Evolution Mechanism of Sputtered Film Uniformity with the Erosion Groove Size: Integrated Simulation and Experiment
Abstract
:1. Introduction
2. Results
2.1. The Radial Distributions of the Sputtering Possibility on the 2-Inch and 4-Inch Target Surface
2.2. Deposition Density Distribution of the 2-Inch Target Sputtering
2.3. Deposition Density Distribution of the 4-Inch Target Sputtering
2.4. Film Thickness Uniformity of 2-Inch and 4-Inch Target Sputtering
3. Discussion
4. Materials and Methods
4.1. Experiment of Cu Film Deposition and Film Thickness Measurement
4.2. MC Simulation of Magnetron Sputtering Discharge
4.3. MC-MD Simulation Method of Sputtered Particle Transport
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novozhilov, V.; Belov, A. Formation and Properties of Thermistor Chips Based on Semiconductor 3D Metal Oxide Films Obtained by RF-Magnetron Sputtering. Int. J. Mol. Sci. 2023, 24, 742. [Google Scholar] [CrossRef] [PubMed]
- Pathak, B.; Kalita, P.K. Photo electronic properties of molar concentration varied nanostructured ZnO for their photo-detecting viability in visible range. Phys. B Condens. Matter 2023, 650, 414562. [Google Scholar] [CrossRef]
- Zhang, Z.; Gurtaran, M.; Li, X.; Un, H.I.; Qin, Y.; Dong, H. Characterization of magnetron sputtered BiTe-based thermoelectric thin films. Nanomaterials 2023, 13, 208. [Google Scholar] [CrossRef] [PubMed]
- Tite, T.; Popa, A.C.; Chirica, I.M.; Stuart, B.W.; Galca, A.C.; Balescu, L.M.; Popescu-Pelin, G.; Grant, D.M.; Ferreira, J.M.F.; Stan, G.E. Phosphate bioglass thin-films: Cross-area uniformity, structure and biological performance tailored by the simple modification of magnetron sputtering gas pressure. Appl. Surf. Sci. 2021, 541, 148640. [Google Scholar] [CrossRef]
- Li, C.; Song, S.; Gibson, D.; Child, D.; Waddell, E. Modeling and validation of uniform large-area optical coating deposition on a rotating drum using microwave plasma reactive sputtering. Appl. Opt. 2017, 56, C65–C70. [Google Scholar] [CrossRef]
- Shishkov, M.; Popov, D. Thickness uniformity of thin films deposited on a flat substrate by sputtering of a target with rotational symmetry. Vacuum 1991, 42, 1005–1008. [Google Scholar] [CrossRef]
- Ekpe, S.D.; Bezuidenhout, L.W.; Dew, S.K. Deposition rate model of magnetron sputtered particles. Thin Solid Film. 2005, 474, 330–336. [Google Scholar] [CrossRef]
- Du, X.S.; Jiang, Y.D.; Yu, J.S.; Li, J.; Xie, G.Z. Quantitative evaluation of film thickness uniformity: Application to off-axis magnetron source onto a rotating substrate. J. Vac. Sci. Technol. A 2007, 25, 215–220. [Google Scholar] [CrossRef]
- Jiang, C.Z.; Zhu, J.Q.; Han, J.C.; Lei, P.; Yin, X.B. Uniform film in large areas deposited by magnetron sputtering with a small target. Surf. Coat. Technol. 2013, 229, 222–225. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, L.; Dai, B.; Huang, X.; Wang, Q.; Zhang, Y.; Han, J.; Zhu, J. Uniform films deposited on convex surfaces by magnetron sputtering with a small target. Thin Solid Film. 2018, 665, 1–5. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, L.; Yao, Y.; Zhang, Z.; Wang, Z.; Qi, R. Controlling Film Thickness Distribution by Magnetron Sputtering with Rotation and Revolution. Coatings 2021, 11, 599. [Google Scholar] [CrossRef]
- Zhu, G.; Sun, J.; Gan, Z.Y. A Novel Approach to Calculate the Deposition Uniformity of Multi-Target Sputtering System. In Proceedings of the 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 8–11 August 2018. [Google Scholar] [CrossRef]
