. [Google Scholar] [CrossRef]
- Mörtel, M.; Oschwald, J.; Scheurer, A.; Drewello, T.; Khusniyarov, M.M. Molecular Valence Tautomeric Metal Complexes for Chemosensing. Inorg. Chem. 2021, 60, 14230–14237. [Google Scholar]
- Rashid, A.; Mondal, S.; Ghosh, P. Development and Application of Ruthenium(II) and Iridium(III) Based Complexes for Anion Sensing. Molecules 2023, 28, 1231. [Google Scholar] [PubMed]
- Zheng, Y.; Shen, Q.; Li, Z.; Jing, X.; Duan, C. Two Copper-Containing Polyoxometalate-Based Metal-Organic Complexes as Heterogeneous Catalysts for the C-H Bond Oxidation of Benzylic Compounds and Olefin Epoxidation. Inorg. Chem. 2022, 61, 11156–11164. [Google Scholar]
- Zhao, S.Q.; Gu, J.Z. Synthesis, structures and catalytic activity in Knoevenagel condensation reaction of two diphenyl ether tetracarboxylic acid-Co(II) coordination polymers. Chin. J. Inorg. Chem. 2022, 38, 161–170. [Google Scholar]
- Markad, D.; Mandal, S.K. Synthesis and structural characterization of a novel dinuclear Cu(II) complex: An efficient and recyclable bifunctional heterogeneous catalyst for the diastereoselective Henry reaction. Dalton Trans. 2018, 47, 5928–5932. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, N.; Fard, M.J.S.; Hayati, P.; Janczak, J.; Yazdian, F.; Rouhani, S.; Msagati, T.A.M. Antibacterial and cytotoxicity assay of two new Zn(ii)complexes: Synthesis, characterization, X-ray structure, topology, Hirshfeld surface and thermal analysis. J. Mol. Struct. 2021, 1231, 129947. [Google Scholar] [CrossRef]
- Hassan, M.; Nasr, S.M.; Abd-El Razek, S.E.; Abdel-Aziz, M.S.; El-Gamasy, S.M. New superior bioactive metal complexes of ligand with N, O donor atoms bearing sulfadiazine moiety: Physicochemical study and thermal behavior for chemotherapeutic application. Arab. J. Chem. 2020, 13, 7324–7337. [Google Scholar]
- Chen, X.; Li, G. Proton conductive Zr-based MOFs. Inorg. Chem. Front. 2020, 7, 3765–3784. [Google Scholar] [CrossRef]
- Qin, Y.; She, P.; Huang, X.; Huang, W.; Zhao, Q. Luminescent manganese(II) complexes: Synthesis, properties and optoelectronic applications. Coord. Chem. Rev. 2020, 416, 213331. [Google Scholar] [CrossRef]
- Hong, L.C.; Lin, L.Y.; Wei, L.; Fei, K.Y. Hydrothermal Synthesis, Crystal Structure and Properties of a New Binuclear Nickel(III) Complex with 3-(Pyridin-2-yl)-1,2,4-triazole. Chin. J. Struct. Chem. 2021, 40, 363–368. [Google Scholar]
- Zhang, Z.; Zhou, J.; Sun, H.X.; He, M.; Li, W.; Du, L.; Xie, M.; Zhao, Q.H. R-Substituent-Induced Structural Diversity and Single-Crystal to Single-Crystal Transformation of Coordination Polymers: Synthesis, Luminescence, and Magnetic Behaviors. Cryst. Growth Des. 2021, 21, 5086–5099. [Google Scholar] [CrossRef]
- Singh, R.S.; Paitandi, R.P.; Gupta, R.K.; Pandey, D.S. Recent developments in metal dipyrrin complexes: Design, synthesis, and applications. Coord. Chem. Rev. 2020, 414, 213269. [Google Scholar]
- Islam, S.; Tripathi, S.; Hossain, A.; Seth, S.K.; Mukhopadhyay, S. pH-induced structural variations of two new Mg(II)-PDA complexes: Experimental and theoretical studies. J. Mol. Struct. 2022, 1265, 133373. [Google Scholar] [CrossRef]
