Increased Range of Catalytic Activities of Immobilized Compared to Colloidal Gold Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Surfaces with Immobilized Gold Nanoparticles
2.2. Enzyme-Mimicking Activity
2.2.1. Catalase-like Activity
2.2.2. Oxidase-like Activity
2.2.3. Superoxide Dismutase-like Activity
2.2.4. Peroxidase-like Activity
2.2.5. Successive Catalysis Reactions
2.3. Degradation of Pollutants
2.3.1. Degradation of Metronidazole
2.3.2. Degradation of Methylene Blue
3. Materials and Methods
3.1. Reagents and Standards
3.2. Preparation of Gold-Nanostructured Glass Slides (iAuNPs)
3.2.1. Synthesis and Characterization of Citrate-Stabilized Gold Nanoparticles
3.2.2. Immobilization of Citrate-Stabilized Gold Nanoparticles
3.2.3. Characterization of Immobilized Gold Nanoparticles
3.3. Enzyme-Mimicking Activities
3.3.1. Catalase-like Activity
3.3.2. Oxidase-like Activity
3.3.3. Superoxide Dismutase-like Activity
3.3.4. Peroxidase-like Activity
3.3.5. Study of Successive Catalysis
3.4. Degradation of Pollutants
3.4.1. Degradation of Metronidazole
3.4.2. Degradation of Methylene Blue
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heddle, J.G. Gold Nanoparticle-Biological Molecule Interactions and Catalysis. Catalysts 2013, 3, 683–708. [Google Scholar] [CrossRef]
- Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chem. Rev. 2020, 120, 464–525. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, J.-C.; Luo, L.; Wang, Y.-G.; Zhu, J.; Du, Y.; Li, J.; Mao, S.X.; Wang, C. Size-Dependent Dynamic Structures of Supported Gold Nanoparticles in CO Oxidation Reaction Condition. Proc. Natl. Acad. Sci. USA 2018, 115, 7700–7705. [Google Scholar] [CrossRef]
- Huang, J.; Lima, E.; Akita, T.; Guzmán, A.; Qi, C.; Takei, T.; Haruta, M. Propene Epoxidation with O2 and H2: Identification of the Most Active Gold Clusters. J. Catal. 2011, 278, 8–15. [Google Scholar] [CrossRef]
- Liang, M.; Yan, X. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, W.; Wu, X.; Gao, X. Mechanism of pH-Switchable Peroxidase and Catalase-like Activities of Gold, Silver, Platinum, and Palladium. Biomaterials 2015, 48, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ren, J.; Qu, X. Nano-Gold as Artificial Enzymes: Hidden Talents. Adv. Mater. 2014, 26, 4200–4217. [Google Scholar] [CrossRef]
- Pallotta, A.; Parent, M.; Clarot, I.; Luo, M.; Borr, V.; Dan, P.; Decot, V.; Menu, P.; Safar, R.; Joubert, O.; et al. Blood Compatibility of Multilayered Polyelectrolyte Films Containing Immobilized Gold Nanoparticles. Part. Part. Syst. Charact. 2017, 34, 1600184. [Google Scholar] [CrossRef]
- Beurton, J.; Clarot, I.; Stein, J.; Creusot, B.; Marcic, C.; Marchioni, E.; Boudier, A. Long-Lasting and Controlled Antioxidant Property of Immobilized Gold Nanoparticles for Intelligent Packaging. Colloids Surf. B Biointerfaces 2019, 176, 439–448. [Google Scholar] [CrossRef]
- Boukoufi, C.; Boudier, A.; Lahouari, S.; Vigneron, J.; Clarot, I. Activity and Reusability of Immobilized Gold Nanoparticles for the Catalysis of Both Oxidation and Reduction Reactions. Results Chem. 2023, 5, 100979. [Google Scholar] [CrossRef]