- Hydyrova, S.; Akishin, M.Y.; Vasilev, D.D.; Moiseev, K.M. Providing of Ultra-Thin Film Thickness Uniformity by Magnetron Sputtering from Two Sources. IOP Conf. Ser. Mater. Sci. Eng. 2020, 781, 012012. [Google Scholar] [CrossRef]
- Zhu, G.; Xiao, B.; Chen, G.; Gan, Z. Study on the Deposition Uniformity of Triple-Target Magnetron Co-Sputtering System: Numerical Simulation and Experiment. Materials 2022, 15, 7770. [Google Scholar] [CrossRef] [PubMed]
- Turner, G.M.; Falconer, I.S.; James, B.W.; McKenzie, D.R. Monte Carlo calculation of the thermalization of atoms sputtered from the cathode of a sputtering discharge. J. Appl. Phys. 1989, 65, 3671–3679. [Google Scholar] [CrossRef]
- Nathan, S.S.; Rao, G.M.; Mohan, S. Transport of sputtered atoms in facing targets sputtering geometry: A numerical simulation study. J. Appl. Phys. 1998, 84, 564–571. [Google Scholar] [CrossRef]
- Mahieu, S.; Buyle, G.; Depla, D.; Heirwegh, S.; Ghekiere, P.; Gryse, R.D. Monte Carlo simulation of the transport of atoms in DC magnetron sputtering. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2006, 243, 313–319. [Google Scholar] [CrossRef]
- Aeken, K.V.; Mahieu, S.; Depla, D. The metal flux from a rotating cylindrical magnetron: A Monte Carlo simulation. J. Phys. D Appl. Phys. 2008, 41, 205307. [Google Scholar] [CrossRef]
- Mahieu, S.; Aeken, K.V.; Depla, D. Transport of Sputtered Particles Through the Gas Phase. In Reactive Sputter Deposition, 1st ed.; Warlimont, H., Ed.; Springer: Berlin, Germany, 2008; Volume 109, pp. 199–227. [Google Scholar] [CrossRef]
- Settaouti, A.; Settaouti, L. Simulation of the transport of sputtered atoms and effects of processing conditions. Appl. Surf. Sci. 2008, 254, 5750–5756. [Google Scholar] [CrossRef]
- Sambandam, S.N.; Bhansali, S.; Bhethanabotla, V.; Sood, D. Studies on sputtering process of multicomponent Zr–Ti–Cu–Ni–Be alloy thin films. Vacuum 2006, 80, 406–414. [Google Scholar] [CrossRef]
- Eckstein, W. Computer Simulation of Ion-Solid Interactions; Springer: Berlin, Germany, 1991. [Google Scholar]
- Nakano, T.; Mori, I.; Baba, S. The effect of ‘warm’ gas scattering on the deceleration of energetic atoms: Monte Carlo study of the sputter-deposition of compounds. Appl. Surf. Sci. 1997, 113–114, 642–646. [Google Scholar] [CrossRef]
- Zhu, G.; Du, Q.; Xiao, B.; Chen, G.; Gan, Z. Influence of Target-Substrate Distance on the Transport Process of Sputtered Atoms: MC-MD Multiscale Coupling Simulation. Materials 2022, 15, 8904. [Google Scholar] [CrossRef] [PubMed]
- Field, D.J.; Dew, S.K.; Burrell, R.E. Spatial survey of a magnetron plasma sputtering system using a Langmuir probe. J. Vac. Sci. Technol. A 2002, 20, 2032–2041. [Google Scholar] [CrossRef]
- Evrard, M.; Besnard, A.; Lucas, S. Study of the influence of the pressure and rotational motion of 3D substrates processed by magnetron sputtering: A comparative study between Monte Carlo modelling and experiments. Surf. Coat. Technol. 2019, 378, 125070. [Google Scholar] [CrossRef]
- Vasilev, D.D.; Moiseev, K.M. Influence of the planar cylindrical target erosion zone of magnetron sputtering on the uniformity of a thin-film coating. J. Phys. Conf. Ser. 2015, 584, 012012. [Google Scholar] [CrossRef]
- Ido, S.; Kashiwagi, M.; Takahashi, M. Computational Studies of Plasma Generation and Control in a Magnetron Sputtering System. Jpn. J. Appl. Phys. 1999, 38, 4450–4454. [Google Scholar] [CrossRef]