- Xu, M.; Liang, G.; Wang, S.; Ma, X.; Liang, G.; Ni, Q. Structural variability, topology and luminescent properties of three new cadmium (II) coordination polymers based on 4′,4′,4′-[(trimethylamino)]-tris[(1,1′-biphenyl)-2-carboxylate]. J. Mol. Struct. 2020, 1217, 128411. [Google Scholar] [CrossRef]
- Fonseca, D.; Pérez-Torres, A.F.; Cobo, J.; Zapata-Rivera, J.; Hurtado, J.J.; Macías, M.A. Influence of the Lewis basicity hardness of crystallization solvents on the coordination sphere of the complex [Co(3,5-dinitrobenzoate-O,O′)2]: Crystallographic and theoretical analysis. CrystEngComm 2022, 24, 2982–2991. [Google Scholar] [CrossRef]
- Meundaeng, N.; Rujiwatra, A.; Prior, T.J. Polymorphism in metal complexes of thiazole-4-carboxylic acid. Transit. Met. Chem. 2016, 41, 783–793. [Google Scholar] [CrossRef]
- Fontanet, M.; Rodríguez, M.; Viñas, C.; Teixidor, F.; Romero, I. Carboranycarboxylate Complexes as Efficient Catalysts in Epoxidation Reactions. Eur. J. Inorg. Chem. 2017, 2017, 4425–4429. [Google Scholar] [CrossRef]
- Kong, J.J.; Shao, D.; Zhang, J.C.; Jiang, Y.X.; Ji, C.L.; Huang, X.C. From mononuclear to two-dimensional cobalt(II) complexes based on a mixed benzimidazole-dicarboxylate strategy: Syntheses, structures, and magnetic properties. CrystEngComm 2019, 21, 749–757. [Google Scholar] [CrossRef]
- Jaćimović, Ž.; Kosović, M.; Kastratović, V.; Holló, B.B.; Szécsényi, K.M.; Szilágyi, I.M.; Latinović, N.; Vojinović-Ješić, L.; Rodić, M. Synthesis and characterization of copper, nickel, cobalt, zinc complexes with 4-nitro-3-pyrazolecarboxylic acid ligand. J. Therm. Anal. Calorim. 2018, 133, 813–821. [Google Scholar] [CrossRef]
- Świderski, G.; Świsłocka, R.; Łyszczek, R.; Wojtulewski, S.; Samsonowicz, M.; Lewandowski, W. Thermal, spectroscopic, X-ray and theoretical studies of metal complexes (sodium, manganese, copper, nickel, cobalt and zinc) with pyrimidine-5-carboxylic and pyrimidine-2-carboxylic acids. J. Therm. Anal. Calorim. 2019, 138, 2813–2837. [Google Scholar] [CrossRef]
- Li, H.Y.; Xu, J.; Li, L.K.; Du, X.S.; Li, F.A.; Xu, H.; Zang, S.Q. Photochromic Properties of a Series of Zinc(II)-Viologen Complexes with Structural Regulation by Anions. Cryst. Growth Des. 2017, 17, 6311–6319. [Google Scholar] [CrossRef]
- Stanojević, I.M.; Glišić, B.Đ.; Radanović, D.D.; Djuran, M.I. Copper(II) complexes of aminopolycarboxylate ligands with N2O2, N2O3 and N2O4 donor sets. The relationship between the ligand structure and molecular geometry of the complex. J. Mol. Struct. 2021, 1232, 130001. [Google Scholar] [CrossRef]
- Begum, R.; Rehman, M.; Shahid, K.; Haider, A.; Iqbal, M.; Tahir, M.N.; Ali, S. Synthesis, structural elucidation, DNA-binding and biological activity of nickel(II) mixed ligand carboxylate complexes. J. Mol. Struct. 2021, 1242, 130801. [Google Scholar] [CrossRef]
- Gao, X.; Geng, R.; Su, F. Three Co/Ni(II)-MOFs with dinuclear metal units constructed by biphenyl-3,3′,5,5′-tetracarboxylic acid and N-donor ligands: Synthesis, structures, and magnetic properties. J. Solid State Chem. 2021, 293, 121706. [Google Scholar] [CrossRef]