- Ankudze, B.; Pakkanen, T.T. Gold Nanoparticle Decorated Au-Ag Alloy Tubes: A Bifunctional Substrate for Label-Free and in Situ Surface-Enhanced Raman Scattering Based Reaction Monitoring. Appl. Surf. Sci. 2018, 453, 341–349. [Google Scholar] [CrossRef]
- Kim, J.-H.; Twaddle, K.M.; Hu, J.; Byun, H. Sunlight-Induced Synthesis of Various Gold Nanoparticles and Their Heterogeneous Catalytic Properties on a Paper-Based Substrate. ACS Appl. Mater. Interfaces 2014, 6, 11514–11522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, K.-L. In Situformation and Immobilization of Gold Nanoparticles on Polydimethylsiloxane (PDMS) Exhibiting Catalase-Mimetic Activity. Chem. Commun. 2020, 56, 6416–6419. [Google Scholar] [CrossRef]
- Majumder, A.; Gupta, A.K.; Ghosal, P.S.; Varma, M. A Review on Hospital Wastewater Treatment: A Special Emphasis on Occurrence and Removal of Pharmaceutically Active Compounds, Resistant Microorganisms, and SARS-CoV-2. J. Environ. Chem. Eng. 2021, 9, 104812. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Xu, M.; Yang, J.; Wang, Y.; Lu, B.; Liu, H.; Chen, R. Iron Phosphide for Photo-Assisted Peroxodisulfate Activation in Metronidazole Degradation. Sep. Purif. Technol. 2022, 292, 121039. [Google Scholar] [CrossRef]
- Nasseh, N.; Arghavan, F.S.; Rodriguez-Couto, S.; Hossein Panahi, A.; Esmati, M.; A-Musawi, T.J. Preparation of Activated carbon@ZnO Composite and Its Application as a Novel Catalyst in Catalytic Ozonation Process for Metronidazole Degradation. Adv. Powder Technol. 2020, 31, 875–885. [Google Scholar] [CrossRef]
- Seitkazina, A.; Yang, J.-K.; Kim, S. Clinical Effectiveness and Prospects of Methylene Blue: A Systematic Review. Precis. Future Med. 2022, 6, 193–208. [Google Scholar] [CrossRef]
- Cwalinski, T.; Polom, W.; Marano, L.; Roviello, G.; D’Angelo, A.; Cwalina, N.; Matuszewski, M.; Roviello, F.; Jaskiewicz, J.; Polom, K. Methylene Blue-Current Knowledge, Fluorescent Properties, and Its Future Use. J. Clin. Med. 2020, 9, 3538. [Google Scholar] [CrossRef]
- Rokesh, K.; Sakar, M.; Trong-On, D. Emerging Hybrid Nanocomposite Photocatalysts for the Degradation of Antibiotics: Insights into Their Designs and Mechanisms. Nanomaterials 2021, 11, 572. [Google Scholar] [CrossRef]
- Shanker, U.; Rani, M.; Jassal, V. Degradation of Hazardous Organic Dyes in Water by Nanomaterials. Environ. Chem. Lett. 2017, 15, 623–642. [Google Scholar] [CrossRef]
- Dedeh, A.; Ciutat, A.; Treguer-Delapierre, M.; Bourdineaud, J.-P. Impact of Gold Nanoparticles on Zebrafish Exposed to a Spiked Sediment. Nanotoxicology 2015, 9, 71–80. [Google Scholar] [CrossRef]
- Pallotta, A.; Boudier, A.; Creusot, B.; Brun, E.; Sicard-Roselli, C.; Bazzi, R.; Roux, S.; Clarot, I. Quality Control of Gold Nanoparticles as Pharmaceutical Ingredients. Int. J. Pharm. 2019, 569, 118583. [Google Scholar] [CrossRef]
- Suh, J.; Paik, H.J.; Hwang, B.K. Ionization of Poly(Ethylenimine) and Poly(Allylamine) at Various pH’s. Bioorg. Chem. 1994, 22, 318–327. [Google Scholar] [CrossRef]