- Spencer, A.G.; Bishop, C.A.; Howson, R.P. The design and performance of planar magnetron sputtering cathodes. Vacuum 1987, 37, 363–366. [Google Scholar] [CrossRef]
- Ido, S.I.S.; Nakamura, K.N.K. Computational studies on the shape and control of plasmas in magnetron sputtering systems. Jpn. J. Appl. Phys. 1993, 32, 5698. [Google Scholar] [CrossRef]
- Wong, M.S.; Sproul, W.D.; Rohde, S.L. Modeling magnetic fields of magnetron sputtering systems. Surf. Coat. Technol. 1991, 49, 121–126. [Google Scholar] [CrossRef]
- Wang, C.T.; Yen, S.C. Theoretical analysis of film uniformity in spinning processes. Chem. Eng. Sci. 1995, 50, 989–999. [Google Scholar] [CrossRef]
- Yamamura, Y.; Takiguchi, T.; Ishida, M. Energy and angular distributions of sputtered atoms at normal incidence. Radiat. Eff. Defects Solids 1991, 118, 237–261. [Google Scholar] [CrossRef]
- Reif, F. Fundamentals of Statistical and Thermal Physics; McGraw-Hill: London, UK, 1956. [Google Scholar]
- Depla, D.; Leroy, W.P. Magnetron sputter deposition as visualized by Monte Carlo modeling. Thin Solid Film. 2012, 520, 6337–6354. [Google Scholar] [CrossRef]
- Rossnagel, S.M. Magnetron plasma diagnostics and processing implications. J. Vac. Sci. Technol. A 1988, 6, 1821–1826. [Google Scholar] [CrossRef]
- Chan, K.Y.; Luo, P.Q.; Zhou, Z.B.; Tou, T.Y.; Teo, B.S. Influence of direct current plasma magnetron sputtering parameters on the material characteristics of polycrystalline copper films. Appl. Surf. Sci. 2009, 255, 5186–5190. [Google Scholar] [CrossRef]
- Kolev, I.; Bogaerts, A. PIC–MCC numerical simulation of a dc planar magnetron. Plasma Process. Polym. 2006, 3, 127–134. [Google Scholar] [CrossRef]
- Shidoji, E.; Nemoto, M.; Nomura, T. An anomalous erosion of a rectangular magnetron system. J. Vac. Sci. Technol. A 2000, 18, 2858–2863. [Google Scholar] [CrossRef]
- De Heer, F.J.; Jansen, R.H.J.; Van der Kaay, W. Total cross sections for electron scattering by Ne, Ar, Kr and Xe. J. Phys. B Atom. Mol. Phys. 1979, 12, 979. [Google Scholar] [CrossRef]
- Shidoji, E.; Nemoto, M.; Nomura, T.N.T.; Yoshikawa, Y.Y.Y. Three-dimensional simulation of target erosion in DC magnetron sputtering. Jpn. J. Appl. Phys. 1994, 33, 4281. [Google Scholar] [CrossRef]
- Santos, J.P.E. Measuring the magnetic field distribution of a magnetron sputtering target. J. Vac. Sci. Technol. A 1999, 17, 3118–3120. [Google Scholar] [CrossRef]
- Thompson, M.W. Atomic collision cascades in solids. Vacuum 2002, 66, 99–114. [Google Scholar] [CrossRef]
- Kalos, M.H.; Whitlock, P.A. Monte Carlo Methods; Wiley: New York, NY, USA, 1986. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Yang, Y.; Xiao, B.; Gan, Z. Evolution Mechanism of Sputtered Film Uniformity with the Erosion Groove Size: Integrated Simulation and Experiment. Molecules 2023, 28, 7660. https://doi.org/10.3390/molecules28227660
Zhu G, Yang Y, Xiao B, Gan Z. Evolution Mechanism of Sputtered Film Uniformity with the Erosion Groove Size: Integrated Simulation and Experiment. Molecules. 2023; 28(22):7660. https://doi.org/10.3390/molecules28227660
Chicago/Turabian StyleZhu, Guo, Yutong Yang, Baijun Xiao, and Zhiyin Gan. 2023. "Evolution Mechanism of Sputtered Film Uniformity with the Erosion Groove Size: Integrated Simulation and Experiment" Molecules 28, no. 22: 7660. https://doi.org/10.3390/molecules28227660
APA StyleZhu, G., Yang, Y., Xiao, B., & Gan, Z. (2023). Evolution Mechanism of Sputtered Film Uniformity with the Erosion Groove Size: Integrated Simulation and Experiment. Molecules, 28(22), 7660. https://doi.org/10.3390/molecules28227660