- Gu, J.Z.; Wan, S.M.; Dou, W.; Kirillova, M.V.; Kirillov, A.M. Coordination polymers from an unexplored biphenyl-tricarboxylate linker: Hydrothermal synthesis, structural traits and catalytic cyanosilylation. Inorg. Chem. Front. 2021, 8, 1229–1242. [Google Scholar] [CrossRef]
- Cheng, X.; Guo, L.; Wang, H.; Gu, J.; Yang, Y.; Kirillova, M.V.; Kirillov, A.M. Coordination Polymers from Biphenyl-Dicarboxylate Linkers: Synthesis, Structural Diversity, Interpenetration, and Catalytic Properties. Inorg. Chem. 2022, 61, 12577–12590. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.Z.; Wan, S.M.; Kirillova, M.V.; Kirillov, A.M. H-Bonded and metal(II)-organic architectures assembled from an unexplored aromatic tricarboxylic acid: Structural variety and functional properties. Dalton Trans. 2020, 49, 7197–7209. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.Y.; Guo, L.R.; Wang, H.Y.; Gu, J.Z.; Yang, Y.; Kirillova, M.V.; Kirillov, A.M. Coordination Polymers Constructed from an Adaptable Pyridine-Dicarboxylic Acid Linker: Assembly, Diversity of Structures, and Catalysis. Inorg. Chem. 2022, 61, 17951–17962. [Google Scholar] [CrossRef]
- Guo, X.Y.; Zhao, F.; Liu, H.T.; Wang, Y.Q.; Liu, Z.L.; Gao, E.Q. Five new 2D and 3D coordination polymers based on two new multifunctional pyridyl-tricarboxylate ligands: Hydrothermal syntheses, structural diversity, luminescent and magnetic properties. RSC Adv. 2017, 7, 19039–19049. [Google Scholar] [CrossRef]
- Zhou, C.C.; Liu, H.T.; Ding, L.; Lu, J.; Wang, S.N.; Li, Y.W. Proton conductivities of four low dimensional MOFs: Affected by the amount of chelated ligands. CrystEngComm 2021, 23, 5106–5115. [Google Scholar] [CrossRef]
- Hao, H.G.; Zhao, Y.F.; Chen, D.M.; Yu, J.M.; Tan, K.; Ma, S.; Chabal, Y.; Zhang, Z.M.; Dou, J.M.; Xiao, Z.H.; et al. Simultaneous Trapping of C2H2 and C2H6 from a Ternary Mixture of C2H2/C2H4/C2H6 in a Robust Metal-Organic Framework for the Purification of C2H4. Angew. Chem. Int. Ed. 2018, 57, 16067–16071. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, K.; Hao, M.; Liu, L.; Han, Z.B.; Yuan, D. Two metal-organic frameworks based on pyridyl-tricarboxylate ligands as size-selective catalysts for solvent-free cyanosilylation reaction. CrystEngComm 2018, 20, 6070–6076. [Google Scholar] [CrossRef]
- Chen, H.; Fan, L.; Hu, T.; Zhang, X. 6s-3d {Ba3Zn4}-Organic Framework as an Effective Heterogeneous Catalyst for Chemical Fixation of CO2 and Knoevenagel Condensation Reaction. Inorg. Chem. 2021, 60, 3384–3392. [Google Scholar] [CrossRef]
- Almasi, M.; Zelenak, V.; Opanasenko, M.; Cejka, J. A novel nickel metal-organic framework with fluorite-like structure: Gas adsorption properties and catalytic activity in Knoevenagel condensation. Dalton Trans. 2014, 43, 3730–3738. [Google Scholar] [CrossRef]
- Yi, X.C.; Huang, M.X.; Qi, Y.; Gao, E.Q. Synthesis, structure, luminescence and catalytic properties of cadmium(II) coordination polymers with 9H-carbazole-2,7-dicarboxylic acid. Dalton Trans. 2014, 43, 3691–3697. [Google Scholar] [CrossRef]