- Gao, S.; Koshizaki, N.; Tokuhisa, H.; Koyama, E.; Sasaki, T.; Kim, J.-K.; Ryu, J.; Kim, D.-S.; Shimizu, Y. Highly Stable Au Nanoparticles with Tunable Spacing and Their Potential Application in Surface Plasmon Resonance Biosensors. Adv. Funct. Mater. 2010, 20, 78–86. [Google Scholar] [CrossRef]
- Mansur, A.A.P.; Leonel, A.G.; Krambrock, K.; Mansur, H.S. Bifunctional Oxidase-Peroxidase Inorganic Nanozyme Catalytic Cascade for Wastewater Remediation. Catal. Today 2022, 397–399, 129–144. [Google Scholar] [CrossRef]
- Berthou, M.; Pallotta, A.; Beurton, J.; Chaigneau, T.; Athanassiou, A.; Marcic, C.; Marchioni, E.; Boudier, A.; Clarot, I. Gold Nanostructured Membranes to Concentrate Low Molecular Weight Thiols, a Proof of Concept Study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1198, 123244. [Google Scholar] [CrossRef] [PubMed]
- Lien, C.-W.; Chen, Y.-C.; Chang, H.-T.; Huang, C.-C. Logical Regulation of the Enzyme-like Activity of Gold Nanoparticles by Using Heavy Metal Ions. Nanoscale 2013, 5, 8227–8234. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, R.; Zhang, P.; Qin, Y.; Chen, T.; Ye, F. A Bimetallic (Co/2Fe) Metal-Organic Framework with Oxidase and Peroxidase Mimicking Activity for Colorimetric Detection of Hydrogen Peroxide. Microchim. Acta 2017, 184, 4629–4635. [Google Scholar] [CrossRef]
- Luo, L.; Huang, L.; Liu, X.; Zhang, W.; Yao, X.; Dou, L.; Zhang, X.; Nian, Y.; Sun, J.; Wang, J. Mixed-Valence Ce-BPyDC Metal–Organic Framework with Dual Enzyme-like Activities for Colorimetric Biosensing. Inorg. Chem. 2019, 58, 11382–11388. [Google Scholar] [CrossRef]
- Tao, Y.; Ju, E.; Ren, J.; Qu, X. Bifunctionalized Mesoporous Silica-Supported Gold Nanoparticles: Intrinsic Oxidase and Peroxidase Catalytic Activities for Antibacterial Applications. Adv. Mater. 2015, 27, 1097–1104. [Google Scholar] [CrossRef]
- Deshmukh, A.R.; Aloui, H.; Kim, B.S. Novel Biogenic Gold Nanoparticles Catalyzing Multienzyme Cascade Reaction: Glucose Oxidase and Peroxidase Mimicking Activity. Chem. Eng. J. 2021, 421, 127859. [Google Scholar] [CrossRef]
- Robert, A.; Meunier, B. How to Define a Nanozyme. ACS Nano 2022, 16, 6956–6959. [Google Scholar] [CrossRef] [PubMed]
- Cafun, J.-D.; Kvashnina, K.O.; Casals, E.; Puntes, V.F.; Glatzel, P. Absence of Ce3+ Sites in Chemically Active Colloidal Ceria Nanoparticles. ACS Nano 2013, 7, 10726–10732. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, X.; Han, L.; Li, F. “Non-Naked” Gold with Glucose Oxidase-Like Activity: A Nanozyme for Tandem Catalysis. Small 2018, 14, 1803256. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zhou, Y.-T.; Wamer, W.G.; Hu, X.; Wu, X.; Zheng, Z.; Boudreau, M.D.; Yin, J.-J. Intrinsic Catalytic Activity of Au Nanoparticles with Respect to Hydrogen Peroxide Decomposition and Superoxide Scavenging. Biomaterials 2013, 34, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Cao-Milan, R.; He, L.D.; Shorkey, S.; Tonga, G.Y.; Wang, L.-S.; Zhang, X.; Uddin, I.; Das, R.; Sulak, M.; Rotello, V.M. Modulating the Catalytic Activity of Enzyme-like Nanoparticles through Their Surface Functionalization. Mol. Syst. Des. Eng. 2017, 2, 624–628. [Google Scholar] [CrossRef]