- Loukopoulos, E.; Kostakis, G.E. Review: Recent advances of one-dimensional coordination polymers as catalysts. J. Coord. Chem. 2018, 71, 371–410. [Google Scholar] [CrossRef]
- Xue, L.P.; Li, Z.H.; Zhang, T.; Cui, J.J.; Gao, Y.; Yao, J.X. Construction of two Zn(II)/Cd(II) multifunctional coordination polymers with mixed ligands for catalytic and sensing properties. New J. Chem. 2018, 42, 14203–14209. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXS-97; Program for X-ray Crystal Structure Determination; University of Gottingen: Göttingen, Germany, 1997. [Google Scholar]
- Blatov, V.A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr CompComm Newsl. 2006, 7, 4–38. [Google Scholar]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
Compound | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Chemical formula | C26H19CoN3O7 | C78H42Zn4.5N9O18 | C24H14Co1.5N3O6 | C48H28Zn3N6O12 |
Molecular weight | 544.37 | 1687.37 | 528.78 | 1076.87 |
Crystal system | Triclinic | Triclinic | Triclinic | Triclinic |
Space group | P − 1 | P − 1 | P − 1 | P − 1 |
a/Å | 9.3127(5) | 10.2995(2) | 9.52279(17) | 9.5341(4) |
b/Å | 12.2573(5) | 14.4165(3) | 10.17273(19) | 10.2025(3) |
c/Å | 12.3293(6) | 23.8214(5) | 12.5987(2) | 12.6077(5) |
α/(°) | 119.515(5) | 88.9997(15) | 76.6446(16) | 76.362(3) |
β/(°) | 103.370(4) | 81.6471(16) | 71.2712(17) | 70.953(4) |
γ/(°) | 97.284(4) | 84.2605(16) | 78.5857(16) | 78.498(3) |
V/Å3 | 1142.36(11) | 3481.98(12) | 1114.40(4) | 1116.49(8) |
Z | 2 | 2 | 2 | 1 |
F(000) | 558 | 1704 | 535 | 544 |
Crystal size/mm | 0.09 × 0.03 × 0.03 | 0.06 × 0.04 × 0.03 | 0.09 × 0.05 × 0.04 | 0.10 × 0.07 × 0.05 |
θ range for data collection | 1.991–25.50 | 1.871–75.71 | 3.766–67.982 | 2.073–25.999 |
Limiting indices | −11 ≤ h ≤ 11, −14 ≤ k ≤ 14, −14 ≤ l ≤ 14 | −12 ≤ h ≤ 12, −18 ≤ k ≤ 17, −28 ≤ l ≤ 30 | −11 ≤ h ≤ 7, −12 ≤ k ≤ 11, −15 ≤ l ≤ 14 | −11 ≤ h ≤ 11, −12 ≤ k ≤ 11, −15 ≤ l ≤ 15 |
Reflections collected/unique (Rint) | 4240/3434 (0.0413) | 14,040/11,155 (0.0271) | 4016/3810 (0.0245) | 4401/3497 (0.0426) |
Dc/(Mg·cm−3) | 1.583 | 1.609 | 1.576 | 1.602 |
μ/mm−1 | 0.807 | 2.434 | 9.262 | 1.671 |
Data/restraints/parameters | 4240/7/335 | 14,040/168/1093 | 4016/0/313 | 4401/0/313 |
Goodness-of-fit on F2 | 1.065 | 1.115 | 1.027 | 1.008 |
Final R [(I ≥ 2σ(I))] R1, wR2 | 0.0465, 0.1203 | 0.0407, 0.1176 | 0.0324, 0.0875 | 0.0355, 0.0880 |
R (all data) R1, wR2 | 0.0590, 0.1276 | 0.0504, 0.1242 | 0.0341, 0.0885 | 0.0485, 0.0942 |
Largest diff. peak & hole/(e·Å−3) | 0.905 & −0.450 | 0.513 & −0.516 | 0.864 & −0.435 | 0.561 & −0.393 |
Compound | 5 | 6 | 7 | |
Chemical formula | C24H24Co1.5N3O11 | C60H58Co3N6O23 | C52H36Mn3N6O12 | |
Molecular weight | 618.86 | 1407.91 | 1101.69 | |
Crystal system | Monoclinic | Monoclinic | Triclinic | |
Space group | P21/n | C2/c | P − 1 | |
a/Å | 6.82955(7) | 27.5511(3) | 9.6797(6) | |
b/Å | 18.1486(2) | 13.9096(2) | 10.2210(6) | |
c/Å | 19.02692(18) | 15.26792(19) | 12.8368(7) | |
α/(°) | 90 | 90 | 100.562(5) | |
β/(°) | 94.8812(10) | 90.8226(11) | 103.381(5) | |
γ/(°) | 90 | 90 | 102.206(5) | |
V/Å3 | 2349.77(4) | 5850.44(14) | 1171.04(12) | |
Z | 4 | 4 | 1 | |