- Dashtestani, F.; Ghourchian, H.; Eskandari, K.; Rafiee-Pour, H.-A. A Superoxide Dismutase Mimic Nanocomposite for Amperometric Sensing of Superoxide Anions. Microchim. Acta 2015, 182, 1045–1053. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Liu, A.-L.; Hong, L.; Deng, H.-H.; Lin, X.-H. Comparison of the Peroxidase-like Activity of Unmodified, Amino-Modified, and Citrate-Capped Gold Nanoparticles. Chemphyschem 2012, 13, 1199–1204. [Google Scholar] [CrossRef]
- Haddada, M.; Blanchard, J.; Casale, S.; Krafft, J.-M.; Vallée, A.; Méthivier, C.; Boujday, S. Optimizing the Immobilization of Gold Nanoparticles on Functionalized Silicon Surfaces: Amine- vs Thiol-Terminated Silane. Gold Bull. 2013, 46, 335–341. [Google Scholar] [CrossRef]
- Atmianlu, P.A.; Badpa, R.; Aghabalaei, V.; Baghdadi, M. A Review on the Various Beds Used for Immobilization of Nanoparticles: Overcoming the Barrier to Nanoparticle Applications in Water and Wastewater Treatment. J. Environ. Chem. Eng. 2021, 9, 106514. [Google Scholar] [CrossRef]
- Li, R.; Li, Z.; Wu, Q.; Li, D.; Shi, J.; Chen, Y.; Yu, S.; Ding, T.; Qiao, C. One-Step Synthesis of Monodisperse AuNPs@PANI Composite Nanospheres as Recyclable Catalysts for 4-Nitrophenol Reduction. J. Nanopart. Res. 2016, 18, 142. [Google Scholar] [CrossRef]
- Dong, Z.; Yu, G.; Le, X. Gold Nanoparticle Modified Magnetic Fibrous Silica Microspheres as a Highly Efficient and Recyclable Catalyst for the Reduction of 4-Nitrophenol. New J. Chem. 2015, 39, 8623–8629. [Google Scholar] [CrossRef]
- Tang, L.; Wang, X.; Guo, B.; Ma, M.; Chen, B.; Zhan, S.; Yao, S. Salt-Triggered Liquid Phase Separation and Facile Nanoprecipitation of Aqueous Colloidal Gold Dispersion in Miscible Biofluids for Direct Chromatographic Measurement. RSC Adv. 2013, 3, 15875–15886. [Google Scholar] [CrossRef]
- Vesperinas, A.; Eastoe, J.; Jackson, S.; Wyatt, P. Light-Induced Flocculation of Gold Nanoparticles. Chem. Commun. 2007, 38, 3912–3914. [Google Scholar] [CrossRef] [PubMed]
- Dingsdag, S.A.; Hunter, N. Metronidazole: An Update on Metabolism, Structure-Cytotoxicity and Resistance Mechanisms. J. Antimicrob. Chemother. 2018, 73, 265–279. [Google Scholar] [CrossRef]
- Rice, A.; Long, Y.; King, S. Nitroaromatic Antibiotics as Nitrogen Oxide Sources. Biomolecules 2021, 11, 267. [Google Scholar] [CrossRef]
- Wolski, L.; Walkowiak, A.; Ziolek, M. Formation of Reactive Oxygen Species upon Interaction of Au/ZnO with H2O2 and Their Activity in Methylene Blue Degradation. Catal. Today 2019, 333, 54–62. [Google Scholar] [CrossRef]
- Sánchez, L.D.; Taxt-Lamolle, S.F.M.; Hole, E.O.; Krivokapić, A.; Sagstuen, E.; Haugen, H.J. TiO2 Suspension Exposed to H2O2 in Ambient Light or Darkness: Degradation of Methylene Blue and EPR Evidence for Radical Oxygen Species. Appl. Catal. B Environ. 2013, 142–143, 662–667. [Google Scholar] [CrossRef]
- Wolski, L.; Sobańska, K.; Nowaczyk, G.; Frankowski, M.; Pietrowski, M.; Jarek, M.; Rozmyślak, M.; Pietrzyk, P. Phosphate Doping as a Promising Approach to Improve Reactivity of Nb2O5 in Catalytic Activation of Hydrogen Peroxide and Removal of Methylene Blue via Adsorption and Oxidative Degradation. J. Hazard. Mater. 2022, 440, 129783. [Google Scholar] [CrossRef]
- Tournebize, J.; Sapin-Minet, A.; Schneider, R.; Boudier, A.; Maincent, P.; Leroy, P. Simple Spectrophotocolorimetric Method for Quantitative Determination of Gold in Nanoparticles. Talanta 2011, 83, 1780–1783. [Google Scholar] [CrossRef]
- Hadwan, M.H. Simple Spectrophotometric Assay for Measuring Catalase Activity in Biological Tissues. BMC Biochem. 2018, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Josephy, P.D.; Eling, T.; Mason, R.P. The Horseradish Peroxidase-Catalyzed Oxidation of 3,5,3′,5′-Tetramethylbenzidine. Free Radical and Charge-Transfer Complex Intermediates. J. Biol. Chem. 1982, 257, 3669–3675. [Google Scholar] [CrossRef] [PubMed]
- Mirankó, M.; Megyesi, M.; Miskolczy, Z.; Tóth, J.; Feczkó, T.; Biczók, L. Encapsulation of Metronidazole in Biocompatible Macrocycles and Structural Characterization of Its Nano Spray-Dried Nanostructured Composite. Molecules 2021, 26, 7335. [Google Scholar] [CrossRef] [PubMed]
Sample | Number of AuNP-Cit Baths | SPR Value (nm) | Amax (at SPR) | Total Number of Deposited AuNPs |
---|---|---|---|---|
2iAuNP | 2 | 559 ± 4 | 0.168 ± 0.004 | 3.8 ± 0.1 × 1013 |
5iAuNP | 5 | 587 ± 3 | 0.298 ± 0.008 | 7.5 ± 0.3 × 1013 |
10iAuNP | 10 | 585 ± 4 | 0.504 ± 0.016 | 10.1 ± 0.2 × 1013 |
30iAuNP | 30 | 585 ± 1 | 1.102 ± 0.044 | 15.7 ± 0.2 × 1013 |
Condition | Ea (kJ·mol−1) | A (s−1) |
---|---|---|
Control | 88.4 ± 9.8 | 1.1 ± 1.7 × 1013 |
10iAuNP | 50.6 ± 5.8 | 6.9 ± 0.1 × 106 |
State | Number of AuNPs | Reduction Efficiency (%) |
---|---|---|
AuNP-cit | 1.1 × 1012 | −1.8 ± 1.8 |
1.8 × 1012 | 19.6 ± 4.7 | |
3.5 × 1012 | 75.6 ± 5.5 | |
7.0 × 1012 | 220.8 ± 6.3 | |
2iAuNP | 38.1 ± 1.3 × 1012 | 1070.8 ± 54.9 |
5iAuNP | 75.4 ± 3.2 × 1012 | 856.2 ± 47.9 |
10iAuNP | 100.7 ± 1.7 × 1012 | 949.4 ± 52.5 |
30iAuNP | 156.8 ± 1.9 × 1012 | 1159.6 ± 9.7 |
State | Number of AuNPs | Reduction Efficiency (%) |
---|---|---|
AuNP-cit | 0.5 × 1012 | 7.7 ± 0.6 |
1.0 × 1012 | 14.6 ± 0.8 | |
5iAuNP | 75.4 ± 3.2 × 1012 | 8.8 ± 3.0 |
10iAuNP | 100.7 ± 1.7 × 1012 | 15.1 ± 4.8 |
30iAuNP | 156.8 ± 1.9 × 1012 | 14.4 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukoufi, C.; Boudier, A.; Clarot, I. Increased Range of Catalytic Activities of Immobilized Compared to Colloidal Gold Nanoparticles. Molecules 2023, 28, 7558. https://doi.org/10.3390/molecules28227558
Boukoufi C, Boudier A, Clarot I. Increased Range of Catalytic Activities of Immobilized Compared to Colloidal Gold Nanoparticles. Molecules. 2023; 28(22):7558. https://doi.org/10.3390/molecules28227558
Chicago/Turabian StyleBoukoufi, Célia, Ariane Boudier, and Igor Clarot. 2023. "Increased Range of Catalytic Activities of Immobilized Compared to Colloidal Gold Nanoparticles" Molecules 28, no. 22: 7558. https://doi.org/10.3390/molecules28227558
APA StyleBoukoufi, C., Boudier, A., & Clarot, I. (2023). Increased Range of Catalytic Activities of Immobilized Compared to Colloidal Gold Nanoparticles. Molecules, 28(22), 7558. https://doi.org/10.3390/molecules28227558