F(000) | 1270 | 2900 | 561 | |
Crystal size/mm | 0.09 × 0.04 × 0.03 | 0.05 × 0.03 × 0.02 | 0.08 × 0.04 × 0.03 | |
θ range for data collection | 3.371–67.997 | 3.203–77.106 | 2.102–25.496 | |
Limiting indices | −8 ≤ h ≤ 6, −17 ≤ k ≤ 21, −22 ≤ l ≤ 22 | −34 ≤ h ≤ 34, −17 ≤ k ≤ 17, −11 ≤ l ≤ 19 | −11 ≤ h ≤ 11, −12 ≤ k ≤ 12, −15 ≤ l ≤ 15 | |
Reflections collected/unique (Rint) | 4273/3958 (0.0357) | 5732/4870 (0.0347) | 4357/3733 (0.0281) | |
Dc/(Mg·cm−3) | 1.749 | 1.598 | 1.562 | |
μ/mm−1 | 9.045 | 7.361 | 0.870 | |
Data/restraints/parameters | 4273/1/364 | 5732/0/428 | 4357/0/331 | |
Goodness-of-fit on F2 | 1.044 | 1.047 | 1.022 | |
Final R [(I ≥ 2σ(I))] R1, wR2 | 0.0321, 0.0790 | 0.0381, 0.1018 | 0.0303, 0.0740 | |
R (all data) R1, wR2 | 0.0354. 0.0804 | 0.0472, 0.1073 | 0.0374, 0.0767 | |
Largest diff. peak & hole/(e·Å−3) | 0.226 & −0.464 | 0.333 & −0.433 | 0.306 & −0.236 |
Entry | Catalyst | T(°C) | Time (min) | Catalyst Loading (mol%) | Solvent | Yield a (%) |
---|---|---|---|---|---|---|
1 | 4 | 25 | 10 | 2.0 | CH3OH | 45 |
2 | 4 | 25 | 20 | 2.0 | CH3OH | 62 |
3 | 4 | 25 | 30 | 2.0 | CH3OH | 73 |
4 | 4 | 25 | 40 | 2.0 | CH3OH | 84 |
5 | 4 | 25 | 50 | 2.0 | CH3OH | 95 |
6 | 4 | 25 | 60 | 2.0 | CH3OH | 100 |
7 | 4 | 25 | 60 | 1.0 | CH3OH | 94 |
8 | 4 | 25 | 60 | 2.0 | H2O | 98 |
9 | 4 | 25 | 60 | 2.0 | C2H5OH | 95 |
10 | 4 | 25 | 60 | 2.0 | CH3CN | 88 |
11 | 4 | 25 | 60 | 2.0 | CHCl3 | 65 |
12 | 1 | 25 | 60 | 2.0 | CH3OH | 89 |
13 | 2 | 25 | 60 | 2.0 | CH3OH | 100 |
14 | 3 | 25 | 60 | 2.0 | CH3OH | 100 |
15 | 5 | 25 | 60 | 2.0 | CH3OH | 86 |
16 | 6 | 25 | 60 | 2.0 | CH3OH | 82 |
17 | 7 | 25 | 60 | 2.0 | CH3OH | 100 |
18 | Blank | 25 | 60 | − | CH3OH | 20 |
19 | ZnCl2 | 25 | 60 | 2.0 | CH3OH | 32 |
20 | H3dpna | 25 | 60 | 2.0 | CH3OH | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, X.; Ren, C.; Mei, Z.; Fan, X.; Xue, J.; Shao, Y.; Gu, J. Hydrothermal Assembly, Structural Multiplicity, and Catalytic Knoevenagel Condensation Reaction of a Series of Coordination Polymers Based on a Pyridine-Tricarboxylic Acid. Molecules 2023, 28, 7474. https://doi.org/10.3390/molecules28227474
Kang X, Ren C, Mei Z, Fan X, Xue J, Shao Y, Gu J. Hydrothermal Assembly, Structural Multiplicity, and Catalytic Knoevenagel Condensation Reaction of a Series of Coordination Polymers Based on a Pyridine-Tricarboxylic Acid. Molecules. 2023; 28(22):7474. https://doi.org/10.3390/molecules28227474
Chicago/Turabian StyleKang, Xiuqi, Chao Ren, Zhenzhong Mei, Xiaoxiang Fan, Jijun Xue, Yongliang Shao, and Jinzhong Gu. 2023. "Hydrothermal Assembly, Structural Multiplicity, and Catalytic Knoevenagel Condensation Reaction of a Series of Coordination Polymers Based on a Pyridine-Tricarboxylic Acid" Molecules 28, no. 22: 7474. https://doi.org/10.3390/molecules28227474
APA StyleKang, X., Ren, C., Mei, Z., Fan, X., Xue, J., Shao, Y., & Gu, J. (2023). Hydrothermal Assembly, Structural Multiplicity, and Catalytic Knoevenagel Condensation Reaction of a Series of Coordination Polymers Based on a Pyridine-Tricarboxylic Acid. Molecules, 28(22), 7474. https://doi.org/10.3390/molecules28227474